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1Adaptive discretization in dynamic optimization

Motivation

Dynamic optimization problems arise in many applications in
• economics and 
• almost all engineering disciplines.

Problems in chemical engineering are characterized by:

Highly nonlinear, large-scale 
dynamic process models and …

… many path and end point 
constraints.

Limited computing time 
in real-time applications.

Robust and efficient solution 
methods are required.
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Dynamic optimization

Generic dynamic optimization problem with constraints:
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Necessary optimality conditions
lead to multipoint BVPs:

• Highly accurate solutions with shooting
techniques.

• Solution requires detailed a-priori 
knowledge of the optimal solution 
structure and appropriate estimates
for adjoint variables.  

Conversion of dynamic optimization 
problem into NLP by discretization …

… of state and control variables.
(Simultaneous methods,
i.e. Collocation, Multiple shooting)

… of control variables only.
(Sequential method,
i.e. Single shooting)
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Discretization of the time-continuous problem

…appropriate …too fine…too coarse

Resolve problem in 
specified accuracy 
with minimal degrees 
of freedom

• Low computational cost

• Low accuracy

• High computational cost

• Over-parameterization /
robustness? 

Grid point movement Repetitive grid point insertion

Element length as degree of freedom
(e.g. Biegler et al., ‘87, v. Stryk ‘95)

• Introduces nonlinearity and 
nonconvexity

• Fixed number of grid points

Grid point insertion

Repetitive insertion of new grid points
• Grid point doubling (Luus et al., ‘92)

• No a-posteriori analysis
• Local curvature (Waldraff et al., ‘97)

• Insertion and deletion
• Error residuals (Betts & Huffman, ‘98)

• One mesh for controls and states 
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Adaptive Discretization

…appropriate

Resolve problem in 
specified accuracy 
with minimal degrees 
of freedom

Grid point movement Repetitive grid point insertion

Element length as degree of freedom

Grid point insertion and deletion

Repetitive adaptation of grid points
based on a-posteriori wavelet analysis

• Multiple control variables
• Adapted mesh for each control variable
• Lagrangian based refinement
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Framework for adaptation

Problem
specification

Discretization NLP

Warm start

A-posteriori analysis
• Eliminate selected

parameterization functions

• Add potentially new functions
and (locally) analyze their 
impact on Lagrangian 

Termination
criterion

Initial guess
on coarse grid

Intermediate
solution

Optimal
solution

Adapted
mesh
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Sequential solution approach

Problem
specification

Discretization NLP

Warm start

A-posteriori analysis Termination
criterion• Elimination

• Insertion    

Discretization of control variables: 

Numerical solution of dynamic model
as IVP with given initial conditions
and controls.  

NLP problem formulation:  

Numerical cost strongly 
depends on discretization
of each control variable.  )).,,((0

),),,(),,((0

,,min
,

,

ftkjcxg

pkjcukjcxhto:subject

))ftkj�[�F
pc

kj

≤

≤

∑=
Λ∈ ϕ

ϕ
),(

)(,,
kj

tkjkjcu

hhggL µµ ++Φ=Lagrangian:  



7Adaptive discretization in dynamic optimization

Multiscale representation (1)
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Elimination of parameterization functions

Problem
specification

Discretization NLP

Warm start

A-posteriori analysis

Termination
criterion

• Elimination

• Insertion    

Analysis of wavelet coefficients
of control variables 
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Minimize number of parameterization
functions in such that:

Approximation: Norm equivalence Discarding small        causes only small 
changes in approximate representationdu
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Multiscale representation (2)

Different representations of the
same function …
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2=j… for problem discretization:

… for mesh refinement analysis:
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Insertion of new parameterization functions

Problem
specification

Discretization NLP

Warm start

A-posteriori analysis Termination
criterion• Elimination

• Insertion    

Analysis of Lagrangian gradient:

Analysis of a parametric optimization 
problem in           with      = 0. 
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Example: Chylla-Haase benchmark problem

Objective:
• Maintain reactor temperature 

at Tr (t) = 355 K constant over time

Control variable:
• Inlet temperature Ti(t)

Dynamic model:
• 31 DAEs (6 differential equations)   

M

Chylla and Haase, 1993   
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Results: Chylla-Haase reactor

Equidistant mesh
with 256 trial functions
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Results (2): Chylla-Haase reactor
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Effect on robustness?

Optimal profiles with
repetitive grid adaptation

Optimal profiles with highly 
resoluted, equidistant mesh 

Unscaled model,
low tolerances 

Lagrangian based
adaptation leads to 
inherent scaling of 
the gradients  

Temperature Ti(t) Temperature Ti(t)

Temperature Tr(t)
Temperature Tr(t)
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Insertion: An alternative approach

Problem
specification

Discretization NLP

Warm start

A-posteriori analysis Termination
criterion• Elimination

• Insertion    

Analysis of wavelet coefficients
of control variables 

Introduction of new parameterization 
functions where η≥d kj,
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Example: Batch reactive distillation

D, xDR

V

Q

Objective:
Minimize energy demand with given:
• Fixed batch time
• Amount of distillate  D    6.0 kmol
• Product purity  xD      0.46 

Controls:
• Reflux ratio R(t)
• Vapor rate V(t)

Dynamic model:
• 10 theoretical trays
• gPROMS model contains 418 DAEs 

(63 differential equations)   

≥
≥
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Results: Batch reactive distillation
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Software implementation

ADOPT yes

no

Initial guess

Optimal trajectory

Grid
adaptation

DAE
integrator

Termination 
criterion

E
S

O Model server

Process
model

ESO

NLP
solver

CAPE-OPEN
compliant
software
interface

CORBA Object Bus

gPROMS
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Conclusions

Adaptive discretization strategy for solving dynamic optimization problems: 

• Reduced overall numerical cost.

• Improved robustness through gradient scaling. 

• Intermediate solutions are suboptimal but feasible. 

Future work: 

• Higher order parameterization functions.

• Applicable to general constrained optimization problems.

• Better understanding of refinement strategies / 
Appropriate threshold tolerances.

• Improvement of warm start functionality.


