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Abstract 
This paper discusses a two-level strategy integrating dynamic trajectory optimization 
and control for the operation of chemical processes. The benefit of an online dynamic 
re-optimization of operational trajectories in case of disturbances is illustrated by a case 
study on a semi-batch reactive distillation process producing methyl acetate.  
 
1. Introduction 

Increasing competition in the chemical industry requires a more agile plant operation in 
order to increase productivity under flexible operating conditions while decreasing the 
overall production cost (Backx et al., 2000). This demands economic optimization of 
the plant operation. However, existing techniques such as stationary real time optimiza-
tion and linear model predictive control (MPC) generally use steady-state and/or linear 
representations of a plant model. They are limited with respect to the achievable flexi-
bility and economic benefit, especially when considering intentionally dynamic proc-
esses such as continuous processes with grade transitions and batch processes.   
There is an evident need for model based process operation strategies which support the 
dynamic nonlinear behavior of production plants. More recent techniques such as dy-
namic trajectory optimization and nonlinear model predictive control (NMPC) are still 
subject to research, and often the size of the applicable process model is still a limiting 
factor. Moreover, the integration of model predictive control and dynamic optimization 
for an optimal plant operation is an open field of research, which is e.g. studied in the 
EU-funded project INCOOP*. Various strategies have been suggested to implement 
such an  integration. In the so-called direct approach (Helbig et al., 2000) the two main 
tasks, economic trajectory optimization and control, are solved simultaneously repeti-
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tively on each sample time of the process. This corresponds to a single-level optimal 
control strategy. However, for large-scale and highly nonlinear processes this approach 
is intractable e.g. due to computational limitations. 
In this paper, we employ a vertical decomposition approach: Here, the problem is de-
composed into an upper level dynamic trajectory (re-)optimization, and a lower level 
(nonlinear) MPC which drives the process along the current optimal trajectory deter-
mined on the upper level. The interaction between the two levels is a key issue for the 
feasibility of such a decomposition. Data from the plant processed by a suitable estima-
tion procedure enables nonlinear model-based feedback which can be utilized for sev-
eral purposes: The dynamic optimization needs not to be performed each sample time 
but instead depending upon the nature of external disturbances. The feasibility of this 
approach is shown by means of a case study. 
 
2. Problem definition 

The goal of an optimal process operation is to maximize profit. In the ideal case, a per-
fect model of the process exists, the initial state x0 at the beginning of the operation is 
known exactly and the process is not disturbed. Then the associated optimal trajectories 
for the operational degrees of freedom can be determined entirely off-line through the 
solution of an optimal control problem (P1): 
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In this formulation, x denotes the system states with initial conditions x0, u free opera-
tional variables and d given parameters. f contains the differential-algebraic process 
model, g maps the system state to the outputs y. Constraints such as path and endpoint 
constraints to be enforced are collected in h.  Φ denotes an economic objective function 
to be minimized on the time horizon [t0, tf] of the process operation. In principle, prob-
lem (P1) can be solved by standard techniques for dynamic optimization (e.g. Betts, 
2001) to determine an optimal u and optionally the final time of operation tf, e.g. in the 
case of batch operation or for minimizing transition time in continuous processes.  
 
3. Decomposition of dynamic optimization and control 

The fact that the assumptions stated above are not fulfilled prevents an off-line solution 
of problem (P1) from being sufficient in any practical application. This is mainly due to 
model uncertainty and time-varying external disturbances d(t) and unknown initial con-
ditions x0. To cope with this situation, a successive re-optimization of problem (P1) with 
updated models and initial conditions based on process measurements is required. How-
ever, the control relevant dynamics of typical processes will be too fast to enable real-
time closed loop dynamic optimization. This is because current numerical techniques 



are not able to solve the problem (P1) for industrial-size applications involving large 
models sufficiently fast on the sample frequency and given small prediction horizon. 
High sampling frequency generally demands shorter prediction horizons and this might 
cause feasibility problems as well.  
Alternatively, instead of solving (P1) directly, we consider a hierarchical decomposi-
tion. The two level strategy decomposes the problem into an upper level economic op-
timization problem (P2a) and a lower level control problem (P2a), as shown in Figure 1.  
 
(P2a) (P2b)  
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The former is a dynamic real-time optimization (D-RTO) problem, which determines 
trajectories refref yu , for all relevant process variables such that an economical objec-
tive function Φ is minimized and constraints h are satisfied. Only economic objectives 
such as maximization of production or minimization of process operation time are con-
sidered in Φ . The problem is repetitively solved on the rest of the entire time horizon 
on a sample time t∆  for an update of the previous reference trajectories. The sample 
time has to be sufficiently large to capture the slow process dynamics, yet small enough 
to make flexible economic optimization possible. The re-optimization may not be nec-
essary at each optimization sample time, instead it can be done based on the disturbance 
dynamics. The process model f used for the optimization has to have sufficient predic-
tion quality and should cover a wide range of process dynamics.  
On the lower level, an MPC problem (P2b) is solved in such a way that the process 
variables track the optimal reference trajectories in a strict operation envelope computed 
on the D-RTO level. The operation envelope, especially for controls u , is a small re-
gion around the reference trajectories; thus the MPC is referred to as delta mode MPC.  
The MPC sample time t~∆ has to be significantly smaller than the D-RTO sample time 

t∆ , since it has to handle the fast, control relevant process dynamics. One requirement 
for the process model f

~
used on the MPC level, which might be different from the 

model f used on the D-RTO level, is that it has to be simple enough, such that problem 
(P2b) can be solved sufficiently fast. A good prediction quality of f

~
is required for the 

shorter time horizon ]~,~[ 0 fii tt of (P2b). The initial conditions ii xx 00
~,  and disturbances 

dd
~

, for D-RTO and MPC are estimated from process measurements by a suitable 
estimation procedure such as an extended Kalman filter (EKF).  
A proper separation of disturbances on different time scales is crucial for the decompo-
sition of control and optimization, since the actions on both levels are induced by some 
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kind of disturbance. Besides physical disturbances acting on the process directly, 
changing external conditions such as market and environmental conditions also can be 
viewed as disturbances, because they require an update of reference trajectories for the 
optimal process operation. For example, it is conceivable that prices or product specifi-
cation requirements change during the process operation. The production should then be 
adapted to the new situation, which can be done by a re-optimization of the process 
operation. The estimator (cf. Figure 1) estimates disturbances for which disturbance 
models have been added to the process model. The time-scale separation decomposes 
slowly varying or persistent from stochastic disturbances with time constants smaller 
than the prediction horizon of the MPC. The decision for a possible re-optimization is 
based on a disturbance sensitivity analysis of the optimal reference trajectories. A re-
optimization is started only if persistent disturbances have been detected and have high 
sensitivities. On the lower level, both types of disturbances are used in the nonlinear 
prediction of the process. Persistent disturbances are taken up as a bias on the corre-
sponding variables in the MPC, whereas stochastic disturbances are accounted for via 
the disturbance models added to the process dynamics. In this fashion the MPC problem 
(P2b) can be solved to obtain the updated control moves (cf. Lee and Ricker, 1994).  
The structure in Figure 1 differs from the one suggested by Helbig et al. (2000): The 
sequence of estimation and time-scale separation is reversed. Both alternatives seem to 
have their merits and need to be investigated in the future. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Vertical decomposition of dynamic optimization and model predictive control 

4. Case study 

The concept introduced above has been implemented in prototype software tools and 
applied to an industrial-size test example. Details on the numerical algorithms used in 
the different modules are beyond the scope of this paper. The process studied is a semi-
batch reactive distillation process producing methyl acetate (MA) by esterification of 
acetic acid (AC) with methanol (MT) and byproduct water (W) (cf. continuous process 
described e.g. in Agreda et al., 1990). The process is started up with pure MT in the 
batch still and AC as a side feed stream. A gPROMS (gPROMS, 2001) model with 74 
differential and 743 algebraic equations has been developed for this process. The 
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dynamic optimization problems (P2a) have been solved using the optimizer ADOPT 
(Schlegel et al., 2001). The objective is to maximize the amount of product (MA) for a 
fixed batch time of 4 hours (optimum, found by an off-line optimization with free final 
time) under strict enforcement of product purity of 0.95. The operational degrees of 
freedom are the reflux ratio and the reboiler vapor stream. Optimal profiles calculated 
by an off-line optimization run are shown in Figure 2 and 3 (solid lines) for the nominal 
case without disturbances.  

  

Figure 2. Control profiles for the nominal case and with re-optimization. 

The disturbance scenario considered in our study is a drop of 50% in the feed rate of the 
side stream, which occurs before 1.75 hours. This is a persistent disturbance which is 
directly measurable and effects the product significantly. The analysis of the sensitivity 
of the optimal solution to the disturbance has shown that the nominal optimal 
trajectories need not to be updated for disturbance values less than 25% and these are 
handled at the MPC level. This decision making strategy for considering re-optimiza-
tion or MPC at a current sample time subject to disturbances is proven to be suitable for 
this case study. However, further research is needed  in this area.  
The performance of the two level strategy is compared with using NMPC, delta mode 
MPC only and open loop operation. The product quality and the amount of product 
obtained using the above control strategies are depicted in Figure 3. If the original opti-
mal trajectories would be followed (open-loop strategy) further, the disturbance pre-
vents the required product quality of 0.95 to be met (* line in Figure 3) and leads to 
economic losses for this batch. A delta mode MPC that enforces a strict operation en-
velope around the reference trajectories and an NMPC without considering such an 
envelope are applied separately. The results depicted in Figure 3 (dash-dotted and 
dotted line resp.) show that these approaches are not economically viable (produces off-
spec and less amount of product) for the given disturbance scenario.      
The two level strategy of integrated dynamic optimization and control is then applied to 
the problem.  A delta-mode MPC (constraints on control actions) is employed as a 
lower level MPC. The disturbance is recognized and a re-optimization of the trajectories 
is started (triggered by the sensitivity-based strategy). The new optimal operational 
trajectories are determined in order to meet the desired requirements. The re-optimiza-
tion, which takes the changed state of the process due to the disturbance into account 
leads to changed optimal control profiles (Figure 2 -dashed lines). The profiles in Figure 
3, left (dashed line) show that the product quality of 0.95 is met in the closed loop 
operation. Figure 3, right (dashed line) shows that more amount of on-spec product is 



produced. Thus the two level strategy guaranties an economical feasible operation 
which is not guaranteed by the NMPC.  Note that a rigorous nonlinear model is used at 
the MPC level which is the best option that can be considered.   

  

Figure 3. Product quality and amount of product  

5. Conclusion 

In this paper it has been explained that a more flexible plant operation to cope with 
changing market and operating conditions can be achieved by a systematic integration 
of dynamic optimization and model predictive control techniques. A vertical decompo-
sition appears to be a viable strategy, which guaranties overall feasibility that might not 
be possible by an MPC only. With the help of a simulation study the benefit of the two 
level strategy, especially the dynamic re-optimization during the operation has been 
illustrated. Future research work in this area is required on a rigorous strategy for the 
separation of time scales, the relation of the process models used on the different levels, 
the choice of appropriate numerical algorithms on the different levels, etc.  
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