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Component{based implementation of a dynamic optimization

algorithm using adaptive parameterization �
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Lehrstuhl f�ur Prozesstechnik, RWTH Aachen, Germany.

In this work we present a component software technique applied to a dynamic optimization

algorithm based on the sequential approach. The implementation of the algorithm allows the

optimization of existing models formulated in recent modeling environments without the need
of model transfer or recoding. The numerical algorithm is capable of generating problem{

dependent, non{uniform discretization grids which might di�er for each control variable. The

software is used to solve an example problem of industrial relevant size. Based on the experience

drawn from the example bene�ts and drawbacks of this technology are discussed.
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1. Introduction

Dynamic optimization nowadays is used for various applications in process design and
operations. Examples include the design of trajectories for the optimal operation of batch
and semi{batch reactors or for continuous processes during transient phases such as grade
transitions, start{up or shut{down. In general, dynamic optimization algorithms require a
mathematical model of the process considered. For industrial processes, the development,
validation and maintenance of | usually large{scale | process models often require ma-
jor �nancial expenses as well as a substantial amount of engineering experience. For these
reasons, the reuse of existing models or parts of them is highly desirable. However, a large
variety of proprietary software tools for computer{aided process engineering, especially
modeling tools, are used in industry today, whereas model{based numerical algorithms
usually require the model information in some speci�c format, which typically is not com-
pliant to the modeling tools. A transfer of model information between such applications or
the conversion to a special format can be cumbersome and error{prone. In certain cases it
might be even impossible due to bottlenecks in interoperability and reusability. To over-
come such problems, the EC{funded CAPE{OPEN project (Braunschweig et al., 2000)
aims at an open standard system of interfaces for information exchange between software
tools in process systems engineering. Communication between heterogeneous applications
is foreseen to be done by using interoperability standards, e.g. CORBA (Henning and
Vinoski, 1999). Following these ideas, ideally there would be no need for any superuous
model transformation. In order to bene�t from the concepts developed in this project,
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obviously there is the need for application software, which implements those interface
de�nitions for practical use.
In this contribution we consider the application of these ideas to the area of dynamic

optimization. Applied to industrial processes, dynamic optimization commonly leads to
large{scale and strongly nonlinear di�erential{algebraic problems containing path and
endpoint constraints. The solution of such problems is still a computationally demand-
ing task. EÆcient solution algorithms are important for real{time applications, such as
optimization{based monitoring and control on receding horizons. Many algorithms for
dynamic optimization have been developed based on the direct methods, which convert
the continuous problem into a �nite{dimensional nonlinear programming problem (NLP)
(e.g. Vassiliadis et al. (1994), Bock et al. (2000), Cervantes and Biegler (1998)). In
particular within the sequential or single{shooting approach, this NLP is obtained by
parameterization of the control variables only. Accuracy, eÆciency, and robustness of the
solution of dynamic optimization problems strongly depend on the chosen discretization
grids (e.g. Binder et al. (2000), Betts and Hu�mann (1998)).
An implementation, which combines a dynamic optimization algorithm using a se-

quential approach and adaptive discretization grid re�nement with innovative software
technology is presented in this paper. Experiences with the application to a large{scale
example problem are shown and bene�ts and drawbacks are discussed.

2. Problem formulation

We focus on the use of dynamic optimization for optimal trajectory generation and con-
sider an optimal control problem formulation of the following form:

min
u;p;tf

� := �0 (x (tf)) +

tfZ

t0

f0 (x;u;p) d� (P1)

s.t. M _x = f(x;u;p; t) ; t 2 [t0; tf ] ; (1)

0 = x(t0)� x0 ; (2)

0 � g(x;u;p; t); t 2 [t0; tf ] ; (3)

0 � e (x (tf )) : (4)

In this formulation, x(t) 2 R
nx denote the state variables, which can be either of di�eren-

tial or algebraic type, whereas x0 are initial conditions. The variables to be determined
by the optimization procedure for minimization of the objective function � are the control
vector u(t) 2 R

nu , the unknown time{independent parameters p 2 R
np , as well as the �nal

time tf . The di�erential{algebraic (DAE) model is given by the equation system (1), (2).
We only consider DAE systems with an index of less than or equal to one. Furthermore,
path constraints (3) can be applied on the states, control variables and time{independent
parameters. Finally, endpoint constraints (4) on the state variables can be employed.

3. Single{shooting solution approach

In the sequential approach (Vassiliadis et al., 1994) the control pro�les ui(t); i = 1; :::; nu

have to be approximated, and often piecewise polynomial expansions of the form



ui(t) � ui(ci; t) =
X
k2�i

ci;k�i;k(t); (5)

are used, where �i denotes the index set of the chosen parameterization functions �i;k(t)
and the vector ci contains the corresponding parameter vector. For brevity, in this paper
we only consider piecewise constant functions �i;k(t) := 1 8 tk � t � tk+1, otherwise
�i;k(t) = 0, though an extension to higher{order polynomials is possible. The grid points
for each ui are contained in the mesh ��i

:= ftkjk 2 �ig.
By discretization of the control variables, the dynamic optimization problem (P1) can

be reformulated into the following NLP:

min
c;p;tf

� = �0 (x (c;p; tf)) +

tfZ

t0

f0 (x (c;p; �) ;u(c; �);p) d� (P2)

s.t. 0 � g(x; c;p; ti); 8ti 2 �� ; (6)

0 � e (x (tf)) : (7)

The path constraints (6) are now evaluated on the uni�ed mesh of all control variables
�� :=

Snu
i=1��i

. The DAE model (1), (2) is not present directly in the NLP problem,
rather it is solved by numerical integration in each function evaluation step of the NLP
solver to determine x(c;p; t) for given c and p and therefore present implicitly. Algorithms
for the solution of this NLP, typically SQP methods, require gradient information of the
constraints and the objective function with respect to the decision variables. There are
several possibilities to obtain these gradients. Here, we consider the explicit solution of the
arising sensitivity equation systems, which is the method of choice in most optimization
algorithms (e.g. Vassiliadis et al. (1994)).
The sensitivity systems can be solved by numerical integration together with the original

DAE system. Although there are eÆcient algorithms available, which exploit the special
properties of the sensitivity system (e.g. Feehery et al. (1997)), still the most signi�cant
computational e�ort is spent on the sensitivity analysis. Since the inuence of a decision
variable ci;k on the states x is limited to the time region t � tk, it is suÆcient to solve
each sensitivity equation system for the determination of si :=

@x
@ci;k

on the time interval

[tk; tf ]. Still, this leads to a computational e�ort increasing polynomially with the number
of decision variables. Hence, it is clearly desirable to keep the number of decision variables
as small as possible, without losing much accuracy. This raises the question of an optimal
selection of the discretization grids. The formulation (5) o�ers the choice of separate,
non{uniform parameterization grids for each control variable. This fact can be exploited
by using adaptive re�nement strategies in order to generate eÆcient, problem{adapted
meshes ��i

, as explained in the following section.

4. Adaptive re�nement algorithm

Problem{adapted possibly non{uniform grids for an eÆcient approximation of ui are
generated by successive re�nement of an initial coarse discretization mesh u0(�0). In each
re�nement step ` the previous solution u`�1 is inspected by a wavelet{analysis (Binder
et al., 2000). Based on this analysis the discretization is re�ned locally in areas where
u`�1 reveals large variations. (P2) is then resolved on the improved discretization grid �`



where the interpolated old solution u`�1 is used as an initial guess. Hence, (P2) is resolved
repeatedly on di�erent meshes with an increasing number of parameterization variables.
Consequently all the quantities in (5), (P2), (6), (7) should have the re�nement counter `
as superscript, but this has been omitted for ease of notation. The re�nement is carried
out for each control ui such that individual discretization grids for each ui are obtained.

5. Implementation

The numerical concepts presented above have been implemented into the prototype soft-
ware tool ADOPT. Those parts of the program, which require access to the model infor-
mation have been coded compliant to the so{called ESO interface de�nition, as de�ned
in the CAPE{OPEN project (Keeping and Pantelides, 1998). This Equation Set Object
(ESO) is an interface de�nition for communicating all information contained in the DAE
model (1) which could be required by numerical algorithms, such as number and values
of variables and residuals, structure and values of the model Jacobian matrix etc. Any
modeling package, which allows access to numerical model information through the same
interface could be used as a model server. To the authors' knowledge, this feature cur-
rently is only provided by gPROMS. The prototype is able to access gPROMS as the
model server via a CORBA object bus (Henning and Vinoski, 1999), but also any legacy
model wrapped with an ESO interface can be used, provided that there are no discon-
tinuities present. Dynamic optimization following the methods presented above can be
performed without the need to recode the model in a programming language.
The basic structure of the tool is depicted in Figure 1. The re�nement loop can be

recognized in the left{hand part of the picture. On the right, the way how the model
information is transferred between the dynamic optimizer and the model server is shown.
Two of the methods de�ned in the ESO standard, SetVariables and GetResiduals,
exemplarily shown in Figure 1, indicate how the residual values for the current variable set
can be obtained from the model server. The CORBA bus enables platform independence
and interoperability between operating systems. A drawback of this technology is an
overhead in time consumption caused by the communication. In the following section,
this will be discussed in more detail.
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Figure 1: Basic structure of ADOPT and communication via ESO interface.
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Figure 2: Control variable pro�les and corresponding problem{adapted grids.

6. Case study

In this section we present some results obtained by applying this software to an example
model. The model describes a batch reactive distillation column for the production of ethyl
acetate (Cervantes and Biegler, 1998). We use a modi�ed version with the simplifying
assumption of constant molar overow. The model is available in gPROMS and comprises
reboiler, condenser and 10 trays and contains in this form 418 equations and variables,
of which 63 are di�erential. The reux ratio and the vapor stream leaving the reboiler
have been chosen as control variables. The objective is to minimize the energy demand
in the reboiler for a process running one hour, under the constraints, that the amount
of �nal distillate should be at least 6.0 kmol, with a purity of the ester of at least 0.46.
The optimization was initialized with constant pro�les. Figure 2 shows optimal pro�les
and corresponding grids for the two control variables. For clarity only results from every
second iteration in the adaptation loop are shown. The adaptation of the grids to the
problem becomes apparent. Table 1 compares computational results from the di�erent
re�nement iterations with those obtained by using a uniform mesh of comparable accuracy
as the one in iteration 4. The objective value decreases, while the CPU time per iteration
increases due to the growing number of decision variables caused by the re�ned grids.
With the adaptive approach, results with comparable accuracy (e.g. after iteration 2) can
be obtained within signi�cantly smaller computation time as compared to a solution on a
uniform mesh. Since each iteration produces a continuously re�ned intermediate feasible
solution, this approach is particularly useful for real{time applications.
The additional time consumption, which is required by the CORBA bus, is proportional

to the size of the vectors to be transfered and lies in the order of milliseconds. Obviously,
the number of calls to the model server plays a crucial role in this context, as well.
A typical optimization requires in the order of several hundred thousand calls via the
CORBA bus. Therefore, the communication between the optimization software and the
model server causes a signi�cant overhead with the current implementation. For this
reasons, the applicability to real{time problems is still limited. However, this problem
can be overcome by modi�cations of the software architecture. One option is to rely



Table 1: Solutions on di�erent adapted grids compared with uniform mesh.
Iteration ` 0 1 2 3 4 Uniform mesh

No. of dec. vars. 8 16 22 28 34 64
Objective value 62.322 61.655 61.575 61.553 61.542 61.564
CPU{sec per iter. 34.8 145.2 130.9 276.1 493.3 2474.3
CPU{sec accum. 34.8 180.0 310.9 587.0 1080.3 2474.3

on future developments and improvements in the CORBA technology. Alternatively, it
is conceivable to connect the optimization software and the model server directly "in
process" rather than using middleware components. The ESO interface still should be
used for consistency. This approach might be the way to proceed for applications, where
computation time is the major issue, especially in the real{time area.

7. Conclusions

The implementation of a dynamic optimization algorithm, which adaptively generates
problem{dependent discretization grids for di�erent control variables in order to increase
the eÆciency and robustness of the solution has been presented. As a new feature, the
access of model information via a CAPE{OPEN interface has been introduced. The
functionality of this approach has been proven by applying it to a large{scale problem. The
heterogeneous implementation using CORBA as communication middleware appeared to
be a practical approach, though there still exists a signi�cant overhead in computation
time solely caused by software{related reasons. Future improvements in this area will
enable the use of such frameworks in industrial applications.
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