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Abstract

Optimization based control aims at maximizing the economical performance of a plant in a
transient environment employing nonlinear models. Model quality is crucial for achieving good
economical performance. The models have to represent plant behavior with suÆcient detail,
but the computational complexity must be limited to facilitate real-time optimization on a time
horizon oriented at the dominating time constant of the process. This contribution reviews
nonlinear model reduction techniques from an optimization based control perspective. The use
of di�erent variants of process models in a structured control system is particularly emphasized.
Challenging research directions are identi�ed.
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Introduction

Optimization based control refers to the class of control
techniques which predict the process behavior by means
of a dynamic plant model and optimize the economical
performance of a process while satisfying operational con-
straints. For continuous processes, predominantly op-
erated at steady-state, this concept is implemented in
industrial practice by a real-time optimization system
(Marlin and Hrymak, 1997), which by means of a steady-
state model, computes the setpoints for the model pre-
dictive controller (Henson, 1998; Morari and Lee, 1999;
Allg�ower et al., 1999; Rawlings, 2000; Mayne et al., 2000)
which itself provides setpoints for the base control sys-
tems. In industrial applications, model predictive con-
trollers (MPC) are almost exclusively based on a linear
plant model determined from experimental identi�cation
using plant test data (Qin and Badgwell, 1996). Nonlin-
ear model predictive control has not yet gained signi�-
cant industrial interest (Qin and Badgwell, 2000) despite
the inherently nonlinear behavior of most process plants.
This is partly due to the state of technology which yet
neither provides mature tools to assist model develop-
ment nor suÆciently robust algorithms to reliably solve
the optimization problem on-line. However, even if these
shortcomings could be overcome, nonlinear control tech-
nology will only be applied if the signi�cantly increased
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e�ort in designing, implementing and maintaining such
controllers leads to a signi�cant improvement of plant
economics as compared to state of the art linear control
technology.

If only stationary operational phases are considered,
the need for nonlinear optimizing control technology can
hardly be justi�ed, since only few practical situations
such as non-minimum phase behavior or steady-state
multiplicity may call for a nonlinear controller. However,
chemical process systems are often operated in transient
phases, where all process variables are intentionally time-
varying. Transient operation is not only limited to pro-
cesses which are of an inherent dynamic nature such as
batch and periodically forced processes, but it �nds in-
creasing attention also in continuous processes to imple-
ment feedstock switching or product grade transitions
(Helbig et al., 2000), to realize cross-functional coordi-
nation between units in a plant or a site (Lu, 2000) or
to exploit low frequency disturbances in the dynamically
changing environment of a plant in supply chain con-
scious plant operation (Backx et al., 1998).

In transient plant operation, the operational envelope
of the plant naturally covers a large region of the state
space. The dynamics can therefore not adequately be
represented by a linear model. Hence, nonlinear mod-
els and nonlinear control techniques are indispensible to
achieve satisfactory performance. However, it is not only
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the nonlinearity which distinguishes the control problem
in transient operation from its stationary counterpart.
In transient operation, the control task must be consid-
ered from a wider perspective. Instead of maintaining a
setpoint or tracking a trajectory given by a superior deci-
sion layer and rejecting disturbances, the control system
has to achieve the best possible economical performance
within a constrained operational region despite the dy-
namically changing environment of the plant (Backx
et al., 1998). Hence, the targets in stationary phases
(Rawlings, 2000) are replaced by an economical objec-
tive in transient phases (Helbig et al., 2000) which con-
sequently results in an integration of optimizing control
and on-line economical (dynamic) optimization by means
of receding horizon techniques (Backx et al., 2000). We
introduce the term operation support system to empha-
size the wider scope which goes beyond mere setpoint
control, trajectory tracking, and disturbance rejection.

These trends in process operations and control neces-
sitate models of suÆcient rigor, which are suitable for
implementation in an optimization based operation sup-
port system. Since these models must cover the whole
operational envelope of a plant, purely empirical process
models seem to be unfavorable due to the immense ef-
fort required for plant testing (Pearson and Ogunnaike,
1997). Consequently, models for optimization and con-
trol should capture the major physico-chemical e�ects in
a mechanistic manner at least to the extent accessible.
The more a-priori-knowledge can be built into a funda-
mental process model the less experimental e�ort will be
required to �t the model to plant data in order to obtain
good extrapolation capabilities in a large region of the
state space.

Modeling is considered one of the major bottlenecks of
nonlinear model predictive control (Henson, 1998; Lee,
2000) or, more generally, of optimization based process
operations and control in the sense of Backx et al. (1998)
and Helbig et al. (2000). Lee (2000) discusses the re-
quirements, the current status and the needs of nonlin-
ear modeling and identi�cation for control and opera-
tions with an emphasis on experimental identi�cation.
This paper aims at complementing and partly detailing
Lee's assessment by focusing on nonlinear model reduc-
tion for the implementation of optimization based oper-
ations support systems.

A comprehensive and sensible review of this subject
is a formidable task which can hardly be achieved given
the limited space available. Hence, the selection of the
material presented re
ects at least to some extent the
interest and the ignorance of the author. The references
given should be taken as exemplary rather than as com-
prehensive. They have been chosen to point the inter-
ested reader to relevant approaches and results and to
provide a �rst guide to a more detailed literature study.

Modeling always has to be oriented towards a pro-

jected use in an application (Foss et al., 1998). Hence,
the next section introduces �rst a mathematical formu-
lation of the optimization based operation support prob-
lem, suggests some decomposition strategies and derives
general requirements the models have to ful�ll. The ma-
jor phases of a systematic work process for the develop-
ment of (fundamental) process models are given in the
following section. The resulting models show a natural
structure which should be exploited in model applica-
tion. This structure can be related to hybrid modeling
which is discussed in the following section.

Fundamental models are typically of a high compu-
tational complexity which is diÆcult to handle by on-
line optimization algorithms (Henson, 1998). Therefore,
nonlinear model reduction techniques are of signi�cant
relevance if large-scale applications have to be tackled.
Consequently, model reduction techniques are discussed
in great detail next. We consider both, model order re-
duction to reduce the number of equations, and model
simpli�cation to reduce the complexity of the dynamic
process model. With the �nal section, we return to the
optimization based operation support system and discuss
which type of models are good candidates for implement-
ing the di�erent modules in a potentially decomposed
system. We conclude with a summary of important open
research problems.

Optimization based operation support

We introduce a general problem formulation for opti-
mization based operation support and discuss potential
decomposition strategies for implementing such a control
system in an industrial environment (see Backx et al.
(1998), Helbig et al. (2000) and Backx et al. (2000) for a
more detailed discussion). Resulting requirements on the
models are summarized to guide fundamental modeling
and model order reduction and simpli�cation.

Mathematical problem formulation

The goal of optimal process control and operations is the
minimization of some economic cost function �i over a
certain time horizon �i = [t0;i; tf;i], both set by a deci-
sion maker on a higher level in the automation hierar-
chy (e.g. a planner or a scheduler), in face of unknown
parametric or unstructured model uncertainty and time-
varying exogenous inputs represented by the disturbance
vector di(t). The minimization is subject to the model
equations f(�) and to production and process constraints
mi(�) and gi(�) such as product quality and capacity
restrictions or equipment limitations. The constraints
mi(�); gi(�) can be either path, point or periodicity con-
straints. The �nal time tf;i of the operational phase �i

is determined by the operational objectives. It could,
for example, be the �nal batch time or the time after
which a grade change in a continuous process has been
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completed. Feedback of available measurements �i(t) of
the system outputs yi(t), inputs ui(t) and disturbances
di(t) is introduced to achieve satisfactory performance.
Typically, an estimation of the states xi(t) and the dis-
turbances di(t) is required to implement output feedback
with high performance. We drop the index i denoting a
speci�c operational phase subsequently to ease notation
in the sequel.

The overall output feedback problem can be separated
into a dynamic data and model reconciliation problem
and into an optimal control problem. At any time in-
stance tc 2 �, the reconciliation problem

min
xr;0;dr

�r(yr;�;xr;0;dr; tr; tc) (1)

s.t. 0 = fr( _xr;xr;ur;dr) ;

xr(tr) = xr;0 ;

yr = hr(xr;ur;dr) ;

ur = U [uc(�)] ;

0 � gr(xr;ur;dr) ;

t 2 [tr; tc] ; � 2 [tc; tf ]

and the control problem

min
uc

�c(xc;uc; tc; tf ) (2)

s.t. 0 = f c( _xc;xc;uc;dc) ;

xc(tc) = xr(tc) ;

yc = hc(xc;uc;dc) ;

dc = D[dr(�)] ;

0 � gc(xc;uc;dc) ;

0 � mc(xc;uc;dc) ;

t 2 [tc; tf ] ; � 2 [tr; tc]

have to be solved in real-time on horizons [tr; tc] and
[tc; tf ], respectively. The indices r and c refer to quanti-
ties in the reconciliation and the control problem, re-
spectively. Purposely, we have assumed that neither
the models nor the production and process constraints
are the same in the reconciliation and control problems.
For the sake of simplicity, we have not explicitly intro-
duced the discrete nature of measurements � and con-
trols uc;ur. These vectors could, however, be thought of
being concatenations of the respective vectors at discrete
times tk in either [tr; tc] or [tc; tf ]. Further, though we do
not want to exclude hybrid continuous-discrete systems
(e.g. Barton et al., 1998; Bemporad and Morari, 1999),
we have not accounted for any discrete variables in the
problem formulation explicitly for the sake of a simpler
notation.

d(t)

uc(t)

�(t)

�,�

decision
maker

optimal
control

process
including

base control

g, m

dynamic
data recon–

ciliation

dr(t)

xr(tc)

optimizing feedback
control system

�c

�c

Figure 1: Direct (centralized) optimization approach. Æc
refers to the feedback control sampling time.

The problems (1) and (2) are coupled and cannot be
solved independently. The states xr(tc) and the distur-
bances dr(t) are estimated in the reconciliation problem
(1) and are passed to the control problem (2) to facilitate
state and disturbance prediction via the control model
and the predictor D. On the other hand, the control
variables uc(t) are passed from the control problem (2)
to the reconciliation problem (1) and are processed by U
to update the controls needed for state and disturbance
estimation.

From a control perspective, this problem is an output
feedback optimal control problem with general (instead
of least-squares) objectives re
ecting process economics.
Since there are no operational targets in the sense of
setpoints or reference trajectories (characteristic for a
model predictive control problem, see Rawlings (2000))
the problem may also be interpreted from an operational
perspective. Hence, the problem can be considered a
generalization of state of the art (steady-state) real-time
optimization (Marlin and Hrymak, 1997) which aims at
establishing economically optimal transient plant oper-
ation (Backx et al., 1998, 2000). In any case, the so-
lution of this operation support problem would achieve
an integration of advanced (predictive constrained) pro-
cess control and economical optimization in a transient
environment.

Decomposition strategies

In principle, the problem (1), (2) can be solved simulta-
neously on the controller sampling frequency Æc (see Fig.
1). This centralized or direct approach is only computa-
tionally tractable if small-scale processes (such as single
process units) are considered and/or strongly simpli�ed
models are applicable. Obviously, highly eÆcient solu-
tion algorithms and sophisticated model reduction tech-
niques are extremely important to push the frontier of
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Figure 2: Horizontal decomposition, decentralized op-
timization approach. Æc and Æco refer to the feedback
control and to the coordination sampling times.

computational complexity (Biegler and Sentoni, 2000).
However, even if the problem could be solved easily for
large-scale processes, it is questionable whether such an
unstructured approach would be accepted by both, the
industrial plant operators and the control system ven-
dors. Problems could be associated with a lack of redun-
dancy, reliability and transparency as well as with a high
engineering complexity and maintenance e�ort.

Decomposition of the overall problem seems to be un-
avoidable in particular if large-scale plant or even site
wide control problems with cross-functional integration
(Lu, 2000) are considered (Backx et al., 1998). The
development of such decomposition strategies can be
built on the theory of multi-level hierarchical systems
(Mesarovic et al., 1970; Singh, 1977; Findeisen et al.,
1980; Morari et al., 1980; Jose and Ungar, 2000) which
has been worked out before the mid-eighties. Many of
the concepts have not widely been implemented at that
time due to a lack of computational power. Though this
bottleneck has been largely overcome today, the theory
has not yet found adequate attention in the process con-
trol community.

Two fundamentally di�erent decomposition strategies
can be distinguished. Horizontal decomposition refers to
a decentralization of the control problem typically (but
not necessarily, e.g. Lee et al. (2000)) oriented at the
functional constituents of a plant (e.g. the process units).

Coordination is required to guarantee that the optimal
value of the objective reached by a centralized optimiz-
ing control system (see Fig. 1) can also be achieved by
decentralized dynamic optimization. Various coordina-
tion strategies for dynamic systems have been described,
for example, by Findeisen et al. (1980). Fig. 2 shows
one possible structure, where the coordinator adjusts the
objective functions of the decentralized optimizing feed-
back controllers to achieve the "true" optimum of the
centralized approach.

Vertical decomposition refers to a multi-level separa-
tion of the problem (1), (2) with respect to di�erent
time-scales. Typically, base control, predictive reference
trajectory tracking control, and dynamic economic op-
timization could be applied with widely di�ering sam-
pling rates in the range of seconds, minutes, and hours
(see Findeisen et al. (1980) for example). According to
Helbig et al. (2000), the feasibility of a multiple time-
scale decomposition does not only depend on the dy-
namic properties of the autonomous system but also on
the nature of the exogenous inputs and disturbances. If,
for example in a stationary situation, the disturbance
can be decomposed into at least two contributions,

d(t) = d0(t) + �d(t) ; (3)

a slow trend d0(t) fully determined by slow frequency
contributions and an additional zero mean contribution
�d(t) containing high frequencies, some sort of decom-
position should be feasible. Fig. 3 shows a possible
structure of the optimization based operations support
system in this case. The upper level is responsible for the
design of a desired optimal trajectory xd(t);ud(t);yd(t)
whereas the lower level is tracking the trajectory set
by the upper level. Due to the time varying nature of
the disturbances d(t), feedback is not only necessary to
adjust the action of the tracking controller but also to
adjust the optimal trajectory design to compensate for
variations in d0(t) and �d(t), respectively. The control
action uc(t) is the sum of the desired control trajectory
ud(t) and the tracking controller output �u(t). Rec-
onciliation is based on the slow and fast contributions
�0(t) and ��(t) separated by a time-scale separation
module. Control and trajectory design are typically exe-
cuted on two distinct sampling intervals Æc and kÆc with
integer k > 1. The performance of the controller, coded
in some indicator 	, needs to be monitored and com-
municated to the trajectory design level to trigger an
update of the optimal trajectory in case the controller
is not able to achieve acceptable performance. Though
this decomposition scheme is largely related to so-called
composite control in the singular perturbation literature
Kokotovic et al. (1986), the achievable performance will
be determined by the way the time-scale separator is im-
plemented.
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Figure 3: Vertical, two time-scale decomposition of op-
timization based operations support for transient pro-
cesses. Æc refers to the sampling time of the tracking
controller, 	 refers to a process performance indicator.

Model requirements

Optimization based control requires appropriate models
to implement solutions to the reconciliation and control
problems.

The model in (2) must predict the cost function, out-
puts and states over the time horizon [tc; tf ] with suÆ-
cient accuracy. Any notable inaccuracy will inevitably
result in an economical loss because of a violation of the
constraints or a deviation from the true economic op-
timum. The requirements on the prediction quality of
disturbances on [tc; tf ] are high, since they in
uence the
cost function in (2). This is in contrast to model predic-
tive control, where even a crude disturbance prediction is
suÆcient to eliminate o�set in trajectory tracking. The
same (high) accuracy requirements hold in the whole op-
erational envelope covered during nominal plant opera-
tion.

The prediction accuracy on the control horizon [tc; tf ]
crucially depends on the quality of the state and distur-
bance estimates on the reconciliation horizon [tr; tc] as
determined from a solution of the reconciliation prob-
lem (1) employing the accessible measurements. Due
to unavoidable model uncertainty, the model needs to
be reconciled simultaneously. In the most simple case,
a number of carefully chosen model parameters has to
be updated periodically. Often, unknown time-varying
exogenous functions or plant upsets and operator inter-
action at discrete time instances complicate the recon-
ciliation problem.

Since all the models are used as part of an optimiza-
tion algorithm, the gradients with respect to x0;r and

the parameterization of dr in (2) and the parameteri-
zation of ur in (1) must be of high accuracy, too, to
avoid unnecessary iterations or even convergence to the
wrong optimum (see Biegler et al. (1985) and Ganesh
and Biegler (1987) for a discussion in steady-state opti-
mization).

Accuracy requirements are much higher here as com-
pared to setpoint or trajectory tracking feedback con-
trol. Since any model uncertainty directly in
uences
plant economics, we cannot rely on feedback only to cope
with model uncertainty. From a plant economics point
of view, a quanti�cation of the model error would be de-
sirable (Tatrai et al., 1994) though hardly achievable in
practice. Model validation against plant and cost data
is extremely important and needs to be an integral part
of the model development activity. We should keep in
mind that the predictive quality of the model has to be
assessed in a closed-loop rather than an open-loop mode.
For one, the gain and frequency characteristics of the
model usually di�er in open- and closed-loop. Further,
plant measurements can be eventually used to update
the model as part of the reconciliation problem (1) to
compensate for de�ciencies in the predictive capabilities
of the model.

Due to the high complexity of any large-scale indus-
trial plant, model reduction has always to be considered.
Inevitably, any reduction of the model complexity intro-
duces inaccuracies, which { if not signi�cantly smaller in
magnitude than the mismatch between plant and orig-
inal model { will lead to a loss of economical perfor-
mance and may even give rise to instability. Despite this
fact, a compromise between model complexity and pre-
dictive quality must always be achieved (Tatrai et al.,
1994) since low sampling frequency control action as a
consequence of the high complexity of a very accurate
model would also reduce the performance of the opera-
tion support system.

Though controllability and observability are proper-
ties of the plant rather than the model, these structural
properties may get lost in case of simple plant models if
not properly accounted for. The same holds for the iden-
ti�ability of model parameters which is not only a matter
of the available measurements but also of the detail built
into the model. Of course, these requirements are obvi-
ous but diÆcult to assess in the nonlinear case. There is
some evidence that fast time-scales should be eliminated
from the model to yield better robustness and more fa-
vorable stability properties (Christo�des and Daoutidis,
1996; Kumar et al., 1998).

To facilitate numerical treatment, the models should
be of di�erential index one (Brenan et al., 1996; Mar-
tinson and Barton, 2000), proper boundary conditions
have to provided in case of distributed parameter models
(Martinson and Barton, 2000), and singular arcs (Bryson
and Ho, 1975; Kadam, 2000) should be avoided. Discon-
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tinuities are still diÆcult (and will be at least expensive)
to handle numerically (Barton et al., 1998) and should
therefore be avoided if possible.

In summary, in order to implement the optimization
based control system (1), (2), suÆciently accurate mod-
els are required for the nominal intrinsic process dy-
namics, for the economical objectives (including product
quality), for the exogenous disturbances, and for sen-
sor and actuator characteristics if they are relevant for
process economics. Major sources of structured or un-
structured uncertainty should at least be identi�ed as a
prerequisite for appropriate model updating. Di�erent
tailored models are necessary for the control and recon-
ciliation subproblems even in a direct (centralized) ap-
proach (cf. Fig. 1). If some decomposition of the op-
eration support system is employed (cf. Figs. 2 and 3),
model decomposition is an additional major concern.

Validation of the model quality has to be accomplished
under closed-loop conditions. A brute force approach
could rely on the formulation and solution of an opti-
mization problem which assesses feasibility, 
exibility,
and controllability according to the classi�cation given
by Abel et al. (1998). The problem formulation leads to
a large-scale bilevel dynamic optimization problem the
reliable solution of which is out of reach at this point for
most industrially relevant processes.

Systematic Model Development

The discussion of the last section clearly reveals the com-
plexity of the model requirements. It is therefore not
surprising that modeling and the proper validation of
the resulting models is (and will be for a long time) the
major bottleneck in introducing model-based operation
support systems into industrial application.

Recently, Foss et al. (1998) undertook an industrial
�eld study to identify current industrial practice in pro-
cess modeling. They identi�ed the same major steps
organized nearly the same way in a work process in all
the companies included in the study, if only a coarse task
granularity is considered. There seem to be no generally
practiced patterns on the subtask level. A �rst analy-
sis of the modeling work process on a detailed level has
been attempted recently (Marquardt, 1995; Lohmann
and Marquardt, 1996; Lohmann, 1998) in the context of
work process centered computer-aided modeling support
systems (Jarke and Marquardt, 1996; Bogusch et al.,
2001). The approach pursued in these studies is promis-
ing but does not yet address the requirements of opti-
mization based control suÆciently. More emphasis has to
be put on model transformations (including model order
reduction and simpli�cation), model structure discrimi-
nation and parameter identi�cation as well as closed-loop
model validation in the future.

We are far from a recommended work process which

would lead us to a reasonable set of models for a decom-
posed optimization based operations support system at
minimal cost. This section presents the major modeling
steps on a coarse granular task level to guide the devel-
opment of more elaborate modeling work processes (see
Foss et al., 1998, for details) and to put model reduction
and model application as discussed in the remainder of
the paper into perspective.

(a) Requirements analysis: A precise problem formula-
tion is necessary but often omitted in process mod-
eling since most of the requirements are still vague.
As in any design activity these requirements have
to evolve with the model during the modeling pro-
cess. Major issues are the purpose of modeling and
the intended application of the model, the quantities
to be computed from the model, their dependency
on time and non-time coordinates, the accuracy to
be attained, the available resources for model con-
struction and the available computational resources
for model interpretation.

(b) Abstraction of the process: The boundaries of the
process under consideration are speci�ed by stat-
ing all external connections to the process' environ-
ment �rst. Subsequently, the process is decomposed
hierarchically into more and more re�ned intercon-
nected model objects until a desired level of resolu-
tion is reached. The properties of the model objects
are described in detail. The information collected
comprises an informal descriptive representation of
the model. The extensive quantities to be balanced,
the assumptions on the physico-chemical phenom-
ena and the level of detail to be considered are for
example part of this description. Canonical model
objects and a recommended procedure have been
de�ned to guide this abstraction process (e.g. Mar-
quardt, 1995).

(c) Formulation of model equations: For every model
object, the descriptive model of step (b) is cast
into a set of model equations to precisely de�ne
the model object's dynamics. The informal descrip-
tive model is converted into a formal mathematical
model. First, the balance equations are determined
accounting for the desired spatial resolution. The
process quantities occurring in the balance equa-
tions are classi�ed as states, parameters or state
functions. Parameters are �xed together with an
uncertainty interval. State functions are re�ned by
additional constitutive equations. Appropriate ini-
tial and boundary conditions are speci�ed. Simulta-
neously, a consistency check of physical dimensions
and units, an analysis of the remaining degrees of
freedom or of the di�erential index can be carried
out (Bogusch et al., 2001).
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The resulting process model comprises partial dif-
ferential equations to cope with spatially distributed
model objects, integro-di�erential-equations to rep-
resent particulate model objects by population bal-
ances, as well as di�erential-algebraic equations to
describe spatially averaged (well-mixed) model ob-
jects. Often, the models are in addition of a hybrid
discrete-continuous nature (Barton and Pantelides,
1994) to represent physical state events (such as a
phase change) or discrete control action (such as a
switching controller).

(d) Aggregation of model equations: The equations of
the whole process model are deduced by an aggre-
gation of those of every model object. This aggre-
gation process follows the hierarchical structure in-
troduced during the abstraction in step (b). Ad-
ditional constraints due to the aggregation may be
introduced. Again, the model is checked for its in-
dex as well as for a proper speci�cation of degrees
of freedom and initial conditions. The resulting
model may be very large-scale and may comprise of
some hundred thousand equations if plant-wide or
even site-wide optimization is envisaged. The model
structure may be exploited later to accomplish hor-
izontal decomposition (cf. Fig. 2).

(e) Model transformation: Usually, the model equations
are not solved as derived during the modeling pro-
cess. Instead, the model equations are reformulated
with di�erent objectives. For example, reformula-
tion or even model reduction are performed to re-
duce the computational complexity or the index in
case of high index models.

(f) Implementation and veri�cation: The model is im-
plemented by means of a modeling and simula-
tion tool. Instead of a formal veri�cation to check
whether the model satis�es the intent of the mod-
eler (expressed in the requirements formulated in
step (a)) the model is run, the simulation results
are checked for plausibility and the computational
resources are determined.

(g) Structure discrimination, parameter estimation,
and model validation: An appropriate model struc-
ture has to be chosen from a set of candidates and
unknown model parameters have to be determined
from experimental data. Optimization based exper-
imental design may be applied to reduce the num-
ber of experiments required. Typically, the model
�tting process works bottom-up starting with the
model objects on the lowest level of the aggregation
hierarchy. Another data set is used subsequently to
validate the nominal model. Note, that only open-
loop experiments are possible at this point.

(h) Documentation: A complete documentation of the
modeling process, the resulting process model, its
implementation, and its validation is provided to
facilitate the use of the model or of its parts in a
later application.

(i) Model application: The model is employed for the
intended application, i.e. for the implementation of
one of the functional modules in an optimization
based control system. An objective function, a dis-
turbance model and a set of constraints have to be
de�ned in addition. The application is validated
as a whole which, most importantly boils down to
a validation of the model in closed-loop. Not only
the modeling, but also the quality of the numeri-
cal solution and the measurement data have to be
accounted for at this stage.

There is a very close link and a large degree of in-
terdependency between steps (a) to (i). Consequently,
a large number of iterations cannot be avoided to meet
the complicated and widely varying requirements set out
at the beginning. Though, it would be extremely useful
to better manage the modeling process in order to come
up with a satisfactory solution the �rst time right, a
formalization of the modeling process as a prerequisite
for proper work process management seems to be com-
pletely out of reach today. This is largely due to a lack
of understanding of the modeling process as whole. Still,
nonlinear modeling for control is rather an art than an
engineering science (cf. also Aris, 1991).

The remainder of the paper will largely deal with steps
(c), (e) and (i) with an emphasis on a reduction of model
complexity as part of the model transformations in step
(e).

Hybrid Modeling

The formulation of model equations in step (c) of the
work process above is largely depending on the level of
process knowledge available. This knowledge can { at
least in part { be organized along the natural structure
displayed in model equation sets as derived during funda-
mental modeling (Marquardt, 1995). On the uppermost
level, there are the balances (e.g. a component mass bal-
ance) which are composed of generalized 
uxes (e.g. a
reaction rate), which may be computed from constitu-
tive equations (e.g. the reaction rate expression). Re-
cursively, these constitutive equations contain variables
(e.g. a rate constant) which may result from other consti-
tutive equations (e.g. an Arrhenius law). The equation
system can be organized as bipartite graph with equa-
tions and variables representing the two types of nodes
(Bogusch and Marquardt, 1997).

For every process quantity occurring in an equation
we can decide whether it is treated as a constant or even
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time-varying parameter (to be eventually estimated on-
line) or whether it will be re�ned by another equation. In
the latter case, these "constitutive equations" may have
a mechanistic basis, or alternatively, they may be of a
physically motivated semi-empirical or even of a com-
pletely empirical nature. Obviously, the process quanti-
ties occurring in these equations can be treated the same
way on a next re�nement level. In most cases, we are not
able or (for complexity reasons) not interested in incor-
porating truly mechanistic knowledge (on the molecular
level) to determine the constitutive equations. Instead,
we correlate unknown process quantities by means of a
(semi-)empirical equation.

Hence, all process models are by de�nition hybrid mod-
els, since they comprise fundamental as well as empiri-
cal model constituents. The fundamental model con-
stituents typically represent the balances of mass, en-
ergy and momentum and at least part of the constitu-
tive equations required to �x 
uxes and thermodynamic
state functions as functions of state variables. Empirical
model constituents, on the other hand, are incorporated
in the overall process model to compensate for a lack of
understanding of the underlying physico-chemical mech-
anisms. These empirical model constituents are typi-
cally formed by some regression model such as a linear
multivariate or an arti�cial neural network model. The
parameters in the regression model are identi�ed from
plant data. Therefore, hybrid modeling is also often re-
ferred to as combining a fundamental and a data-driven
(or experimental) approach.

Empirical regression models

Many di�erent ways of combining empirical (or data-
driven) and fundamental modeling have been proposed
in recent years (see van Can et al., 1996; Agarwal, 1997),
for various alternatives). The most important structures
of combining a fundamental and an empirical model are
depicted in Fig. 4.

In the parallel structure, independently introduced by
Su et al. (1992), Kramer and Thompson (1992), Thomp-
son and Kramer (1994), and Johansen and Foss (1992),
the model output is a weighted sum of an empirical and
a fundamental constituent (cf. Fig. 4 (a)). Usually, both
of these models are dynamic. The empirical model is of-
ten implemented as some type of neural network. It acts
as an error model and compensates for any unstructured
uncertainty in the fundamental model.

In contrast to this ad-hoc approach to hybrid model-
ing, the serial structure (cf. Fig. 4 (b)) is fully consis-
tent with a fundamental model structure. For lumped
parameter systems, we �nd in general on some level of
re�nement the equation structure

_x = f(x;�(�);p1;u) (4)

with parameters p1 and the unknown function �(�). The

fundamental
model
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model

empirical
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empirical
model
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u
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x
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� (�)

� (�)
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Figure 4: Di�erent structures of hybrid models. (a) par-
allel structure, (b) serial structure, and (c) an example
of a mixed structure.

quantities � represent physical quantities which are diÆ-
cult to model mechanistically. Examples are a 
ux, a ki-
netic constant, or a product quality indicator. Typically,
f(�) includes the balances of mass and energy, which can
always be formulated easily. Obviously, instead of pos-
tulating some model structure

� = �(x;�;u;p2) (5)

which is based on some physical hypotheses as in funda-
mental modeling, any other purely mathematically mo-
tivated model structure can be chosen to implement the
constitutive equation. This function and the probably
unknown parameters p1 in the fundamental model have
to be estimated from the measured outputs � and the
known inputs u after appropriate parameterization by
�(�) and p2. This approach to hybrid modeling has been
introduced �rst by Psichogios and Ungar (1992) who sug-
gested the use of a feedforward neural network as the
regression model. Identi�ability is a serious concern, if
�(�) not only depends on known inputs u and measured
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outputs � as in most reported studies but also on states
x.

Any combination of the parallel and serial structures in
Fig. 4 is conceivable. An example, reported by Simutis
et al. (1997), is shown in Fig. 4 (c).

Hybrid models with serial structure have got a lot of
attention. They have found numerous applications in dif-
ferent areas such as in catalysis and multiphase reaction
engineering (e.g. Molga and Westerterp, 1997; Zander
et al., 1999; Molga and Cherba�nski, 1999), biotechnol-
ogy (e.g. Sax�en and Sax�en, 1996; van Can et al., 1998;
Shene et al., 1999; Thibault et al., 2000), polymerization
(e.g. Tsen et al., 1996), minerals processing (e.g. Reuter
et al., 1993; Gupta et al., 1999), drying (e.g. Zbici�nski
et al., 1996) or in environmental processes (e.g. de Veaux
et al., 1999). In most cases reported so far, the hybrid
model has been determined o�-line. Satisfactory predic-
tion quality can be obtained if suÆcient data are avail-
able for training. Typically, the interpolation capabilities
are comparable to fully empirical models but the extrap-
olation capabilities are far superior (e.g. van Can et al.,
1998; de Veaux et al., 1999). A tutorial introduction to
hybrid modeling with emphasis on the serial structure
has been given by te Braake et al. (1998).

On-line updating of the neural network model in the
context of model-based control has also been suggested
in cases where a high predictive quality cannot be ob-
tained by o�-line training due to a lack of suÆcient data
or to a time-varying nature of the process. An exam-
ple has been recently reported by Costa et al. (1999)
who apply optimal control to a fed-batch fermentation.
These authors employ a functional link (neural) network
to model the reaction rates in a hybrid model with serial
structure and update the parameters on-line to improve
control performance.

Empirical trend models

Employing nonlinear regression with neural networks for
the determination of �(�) is not the only one approach to
hybrid modeling of uncertain systems. For example, the
structure of the model (4), (5) has been explored before
the introduction of hybrid neural network models in the
area of reaction calorimetry (see Schuler and Schmidt
(1992) for a review). In this context, the unknown func-
tion �(�) refers to the heat of reaction which is inferred
from temperature measurements by some state estima-
tion technique. Instead of the static model (5) a dynamic
model

_� = #1(x;u;�;�;�;p3) ; (6)

_� = #2(x;u;�;�;�;p4) (7)

is chosen to complement a fundamental model in the
serial structure shown in Fig. 4 (b). Here, the quantities
� and � are interpreted as part of the (extended) state

vector rather than as a nonlinear state function. Often,
due to a lack of mechanistic knowledge, the dynamic
models for � and � are chosen in a simple manner. In
many cases, constant or linear trends are suÆcient to
obtain an estimate, which is completely satisfactory for
monitoring and control though the predictive capabilities
of the model are very limited in theses cases.

This approach is not restricted to reaction calorimetry.
For example, Helbig et al. (1998) report on an extension
of this idea to real-time optimization of a two-phase poly-
merisation reactor operated in semi-batch mode to max-
imize productivity despite lacking knowledge on the de-
tailed physico-chemical phenomena occurring. Empirical
models for the overall reaction rate and the interfacial
mass transfer rate have been included in a fundamental
model comprising mass and energy balances as well as
physical property models of the two-phase system. Sim-
ple models (6), (7), have been chosen which guarantee
observability and controllability even when control vari-
ables are constrained.

Wiener/Hammerstein type hybrid models

Hybrid models of a completely di�erent type may be
built as follows. In many cases, a fundamental steady-
state process model is available either from process de-
sign of from steady-state real-time optimization. Often,
the e�ort of converting the existing steady-state model
implemented in some process modeling environment to a
dynamic model to be employed for the support of tran-
sient process operations is quite high. Dynamic real-
time optimization may be accomplished at least approx-
imately by means of a hybrid model which combines the
nonlinear fundamental steady-state model with an em-
pirical linear dynamic model in a serial manner. The re-
sulting structure corresponds { in the most simple case
of a SISO system { to a Hammerstein or a Wiener model
depending on the sequence order of the linear dynamic
and the nonlinear static submodels.

Three hybrid models of this type { a Wiener, a Ham-
merstein and a feedback structure, have been treated
recently under the assumption of a known nonlinear
static map and unknown linear dynamics by Pearson and
Pottmann (2000). These authors report tailored identi-
�cation algorithms which exploit the knowledge of the
nonlinear static map given by the fundamental model.
In their binary distillation case study, the nonlinear map
between re
ux and top composition has been approxi-
mated by simple spline functions.

In a similar study, reported previously by Norquay
et al. (1999), a hybrid model of Wiener type has been
developed and employed in a model predictive control
strategy for dual composition control of an industrial
C2-splitter in an ethylene plant. First-order plus dead-
time linear transfer functions are used to implement an
empirical 2� 2 linear model followed by two static maps
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which result from cubic spline approximation of a funda-
mental steady-state process model. The Wiener model
based controller has been successfully implemented on
an industrial plant in Australia.

Discussion

Hybrid trend as well as regression models (in particu-
lar with serial structure) are not only compensating for
lacking mechanistic knowledge. In most cases these mod-
els also result in a much lower complexity as compared
to representative detailed mechanistic models. Hybrid
modeling is therefore closely related to model reduction
which is discussed in more detail below. In many cases,
the validity of the model can only be guaranteed if on-
line dynamic model reconciliation by either parameter
estimation in case of regression models (e.g. Costa et al.
(1999)) or by combined state and disturbance estima-
tion in case of trend models (e.g. Helbig et al. (1998)) is
employed.

Though there is some evidence that the serial struc-
ture has more favorable extrapolation properties than
the parallel structure (van Can et al., 1996), methods of
systematically designing hybrid model structures { either
employing a static regression or a dynamic trend model {
and their ranking with respect to prediction and extrap-
olation quality under open- and closed-loop conditions
are still lacking.

The Hammerstein/Wiener type nonlinear hybrid mod-
els are very promising in those cases where a fundamen-
tal steady-state real-time optimization model is already
available. The work of Norquay et al. (1999) and Pearson
and Pottmann (2000) are good starting points for further
investigation which should aim at an extension of the
concept to real-time dynamic optimization and control.
The engineering e�ort can be reduced tremendously if
the optimization model implementation can be directly
integrated with a dynamic linear model in a modular
fashion by a heterogeneous simulation and optimization
platform (e.g. von Wedel and Marquardt (2000)).

Model order reduction

We have seen that model complexity can be reduced
signi�cantly by introducing empirical components in a
model. Here, we will review order reduction techniques
for a given nonlinear lumped parameter models which
may be of whatever origin. We restrict the discussion to
models of type

_x = f(x;u) ; x(t0) = x0 ; y = h(x) ; (8)

though more general di�erential-algebraic models should
be considered. However, there seems to be only the paper
of L�o�er and Marquardt (1991), which treats this rele-
vant class. We attempt to unify { at least to the extent
possible { the great many variants of reported nonlinear

order reduction techniques. Such an exercise will hope-
fully uncover hidden relationships and foster new devel-
opments in the future. Order reduction is always possible
for large-scale models because the most signi�cant con-
tribution to the dynamics originates in a subspace of the
complete state space. The key questions are what we
rate as a signi�cant contribution and how we are going
to reveal it by systematic means ultimately under closed
loop conditions.

Projection methods

Projection methods have been suggested in a great vari-
ety in the recent literature. A generic procedure can be
formulated as follows:

1. Transform the original state space into a state space
better revealing the important contributions to pro-
cess dynamics, i.e.

x� x� = T (z) ; (9)

with a general di�eomorphism T and the trans-
formed state vector z 2 Rn. The reference state x�

is often a non-zero nominal operating point. Note
that T is a non-singular square matrix in the linear
case.

2. To achieve order reduction we decompose the trans-
formed space into two complementary subspaces
with state vectors z1 2 Rm and z2 2 Rn�m, re-
spectively. Hence,

T (z) = T (z1; z2) ; (10)

or

Tz = T 1z1 + T 2z2 ; T = [T 1;T 2] ; (11)

in case of a linear transformation. We call z1 the
dominant states and refer to z2 as the non-dominant
states. Note, that the new states are linear combi-
nations of the original states in the linear case.

3. Finally, we have to deduce a nonlinear dynamic
model for the dominant states

_z1 = f1(z1; z2;u) (12)

and a hopefully simple algebraic model for the non-
dominant states

0 = f 2(z1; z2;u) : (13)

4. Approximate states ~x and outputs ~y of the original
system can be easily computed from z1 and z2 using
eq. (9) with eqs. (10) or (11). Eq. (9) can be viewed
as an output equation of the model (12), (13).
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The variants of projection methods di�er mainly in
steps 1 - 3. The major techniques are introduced and
put into perspective next.

Model transformation

Scherpen (1993) suggested nonlinear balancing as a tool
for nonlinear model reduction. Her method general-
izes balancing of linear systems as introduced by Moore
(1981). The idea of balancing is the transformation of
a system into an equivalent form which allows the as-
sessment of the importance of the state variables with
respect to the energy in its input and output signals.
According to Scherpen (1993), we de�ne the controlla-
bility and observability functions

Lc(x0) = min
u;x(0)=x0

1

2

Z 0

�1

ku(t)2kdt ; (14)

x(�1) = 0 ; u 2 L2(�1; 0) ;

Lo(x0) =
1

2

Z 1

0

ky(t)2kdt ; (15)

x(0) = x0 ; u(t) � 0 ; 0 � t <1 ;

for linear and nonlinear systems. These functions de-
note the amount of input energy required to reach the
state x0 and the amount of output energy generated by
the state x0, respectively. For a linear system (A;B;C),
these functions are quadratic forms

Lc =
1

2
xT0M

�1
c x0 ; Lo =

1

2
xT0M

�1
o x0 (16)

of the controllability and observability Gramians

Mc =

Z 1

0

eAtBBT eA
T t dt ; (17)

Mo =

Z 1

0

eA
T tCTCeAt dt ; (18)

which, for stable systems, can be computed from the
Lyapunov equations

AM c +M cA
T = �BBT ; (19)

ATM o +MoA = �CTC : (20)

A system is called internally balanced (Moore, 1981) if

Mo = M c = � = diag f�ig (21)

where �1 � �2 : : : � �n are the Hankel singu-
lar values. There always exists an orthogonal ma-
trix T (with T�1 = T T ) which transforms a (stable)
linear system (A;B;C)1 into its balanced equivalent
(T TAT ;T TB;CT ) with x = Tz; z = T Tx (Moore,

1See Skogestad and Postlethwaite (1996), pp. 464, for exten-
sions to unstable systems.

1981). More precisely, there are two transformation ap-
plied subsequently which employ the eigenvectors and
eigenvalues of both Gramians to arrive at diagonalized
controllability and observability Gramians of the trans-
formed system.

The generalization to stable nonlinear systems (8) re-
quires the determination of the nonlinear controllability
and observability functions Lc(x0) and Lo(x0), respec-
tively. Scherpen (1993) derives two nonlinear partial dif-
ferential equations, a Lyapunov and a Hamilton-Jacobi
type of equation, to determine these functions. Two non-
linear transformations can be derived from these solu-
tions. If they are applied to Lc(x0) and Lo(x0) again, n
singular value functions, the nonlinear analogs to the sin-
gular values in the linear case, can be identi�ed. Hence,
these transformations can be used to balance a nonlin-
ear system. A similar technique based on a di�erent
de�nition of the energy of the input and output signals
related to the nonlinear H1 control problem as well as
extensions to nonlinear systems have been reported more
recently (Scherpen and van der Schaft, 1994; Scherpen,
1996). The drawback of these approaches is obvious: the
required analytical computations to determine Lc(x0)
and Lo(x0) are rarely feasible in practice and a fully con-
structive method for the determination of the nonlinear
transformation is not yet available. Hence, an approxi-
mation of the analytical balancing method of Scherpen
seems to be the only way forward.

Consequently, Newman and Krishnaprasad (1998) ex-
plored the possibility of determining Lc(x0) and Lo(x0)
by a Monte-Carlo technique for a two-dimensional prob-
lem.

An alternative approach to the computation of approx-
imate Gramians can be deduced from a remark given by
Moore (1981, p.21). He suggested to sample the impulse
response matrix at a �nite number of times to empiri-
cally construct an approximate M c and M o if solutions
to the Lyapunov equations (19), (20) do not exist or are
hard to compute.

Pallaske (1987) seems to be the �rst who made use
of this idea in the context of model order reduction for
nonlinear systems (without referring to Moore's original
work). He introduced the covariance matrix

M =

Z
G

Z 1

0

(x(t)� x�)(x(t)� x�)T dt dG (22)

as the basis for the derivation of a linear transformation
employing an orthogonal matrix T . The symbol G de-
notes a set of representative trajectories resulting from a
variation of initial conditions and input signals. Hence,
the covariance matrix averages the behavior of the non-
linear system over a set of representative trajectories.

In order to compute the covariance matrix, the set
G must be parameterized. Pallaske (1987) did not use
impulse responses but suggested to keep the controls at
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constant values matching to the nominal operating point
x� and to parameterize the initial conditions by

x0 = x� + Fr (23)

with F 2 Rn�s and r 2 Rs with s� n. Pallaske (1987)
did not give any recommendations on suitable choices of
F . L�o�er and Marquardt (1991) suggested to select F
as the averaged steady-steate gain matrix of the system
in some region including x�. This suggestion results from
a choice of G as a set of step responses at x�;u�. Other
choices of trajectories G (or rather matrices F ) resulting
in di�erent covariance matrices M are obviously possi-
ble, if they are representative for the system dynamics in
some region of the state space and for the intended use
of the reduced model.

For nonlinear systems, the covariance matrix can be
determined, in principle, by numerical quadrature of the
multi-dimensional integral in eq. (22) after a suitable
choice of F . Highly accurate adaptive parallel algorithms
are becoming available to solve this computationally de-
manding task even on heterogeneous workstation clus-
ters (�Ciegis et al., 1997). However, the number of sim-
ulations required scales with 2n. These algorithms can
therefore only be used for small to moderate n. Instead,
Monte-Carlo techniques may be used to get a coarser
approximation for large-scale problems (Jadach, 2000).

In many cases M has to be computed from a lin-
ear approximation to get acceptable results (L�o�er and
Marquardt, 1991). The covariance matrix can be eas-
ily determined from an algebraic Lyapunov equation for
any parameterization (23). To show this property, we
linearize (8) at the reference state x�;u� and evaluate
the integral in (22) for the set of trajectories G resulting
from the linearized system after a variation of the initial
conditions (23) with krk < �. The resulting covariance
matrix M l is then given by

M l =

Z 1

0

eAt S eA
T t dt (24)

with the Jacobian A = @f
@x
jx�;u� and

S = kFF T ; k =
2�

s
2 �

s
2

s(s + 2)�( s2 )
: (25)

The integration can be replaced by the solution of a Lya-
punov equation. L�o�er and Marquardt (1991) suggested
to use F = �A�1B, the static gain at the reference point
x�;u� to emphasize the input-state relation of the dy-
namics. An averaged gain in some neighborhood of the

reference point can be used instead, i.e. F = �A�1B,
to re
ect some of the nonlinearity in the calculation of
M .

Motivated by the sti�ness occurring in many large-
scale systems, Pallaske (1987) suggests to choose the

transformation such that the dynamics of the states can
be approximately captured in a lower dimensional sub-
space. This translates to a minimization of the variance
of the state in the directions of the coordinate axes of the
reduced space. The transformation T = [d1;d2; : : : ;dn],
with di being the normalized eigenvectors of the covari-
ance matrix M , results in such a choice (see below).

The close relation of Pallaske's method to model re-
duction by balancing can be identi�ed as follows. A
choice of F = F c = B = @f

@u
jx�;u� and F = F o = CT =

(@h
@x
jx�;u�)T and � determined from (25) with k = 1 re-

sults in the local controllability or observability Gramian
(17), (18) of the system (8) at x� emphasizing the input-
state or the state-output relation of the dynamics. These
matrices are used in linear balancing (Moore, 1981) to
construct the transformation T c;o. This transformation
aims at a removal of the weakly controllable and observ-
able subspaces. It is in contrast to Pallaske's objective
which is a removal of the fast non-dominant states. Ob-
viously, a transformation determined from a lineariza-
tion of the nonlinear model does not exactly balance the
nonlinear system in the sense of Scherpen (1993) but
may qualify as a useful empirical approximation which
at least is consistent with the linear theory. In fact, Wis-
newski and Doyle III (1996a) successfully demonstrate
the applicability of a related approach. They compute
the transformation T from the left and right eigenvectors
of the Hankel matrix, i.e. the product of the observabil-
ity and controllability Gramians, of a linearization of the
nonlinear model at a stationary reference point.

Empirical balancing of nonlinear systems has been re-
cently introduced by Lall et al. (1999). They suggest em-
pirical controllability and observability Gramians, Mc

and Mo, which are closely related to eq. (22). Impulse
responses of varying magnitude are chosen in the set G
to compute M c, whereas responses to di�erent initial
conditions are used in the set G to compute Mo. In this
case, Lall et al. (1999) use the covariances of the outputs
y = h(x) in eq. (22) instead of the states x. These
Gramians are used to empirically balance the nonlinear
system as in the linear case. This approach has been
adopted recently by Hahn and Edgar (Hahn and Edgar,
1999, 2000).

A completely di�erent approach of determining
the transformation matrix is reported in structural
dynamics (Slaats et al., 1995). As in modal reduction
techniques for linear systems (Litz, 1979; Bonvin and
Mellichamp, 1982), the transformation matrix T is
formed by the dominating modes of the second order
model (the eigenvectors associated with complex conju-
gate eigenvalues). However, these modes are taken as
functions of the displacement of a node in a mechanical
structure to account for the nonlinearities. Analytical
expressions are derived to determine the modes for the
model linearized at the initial condition and for �rst and
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second order sensitivities of the modes with respect to
the nodal positions. The transformation matrix is then
computed from these quantities. The method carries
over to �rst order process systems models, but seems
only appropriate for less severe nonlinearities in the
vicinity of an operating point.

State space decomposition

According to step 2 of the general projection method, the
transformed space has to be decomposed next into two
subspaces capturing the dominant and the non-dominant
states, respectively.

Scherpen (1993) suggests to use the magnitude of the
singular value functions occuring in the transformed ob-
servability and controllability functions in some domain
of the state space as an indication for weakly controllable
and observable subspaces. Those states with large values
of the singular value functions are grouped into the vec-
tor of dominant states z1, and the remaining state vari-
ables form z2. The same strategy is employed by Lall
et al. (1999) and Hahn and Edgar (1999; 2000). They
analyse the singular values of the empirical Gramians
and delete those states with small singular values indi-
cating weak observability and controllablility as in the
linear case (Moore, 1981).

Pallaske (1987) poses an optimization problem to
bound the normalized L2-error between the approximate
and the original state vectors ~x and x to a user-de�ned
tolerance "0 by varying m, the dimension of z1. The
solution to this problem is

m = min k s.t.

kX
i=1

�i � (1� "20) trace fMg (26)

with �1 > �2 : : : � �n being the eigenvalues of M .
Hence, the �rst m normalized eigenvectors di ; i = 1; : : : n
of M span the subspace for the dominant transformed
states. Consequently, T 1 = [d1; : : : ;dm] and T 2 =
[dm+1; : : : ;dn] in eq. (11). The same approach has been
adopted by L�o�er and Marquardt (1991).

In some cases, the choice of the dominant states may
be based solely on physical insight. This selection is
typically done without transformation in the original
coordinates.

Formulation of the reduced model

There are di�erent strategies of determining the reduced
model equations after the dominant states have been
identi�ed. In complete analogy to the linear case, Scher-
pen (1993; 1996) suggests to simplify the balanced non-
linear model by truncation of the balanced state. The
non-dominant states z2 are equated to zero, accounting
for their negligible in
uence on the input-output behav-

ior of the system. Since the fully nonlinear balancing
method is not applicable in practice, we present this ap-
proach in more detail for a linear transformation (11)
resulting for example from empirical nonlinear balanc-
ing or from Pallaske's method.

After transformation of (8) and subsequent decompo-
sition into two subsystems, we obtain

_z1 = T T
1 f(x� + T 1z1 + T 2z2;u) ; (27)

_z2 = T T
2 f(x� + T 1z1 + T 2z2;u) ; (28)

z1(0) = T T
1 (x0 � x�) ; (29)

z2(0) = T T
2 (x0 � x�) (30)

Truncation of the transformed state yields

_~z1 = T T
1 f(x� + T 1~z1;u) ; (31)

~z2 = 0 ; (32)

a reduced model of order m < n. Alternatively, we may
assume

_~z2 = 0 = T T
2 f (x� + T 1~z1 + T 2~z2;u) (33)

to form the reduced model (27), (33). This concept,
often referred to as residualization, is closely related to
singular perturbation discussed in more detail below.
It results in a di�erential-algebraic system of the same
order as the original model which is still diÆcult to
solve in general. However, this way the (small) contri-
bution of z2 to ~x is captured at least to some extent.
Combinations of truncation and residualization have
been suggested in the linear case (Liu and Anderson,
1989) and obviously carry over to the nonlinear case.
Truncation as well as residualization strategies have
been suggested and successfully applied to nonlinear
systems by Pallaske (1987), L�o�er and Marquardt
(1991) as well as by Hahn and Edgar (1999; 2000).

Approximation of original states

An approximation of the original state ~x is obtained from

~x = x� + T 1~z1 + T 2~z2 (34)

according to eqs. (9) and (11). The second term vanishes
identically in case of truncation. Steady-state accuracy
cannot be guaranteed in the general nonlinear case.

Proper orthogonal decomposition

Proper orthogonal decomposition (POD), often also
called Karhunen-Loeve expansion or method of empiri-
cal eigenfunctions (Fukunaga, 1990; Holmes et al., 1996),
is somehow related to the projection methods discussed
above. This method has gained much attention in 
uid
dynamics in the context of discovering coherent struc-
tures in turbulent 
ow patterns. Later, the method has
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been worked out for the construction of low-order mod-
els for dynamic (usually distributed parameter) systems
with emphasis on 
uid dynamical problems (Sirovich,
1987; Aubry et al., 1988; Holmes et al., 1996). POD
has found many applications in simulation and optimiza-
tion of reactive and 
uid dynamical systems (e.g. Gra-
ham and Kevrekidis, 1996; Kunisch and Volkwein, 1999;
Afanasiev and Hinze, 1999) or chemical vapor deposi-
tion processes (e.g. Banerjee and Arkun, 1998; Baker and
Christo�des, 1999). The method comes in a number of
variants. We will summarize one of them following the
presentation of Ravindran (1999) next.

Assume we have a representative trajectory of (8) for
a certain initial condition x0 and control u(t) de�ned on
a �nite time interval [t0; t1]. The trajectory is uniformly
sampled for simplicity to form the ensemble S = fx(tk)�
x�gpk=1 = f�x(tk)gpk=1 containing p data sets of length
n which are often called snapshots. As before, x� is
the reference which can be either a steady-state or the
ensemble average of the snapshots. We are interested
in a unit vector d which is in some sense close to the
snapshots in S. We may request that d is as parallel as
possible to all the snapshots. This requirement leads to
the optimization problem

max
1

p

pX
k=1

(�x(tk)Td)2

dTd
s.t. dTd = 1 : (35)

We assume d to be a linear combination of the data, i.e.

d =

pX
k=1

wk�x(tk) ; (36)

and determine the weights wk to solve the optimization
problem (35). Solving this optimization problem is the
same as �nding the eigenvectors of the correlation matrix
N with elements

Ni;j = �x(ti)
T�x(tj) : (37)

Since this matrix is nonnegative Hermitian, it has a com-
plete set of orthogonal eigenvectors fw1; : : :wpg along
with a set of eigenvalues �1 � �2 : : : � �p. We can now
construct an orthogonal basis spanfd1; : : : ;dpg by means
of (36) with

di =
1p
�i

pX
k=1

wi;k �x(tk); ; i = 1; : : : p (38)

where wi;k denote the elements of the eigenvector wi.
It can be shown that any approximation of x(tk) in a
subspace spanned by the �rst p1 < p basis vectors di
maximizes the captured energy x(tk)Tx(tk) of the data
set. Due to this property, we may just use a reduced
basis spanfd1; : : : ;dp1g with p1 � p to obtain suÆcient

approximation quality. The value of p1 is determined
after some experimentation. The ratio

� =

Pp1
k=1 �kPp

k=1 �k
(39)

indicates the percentage of energy contained in the �rst
p1 basis vectors. Obviously this ratio should be close to
unity. Note, that we therefore do not have to match the
number of snapshots (or basis vectors) p to the dimension
n of the dynamic system. Often, we want to use p � n

for convenience, if very large-scale systems are consid-
ered, which, for example, may arise after discretization
of a distributed parameter system.

There are at least two common ways of determining
the basis vectors. Banerjee and Arkun (1998) employ
a singular value decomposition and construct the basis
from the left singular vectors of N . An alternative ap-
proach does not rely on the correlation matrix N but on
the n� p snapshot matrix

X = [�x(t1);�x(t2); : : :�x(tp)] (40)

the columns of which are the snapshots �x(tk) at tk
(Aling et al., 1996; Shvartsman and Kevrekidis, 1998).
Again, the basis is formed by those p1 � p left singular
vectors of X which are associated with the largest sin-
gular values and hence capture most of the energy in the
data set.

The basis constructed from the correlation or snapshot
matrices gives rise to a representation of an approximate
solution ~x to (8) by a linear combination of the basis
vectors. Hence,

~x� x� =

p1X
k=1

ak dk : (41)

If the expansion coeÆcients ak and the basis vectors dk
are collected in a vector a1 = [a1; a2; : : : ap1 ] 2 Rp1 and
a matrix U 1 = [d1;d2; : : :dp1 ] 2 Rn�p1 we can rewrite
this equation as

~x = x� +U 1a1 (42)

which has the same structure as eq. (34) in case of trun-
cating the nondominant states. The reduced model is

_a1 = UT
1 f(x� +U 1a1;u) ; (43)

a1(0) = UT
1 (x0 � x�) ; (44)

which has exactly the same appearance as the truncated
model (31) resulting from model reduction by projection.

As in the projection methods, truncation is not the
only possibility of developing a reduced model. Rather,
the full basis spanned by p < n vectors can be employed
by summing to p instead to p1 in the approximation (41).
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This approach would result in a model structure com-
pletely analogous to the system (27), (33). Residualiza-
tion (e.g. setting _a2 to zero) or more sophisticated slav-
ing methods can be used to reduce the computational ef-
fort (e.g. Aling et al., 1997; Shvartsman and Kevrekidis,
1998; Baker and Christo�des, 2000). A more detailed
discussion will be provided in the next section.

The major di�erence between POD and projection is
the lack of a convergence proof which would guarantee
the reduced model to match the original model in case
the number of basis functions p1 approaches the state di-
mension n. Further, there is no di�eomorphism between
the original state space and the space spanned by the
empirical eigenvectors d1; : : : ;dp in POD which is avail-
able in the projection methods discussed above. Oth-
erwise, both types of methods are very similar as they
heavily rely on data taken from a series of simulations
of the original model (8). However, the data is orga-
nized and used di�erently depending on the intention of
model reduction. Here, the basis is constructed from the
correlation or snapshot matrix N or X (cf. (37) and
(40)) whereas the covariance matrix M (cf. (22)) and
its specializations are used in the projection methods.

Slaving

Residualization in projection results in a set of
di�erential-algebraic equations (cf. eqs. (27), (33)). A
similar system is obtained in POD, if all basis vectors
are employed but only the �rst p1 are used to build the
dynamic subsystem. If the algebraic subsystem (cf. (33)
in projection method) cannot be solved explicitly, the
computational e�ort cannot be reduced and the model
reduction largely fails. Truncation could be employed
instead, but a signi�cant loss in approximation accuracy
would result inevitably.

A reduction of the computational e�ort is possible, if
we could �nd an explicit relation between the algebraic
and the dynamic variables (z2 and z1 in projection or
a2 and a1 in POD methods). Hence, we are looking for
a function

z2 = �(z1) (45)

in case of residualization in projection methods, or for
equivalent functions in case of residualization in POD.
This approach has also been called slaving in the re-
cent literature. Its roots are in nonlinear dynamics,
where the computation of approximate inertial manifolds
has some tradition (e.g. Foias and T�emam, 1988; Foias
et al., 1988). Aling et al. (1997) as well as Shvartsman
and Kevrekidis (1998) use this idea in their case studies
on nonlinear model reduction based on POD. Here, we
present the concept in the context of projection methods,
where it does not seem to have been applied yet.

The algebraic equation (33) forms the starting point

of de�ning the family of maps

~z
(k+1)
2 = �k(z1; ~z

(k)
2 ) (46)

=: ~z
(k)
2 � T T

2 f (x� + T 1z1 + T 2~z
(k)
2 ;u) :

If the map is a contraction, eq. (33) can be solved iter-

atively from the initial guess ~z
(0)
2 = 0 which would be

used in truncation. The computational e�ort can be re-
duced signi�cantly, if only few iterations are carried out
to improve on the initial value. In case of two iterations
we �nd for example

~z2 = �2(z1;�1) ; �1 = �1(z1;0) : (47)

This approximation can now be used to eliminate z2 �
~z2 in eq. (27) and to compute ~x from eq. (34). An
accuracy similar to residualization can be achieved by
this method but only a model of the same order as in
truncation has to be solved.

Equation residual minimization methods

Equation residual minimization methods have been ex-
tensively studied in the linear case (e.g. Eitelberg, 1982).
A nice generalization to the nonlinear case has been given
recently by Lohmann (1994; 1995). He de�nes a nonlin-
ear reduced model2 of (8) as

_z1 = V f(x� +Wz1;u) ; (48)

to compute the approximate states

~x = x� +Wz1 : (49)

This reduced model has the same structure as that re-
sulting from a truncated projection method (cf. eq. (31))
or a truncated POD method (cf. eq. (43)). The matri-
ces V andW are, however, determined di�erently. Their
elements are the decision variables in a parameter opti-
mization problem which minimizes the residuals of eqs.
(48), (49). First, W is determined from minimizing the
sum of weighted errors

pX
k=1

q1;k kx(tk)� x� �Wz1(tk)k2 (50)

using a number of representative trajectories sampled at
discrete times tk. A set of carefully chosen step responses
is chosen for this purpose. Next, given W , the sum of
weighted equation residuals

pX
k=1

q2;k k _~z1(ti)� V f (x� +W ~z1(ti);u(ti))k2 (51)

2Lohmann introcudes a re�ned parameterization of the reduced
model by splitting the right hand sides into linear and nonlinear
terms.
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is minimized to �x the elements of V . In contrast to
other nonlinear model reduction techniques, steady-state
accuracy can be guaranteed by incorporating a steady-
state condition as an equality constraint in this residual
minimization problem.

The choice of the dominant states z1 can be done
on physical insight in the most simple case. However,
Lohmann (1994; 1995) also suggests a systematic alter-
native to the selection of dominant states which usu-
ally gives better approximation results. He introduces
a transformation of the state space which reveals the
dominant modes which is similar to both, the balancing
transformation of Moore (1981) and to the transforma-
tion of Pallaske (1987). The transformation is applied
�rst, the dominant states are identi�ed, and the resid-
ual minimization technique is applied to the transformed
system.

A modi�ed version of the Lohmann method has been
reported recently by Kordt (1999). It applies to systems
where only the dominant states of the original model
are entering the nonlinear terms of the system equations
whereas the nondominant states are con�ned to the lin-
ear part. An even more special case has been treated ear-
lier by Hasenj�ager (1991). He assumes that nonlinearities
occur only in the equations of the dominant states and
that these nonlinearities only depend on the dominant
states. In this case, it is suggested to �rst neglect the
nonlinear terms, reduce the linear part of the model by
any of the linear reduction techniques (e.g. Litz, 1979;
Moore, 1981; Eitelberg, 1982; Bonvin and Mellichamp,
1982; Glover, 1984; Samar et al., 1995; Muscato, 2000),
and then add the nonlinear terms to the reduced linear
model equations.

Perturbation methods

In many cases, chemical processes are characterized by
phenomena on separate time scales. Multiple time scales
occur due to orders of magnitude di�erences in the den-
sities of contacting vapor (or gas) and liquid phases in
multi-phase processes, in the thermal capacitances of re-
actors, in the time constant of chemical reactions, or
in the transfer rates of material or energy across phase
boundaries. The models (8) describing such multiple
time scale systems usually incorporate process parame-
ters varying in a wide range. In the simplest case, where
there are only two time scales present, we may identify
a small parameter �� 1 in (8) to result in

_x = f(x;u; �) : (52)

Let us assume that this equation can be reformulated as

_xs = gs(xs;xf ;u; �) ; (53)

� _xf = gf (xs;xf ;u; �) : (54)

Here, xs 2 Rns ;xf 2 Rn�ns are denoting the so-called
slow and fast state variables, respectively. Obviously,

this reformulation is identical to the partitioning of
the state vector x into xs and xf by some strategy.
This system representation is called the standard form
of a singularly perturbed system (Kokotovic et al.,
1986). This model comprises two time scales t and
� = t�t0

�
of di�erent magnitude and is therefore called a

two-time-scale model.

Basic singular perturbation approach

Since � is a small parameter, the solution of (53), (54)
can be determined by means of perturbation methods in
the limit of �! 0. It is given as

xs = xs + O(�) ; xf = xf + �+ O(�) (55)

with xs;xf computed from (53), (54) for � = 0. The
notation O(�) is used in the usual sense and refers to
small terms of order �. The so-called boundary layer
correction � can be computed from

d�

d�
= gf (xs;xf + �;u; 0) : (56)

It quickly dies out in a short time interval at the begin-
ning of a transient. For an asymptotically stable system
(56), the boundary layer correction may be neglected
together with the O(�) contributions to the solution.
These considerations result in the simpli�ed di�erential-
algebraic model

_~xs = gs(~xs; ~xf ;u; 0) ; (57)

0 = gf (~xs; ~xf ;u; 0) (58)

to determine approximations ~x = [~xTs ; ~xTf ]T of the state
x. This approximation is often called the quasi-steady-
state approximation (QSSA) of (8). Further simpli�ca-
tion is possible, if the nonlinear algebraic equations can
be solved analytically for ~xf , i.e.

~xf = g�1f (~xs;u; 0) : (59)

This case can be interpreted as an exact slaving approach
(cf. eq. (45).

If this reduction method is applied to a process model
in practice, two issues have to be addressed. First, we
have to derive the standard singularly perturbed system
(53),(54). This boils down to the determination of ns
and to a proper association of the states xi; i = 1 : : : n;
to the vectors xs and xf . Second, since the QSSA
does often not lead to models of suÆcient accuracy,
corrections to the QSSA solutions are of particular
interest. A number of suggestions found in the literature
are discussed in the following paragraphs.

Standard singularly perturbed systems and QSSA
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Often, the QSSA is derived heuristically based on a thor-
ough understanding of the underlying physics. It is well
known, however, that such an approach does not always
work out well (e.g. Tatrai et al., 1994). More rigorous
techniques are therefore required. The number of slow
states ns is usually determined from an analysis of the
eigenvalues of the linearized system (8) along some repre-
sentative trajectories. Robertson and Cameron (1997b)
relate the separation ratio denoting the distance of two
separated clusters of eigenvalues to the model reduction
error. Their analysis gives quantitative recommenda-
tions for determining ns and the eigenvalues in the clus-
ter to be retained in a reduced model. The same authors
present a homotopy-continuation technique to identify
the eigenvalue-state association to determine the set of
states concatenated into xs and xf , respectively. Both
techniques are demonstrated on various non-trivial ex-
amples, where the fast or slow states could not be iden-
ti�ed merely on the basis of physical insight (Robertson
and Cameron, 1997a,b; Tatrai et al., 1994).

Duchene and Rouchon (1996) demonstrate on a sim-
ple example from reaction kinetics that the QSSA is not
coordinate-free, because the method may not lead to use-
ful results in the original state space. These and other
authors suggest a simple linear transformation for special
reaction systems (e.g. van Breusegem and Bastin, 1991)
and for binary distillation columns (Levine and Rouchon,
1991) which lead to more favorable coordinates for a
QSSA. The linear transformation suggested by Pallaske
(1987) and introduced above could qualify for the general
case. By construction, the dominant states z1 represent
the dominant (and often slow) states in the transformed
state space, whereas z2 denote the nondominant (often
fast) states z2. Residualization in projection methods or
POD discussed above is identical with a QSSA in trans-
formed coordinates.

In general, however, the change of coordinates is non-
linear. Existence of a nonlinear map transforming any
nonlinear system (8) into standard singularly perturbed
form (53),(54) has been investigated by Marino and
Kokotovic (1988). These authors give conditions, which
assure the two-time-scale property of (52). They also
provide general criteria, which guarantee the existence of
an �-independent di�eormorphism to transform the two-
time-scale system (52) into the standard form (53),(54).
A procedure for constructing such a di�eomorphism is
given. It reveals a set of integrability conditions the
transformation has to suÆce. A more re�ned analysis
has been developed more recently by Krishnan and Mc-
Clamroch (1994) which has been adopted and extended
by Kumar et al. (1998). These authors study systems
(8) which are aÆne in the control variables u and in in-
teger powers of a large parameter 1

�
. Krishnan and Mc-

Clamroch (1994) give properties suÆcient for the system
to reveal two-time-scale characteristics and characterize

the slow and fast dynamics. They also generalize their
results to systems with more than one large parameter.
The analysis of Kumar et al. (1998) reveals two distinct
cases depending on the properties of the model nonlin-
earities. Both, the transformation as well as the region
of the state-space in which the system shows two-time-
scale behavior, may either depend on � or not. Again,
the nonlinear transformation has to satisfy the set of in-
tegrability conditions already identi�ed by Marino and
Kokotovic (1988). The analytical determination of the
transformation may be restricted to special nonlinear
systems of low to moderate order. It is often diÆcult
to obtain.

The methods of Marino and Kokotovic (1988), Krish-
nan and McClamroch (1994) as well as of Kumar et al.
(1998) require the identi�cation of a large parameter.
The quality of the resulting reduced model will crucially
depend on this choice. While this parameter can often
be found based on physical insight, it would be advan-
tageous to have a transformation available which does
not require such a maybe arbitrary choice. Nonlinear
balancing as introduced by Scherpen (1993; 1996)
may qualify as such a transformation at least in those
cases where the fast states coincide with the weakly
observable and controllable states. The computation
of the transformation is, however, even more involved
than that suggested by Kumar et al. (1998). Empirical
nonlinear balancing (Lall et al., 1999; Hahn and Edgar,
2000) could be used instead, sacri�cing however the
nonlinear transformation in favor of a linear transfor-
mation similar to the approach of Pallaske (1987). The
relation between singular perturbation and nonlinear
balancing can only be conjectured at this point. The
generalization of the linear result of Liu and Anderson
(1989) to the nonlinear case is yet an open problem.

Coordinate-free perturbation methods

The quasi steady-state approximation is widely em-
ployed in original coordinates (e.g. Robertson and
Cameron, 1997a,b) or in heuristically introduced trans-
formed coordinates (e.g. Levine and Rouchon, 1991; van
Breusegem and Bastin, 1991; Kumar et al., 1998). In
both cases the approximation quality may be limited
due to coordinates which are not appropriately reveal-
ing the time-scale separation of the fast and slow vari-
ables. Therefore, coordinate-free perturbation methods
are attractive which do not rely on coordinate transfor-
mation but still come up systematically with satisfactory
reduced models of type (57);(58).

There are various coordinate-free model reduction
methods which not only result in reasonable approxi-
mate models but which go beyond the accuracy of the
QSSA.

A �rst coordinate free method is for example reported
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by Genyuan and Rabitz (1996). They improve on the
QSSA by expanding the fast variables in the regular per-

tubation series ~xf = ~x
(0)
f + �~x

(1)
f + �2~x

(2)
f + : : : where the

functions ~x
(k)
f only depend on ~xs. The equations deter-

mining these functions follow from a regular perturba-
tion method. The method is computationally attractive
in those cases, where the fast equations are linear in the
fast states.

A series of methods has been based on a geometrical
interpretation of the global nonlinear system dynamics.
In fact, they approximate the trajectories of the original
system by trajectories on an attractive invariant mani-
fold M. A manifold M is invariant with respect to the
vector �eld f in eq. (52) if f is tangent to M. It is
(locally) attractive, if any trajectory (starting close to
M) tends to M as t ! 1. Model reduction means re-
striction of the system dynamics to this manifold. The
key problem is to (at least approximately) obtain a set
of equations de�ning M.

Duchene and Rouchon (1996) present a solution to this
problem. Their reduced model can be written as

_~xs = C(~xs;�) gs(~xs;�) ; (60)

0 = gs(~xs;�) ; (61)

employing the auxiliary variables � provided the decom-
position of the space into a fast and a slow subspace
can be determined beforehand (for example from physi-
cal considerations or with the method of Robertson and
Cameron (1997a,b). Duchene and Rouchon provide an
explicit formula for the symbolic computation of the ma-
trix C which comprises derivatives of the vector �elds gs
and gf with respect to the slow and fast variables. An
explicit expression is also provided to determine approx-
imations to the fast states as a function of ~xs and � if
they are of interest. As with all the perturbation tech-
niques, model reduction is most e�ective if the auxiliary
variables can be eliminated symbolically in the di�eren-
tial equations. Otherwise, slaving technique may be used
additionally.

Duchene and Rouchon (1996) state that their method
is completely equivalent to a method reported earlier by
Maas and Pope (1992) if the system truly admits two
time-scales. The method of Maas and Pope is also based
on the idea of computing the manifold M. However, in-
stead of deriving a system of equations for approximation
of the dynamics on M as Duchene and Rouchon (1996),
their algorithm only determines a series of points to ap-
proximate M itself. These data points have to satisfy a
set of nf constraints. Rhodes et al. (1999) have suggested
just recently to use this data and employ black-box iden-
ti�cation to relate the fast states xf to the slow states
xs by some explicit nonlinear function

xf = �(xs) : (62)

This way a reduced order model of dimension ns can be
obtained without the need of deriving a singularly per-
turbed system in standard form and regardless whether
the fast subsystem can be solved explicitly. Note that
this technique is completely equivalent to the idea of slav-
ing as employed in the context of POD (e.g. Aling et al.,
1997; Shvartsman and Kevrekidis, 1998). Instead of the
Maas and Pope algorithm, the computational method
reported by Davis and Skodje (1999) could be used to
generate data points of an approximation to M which is
then used to build the correlation (62) as suggested by
Rhodes et al. (1999).

Obviously, this technique can be applied to any other
singular perturbation or projection method. The alge-
braic equation (58) of the QSSA or (61) can be sampled
for given values of xs. This data set can then be used to
determine an expression (62) which can be used to elim-
inate the fast states xf in (58) or the auxiliary variables
� in (60).

It should be noted that all the methods discussed in
this section require the partitioning of the original state
vector x into fast and slow variables xf and xs. The
method reported by Robertson and Cameron (1997b) {
though cumbersome { seems to be most suitable for this
purpose.

Remarks on distributed parameter systems

So far, distributed parameter systems have been repre-
sented by a model of type (8) employing either averag-
ing over a spatial domain as part of the modeling proce-
dure or by discretizing the spatial coordinates of a partial
di�erential equation (PDE) model. Hence, the in�nite-
dimensional model has been �rst reduced to some poten-
tially high order model (8) which then may be subject
to model order reduction as reviewed above. Alterna-
tively, order reduction could directly be applied to the
in�nite-dimensional PDE model to avoid often heuristic
�nite-dimensional approximate modeling. There is a lot
of literature dealing with this problem which would jus-
tify a review in its own. Only a few references are given
here as a starting point for the interested reader.

The rigorous model reduction approaches for nonlin-
ear PDE models include Galerkin projection involving
empirical (e.g. Holmes et al., 1996) or modal eigenfunc-
tions (e.g. Armaou and Christo�des, 2000) as well as
weighted residuals methods of various kinds (e.g. Villad-
sen and Michelsen, 1978; Cho and Joseph, 1983; Stewart
et al., 1985; Tali-Maamar et al., 1994). Better prediction
quality can usually be obtained if the truncated contri-
butions in the series expansion are captured by the ap-
proximate inertial manifold (e.g. Christo�des and Daou-
tidis, 1997; Shvartsman and Kevrekidis, 1998; Armaou
and Christo�des, 2000). These techniques are closely
related to projection and proper orthogonal decompo-
sition as discussed above. Singular perturbation tech-
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niques have also been applied directly to PDE models.
For example, Dochain and Bouaziz (1994) propose a low
order model for the exit concentrations of a 
ow biore-
actor.

Extremely compact low order models can be derived
for those distributed parameter systems which show wave
propagation characteristics such as separation and reac-
tion processes (Marquardt, 1990). The major state vari-
ables comprise the spatial position of the wave front and
some properties of the shape of the wave. This con-
cept has been applied most notably to �xed-bed reac-
tors (e.g. Gilles and Epple, 1981; Epple, 1986; Doyle III
et al., 1996) as well as to binary or multi-component as
well as reactive distillation columns (e.g. Gilles et al.,
1980; Marquardt and Gilles, 1990; Hwang, 1991; Han
and Park, 1993; Balasubramhanya and Doyle III, 2000;
Kienle, 2000).

The results available indicate that reduction tech-
niques for PDE models should be seriously considered
at least in the sense of a �rst model reduction step in
particular in a plant-wide model reduction problem to
derive an approximate lumped parameter model of type
(8) for some of the process units.

Discussion

The review in this section shows a large variety of non-
linear model reduction techniques stemming from di�er-
ent scienti�c areas. This is largely due to the lack of a
unifying theory which could be used to guide the model
reduction process. Truly nonlinear approaches with a
sound theoretical basis are those singular perturbation
techniques, which rely on some approximation of the at-
tractive invariant manifold of the dynamical system (e.g.
Duchene and Rouchon, 1996; Rhodes et al., 1999; Davis
and Skodje, 1999) and nonlinear balancing techniques
(Scherpen, 1993, 1996). As always in nonlinear theory,
the computations are tedious or even infeasible { in par-
ticular if large-scale problems have to be tackled. An in-
teresting alternative are those projection methods which
incorporate the nonlinearity of the system in the reduc-
tion procedure at least to some extent (e.g. Pallaske,
1987; Hahn and Edgar, 1999, 2000). Some theoretical
justi�cation is available from their close relation to a
more general nonlinear theory. POD has gained signi�-
cant interest in recent years in particular for very large-
scale processes which often occur as a result of discretiz-
ing distributed parameter systems despite their lack of
theoretical foundation.

At this point, there is neither evidence whether any
of the nonlinear model reduction techniques could qual-
ify as a generic method which gives good results for any
process system, nor are there guidelines available which
of them to prefer for a particular class of process sys-
tems. A selection of results for type (8) models are pre-
sented in Table 1. The reductions presented are those

suggested by the authors to give satisfactory results. A
quantitative comparison is almost impossible and should
not be attempted. Obviously, signi�cant order reduction
has only been achieved for those processes which have
a distributed nature (i.e. the distillation column, �xed
bed reactor, pulp digester and rapid thermal processing
cases in Table 1). In these cases, model reduction based
on nonlinear wave propagation can lead to even higher
levels of reduction. However, in all reported studies, the
complexity of the reduced order model equations is sig-
ni�cantly higher than that of the original model. For
projection and POD methods, this is due to the linear
combination of all the right hand sides of the original
model in any equation of the reduced order model (cf.
eqs. (27), (43)). Despite this increase in complexity,
signi�cant reductions in computational time have been
observed in dynamic simulation in most cases summa-
rized in Table 1. Plant wide models have not yet been
considered. Also, the computational complexity as well
as the model quality under closed loop conditions and in
particular in optimization based controllers has not yet
been studied in the context nonlinear model reduction.

More theoretical analysis with an emphasis on closed-
loop properties and a reduction of the computational
load in dynamic optimisation as well as comparative
studies on realistic large-scale problems are required to
build up more experience which could guide the model
order reduction process in a concrete context. Order
reduction must be considered to be complemented by
model simpli�cation which is introduced in the following
section.

Model Simpli�cation

Model simpli�cation is a special type of model reduc-
tion where the order of the model is preserved but the
complexity of the functional expressions in the model
equations is reduced. Since the computational e�ort is
to a large extent determined by the function evaluation
of the model equations, such methods are at least as im-
portant as model order reduction techniques. We will
brie
y present promising approaches which are applica-
ble in general and two exemplary areas speci�c to chem-
ical process systems models.

Linearization

The classical approach to the simpli�cation of nonlin-
ear models for control is a linearization at some nominal
operating point. In particular, in a model predictive con-
trol framework, the computational complexity can be re-
duced drastically and the reliability and robustness of the
optimization algorithms can be improved signi�cantly,
since a (convex) quadratic program has to be solved on-
line instead of a (nonconvex) nonlinear program.

However, since the control system is required to op-
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authors system original reduced
L�o�er, Marquardt, 1991 �xed-bed reactor 80 DAE 6 DAE
Tatrai et al., 1994 FCC unit 20 ODE 15 ODE
Lohmann, 1994 vehicle suspension 10 ODE 7 ODE
Wisnewski, Doyle, 1996 continuous pulp digester 210 ODE 17 ODE
Robertson et al, 1997a evaporator 15 ODE, 30 AE 8 ODE, 34 AE
Robertson et al., 1997b compressor 51 ODE, 70 AE 20 ODE, 91 AE
Kumar et al., 1998 CSTR 5 ODE 3 ODE
Banerjee et al., 1998 rapid thermal processing 5060 ODE 10 ODE
Hahn, Edgar, 1999 distillation column 32 ODE 3 ODE
Kordt, 1999 aircraft 29 ODE 10 ODE
Hahn, Edgar, 2000 CSTR 6 ODE 4 ODE

Table 1: Selected results of nonlinear model reduction.

erate in a large operational envelope with satisfactory
performance, a linear model resulting from mere Jaco-
bian linearization of the fundamental model at a nom-
inal operating point will not suÆce to adequately pre-
dict process dynamics. Instead, feedback linearization
(Isidori, 1989) of the nonlinear fundamental model can
be applied to produce a linear system with a set of state
dependent constraints (Nevisti�c and Morari, 1995; Kurtz
and Henson, 1997, 1998). An algorithm close to linear
model predictive control can then be applied to handle
the constraints. Though conceptually attractive, these
techniques are limited to feedback linearizable (small-
scale) processes (Morari and Lee, 1999). Therefore, they
are not expected to get signi�cant attention for optimiza-
tion based control of industrial processes.

Instead of feedback linearization, Jacobian lineariza-
tion at di�erent reference points along a transient tra-
jectory can be envisioned. Many variants of this model-
ing approach have been reported in the recent literature
(e.g. Garc��a, 1984; Gattu and Za�riou, 1992; Lee and
Ricker, 1994) to limit the complexity of the optimization
in nonlinear model predictive control. Most of the re-
ported studies have been limited to low order models. If
large-scale systems are considered, linear model reduc-
tion (e.g. Litz, 1979; Moore, 1981; Eitelberg, 1982; Bon-
vin and Mellichamp, 1982; Glover, 1984; Samar et al.,
1995; Muscato, 2000) can be applied to reduce the com-
putational load in a predictive control strategy. Wis-
newski and Doyle III (1996b) and Doyle III and Wis-
newski (2000) use such a strategy. They keep the re-
duced nonlinear model constant to avoid the computa-
tional burden of on-line linear model reduction along the
trajectory.

An alternative to successive linearization along the tra-
jectory are interpolated piecewise linear models which
are valid only locally in a certain region of the opera-
tional envelope. Di�erent realizations of this idea have
been reported for example by Banerjee et al. (1997), Jo-
hansen and Foss (1997), Chikkula et al. (1998), Banerjee

and Arkun (1998), Lakshmanan and Arkun (1999), Foss
et al. (2000), or Dharaskar and Gupta (2000). Though
these authors largely aim at experimental identi�cation
to develop the local linear models, they could also be
constructed by linearization of the fundamental model
at a number of reference points followed by subsequent
linear model reduction. The local models are then glued
together by some interpolation strategy to provide an ag-
gregated model valid in the whole operational envelope.
At a �rst glance, these approaches seem to be more favor-
able than successive linearization and subsequent on-line
model reduction, since model building can be done o�-
line. This is, however, not completely true, since the pa-
rameters of the fundamental model have to be adjusted
on-line as part of the optimizing control system to reduce
plant-model mismatch. Therefore, a tailored approach is
required to adapt the piecewise linear model on-line to
plant data or to the updated fundamental model.

Nonlinear approximation of functional
expressions

Often, the model equations contain quite complicated
nonlinear expressions which result from detailed fun-
damental modeling and/or from subsequent nonlinear
model reduction. In many cases, the right hand sides
of the di�erential-algebraic models are formed by some
nonlinear function, which comprises a number of addi-
tive, mostly nonlinear terms according to

�(x;u) =

ntX
j=1

�j�j(x;u) : (63)

Here, � and �j are scalar functions, �j are constant
weights and x and u are vectors of given states and in-
puts which vary with time. Functions of this type arise,
for example, in reaction kinetic models, or inevitably in
reduced order models if derived by projection (cf. eqs.
(31), (43)). In these cases, the right hand sides of the
model are always linear combinations of nonlinear func-
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tions, which either comprise the right hand sides of the
original model in case of a reduced order model (cf. eq.
(31)) or the reaction rates of elementary reactions in a
reaction kinetic model.

We are interested in systematic methods which replace
the probably complex functional expression of � by a
simpler functional expression ~� which approximates �

up to a user speci�ed tolerance for a set of trajectories
denoted by G. Obviously, the problem can be generalized
by replacing the linear combination in (63) by a general
nonlinear expression, which would lead to the problem
of approximating a general function �(x;u;�) by some
simpler function ~�(x;u; ~�).

At a �rst glance, this seems to be a classical problem of
multi-variate nonlinear approximation, for which many
solution techniques should be readily available. How-
ever, the problem is quite complicated due to the prob-
ably large number of independent variables occurring as
arguments of �j and due to the fact that the approxi-
mation should cover a set of trajectories G. Further, we
have a combinatorial component in the problem because
there is no preferred candidate functional structure for
~� a priori.

Desrochers and Al-Jaar (1985) have studied a closely
related problem in a discrete-time setting. Their prob-
lem formulation can be met, if the trajectories in G are
combined to one composite trajectory (by putting them
in a sequence in time). The composite trajectory is
then sampled on some time grid to result in a sequence
fxk;uk; �kg; k = 1 : : :K. Their approximation prob-
lem can be reformulated as the mixed-integer nonlinear
programming problem (MINLP)

min
y;~�

KX
k=1

e2k +wTy (64)

s.t. ek = �k � ~�k

:= �k �
ntX
j=1

yj ~�j�j(xk;uk) ;

0 <

ntX
j=1

yj < nt ; y 2 f0; 1gnt :

This problem can be solved (after an appropriate refor-
mulation to replace the disjunctions by a more favorable
constraint set) by any MINLP method (at high compu-
tational expense). However, an elegant tailored solution
technique has been reported by Desrochers and Al-Jaar
(1985). Their method completely decouples the combi-
natorial part of the problem from the parameter identi-
�cation problem. They �rst identify the most promising
combination of functions �j in the simpli�ed model on
the basis of the residual error and then solve a single pa-
rameter estimation problem for the most favorable model

structure. The penality term in the objective can be cho-
sen to account for those terms (and variables) which are
preferably eliminated to directly in
uence the sparsity
pattern of a model equation. It should be noted that {
at least in some cases { some variables (and hence equa-
tions) may be eliminated simultaneously, if they only
occur in the discarded functions �j .

A related technique to model simpli�cation, speci�-
cally tailored to rapid thermal processing, a microelec-
tronics manufacturing process, has been reported by Al-
ing et al. (1997). Their objective is to further simplify
a nonlinear model stemming from proper orthogonal de-
composition.

Obviously, there is no need to rely on expressions �j
which are already present in � to form the approximation
~�. Rather, any functional structure could be postulated
for ~�. For example, Duchene and Rouchon (1996) sug-
gest to consider multivariate interpolation and approxi-
mation techniques. However, such an approach seems to
be impractical if the number of arguments of � is large.

A more promising approach could be built on methods
developed for nonlinear empirical modeling. For exam-
ple McKay et al. (1997) and Marenbach et al. (1997)
present a method for the identi�cation of the structure
and the parameters of nonlinear models for steady-state
and dynamic processes, respectively. In their approach,
process models are postulated to consist of a given set
of elementary functional building blocks �i(x;u; ~�). In
contrast to eq. (63), these functions depend nonlinearly
on unknown parameters ~�. They are combined in a non-
linear fashion to form the approximation ~�. Genetic pro-
gramming is applied to select the best combination and
to determine appropriate parameters to get the best �t
of measurements. Obviously, this formulation general-
izes problem (64) at the expense of a signi�cantly higher
computational complexity.

The principle advantage of this kind of methods lies
in the ability to use knowledge on favorable functional
forms available from fundamental modeling in de�ning a
set of candidate building blocks. Alternatively, one could
employ truly black-box nonlinear identi�cation methods
such as neural networks. For example, Shvartsman et al.
(2000) report on simpli�cation of a reduced order model
of a distributed reaction system derived by proper or-
thogonal decomposition.

Simpli�cation of chemical kinetics models

Large-scale chemical kinetics models arise in many appli-
cations. Model complexity stems from the large number
of reactions and components. For the simpli�cation of
reaction mechanisms we assume a reaction network with
nr reactions and ns species. The complexity of the reac-
tion kinetics model can be reduced by eliminating both,
reactions and species from the reaction network. Elimi-
nation of reactions corresponds to model simpli�cation,
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whereas elimination of species is a special case of order
reduction. Here, we focus therefore on the �rst problem.

Sensitivity analysis is the most classical approach to
assess the importance of individual reactions on the evo-
lution of the concentration of all species (e.g. Seigneur
et al., 1982; Brown et al., 1997, and the references cited
therein). These methods determine the e�ect of a pertur-
bation in a kinetic rate constant on the concentrations at
some point in time or on average during the course of the
reaction. Those reactions with rate constants resulting
in a large sensitivity of the concentrations are considered
important and should be retained in the reaction kinetics
model, whereas those reactions leading to small sensitiv-
ity can be eliminated without sacri�cing prediction accu-
racy. Sensitivity methods have been successfully applied
to a variety of large-scale reaction mechanisms. How-
ever, sensitivity analysis may lead to wrong results as
illustrated by means of a simple example by Petzold and
Zhu (1999). Therefore, optimization based techniques
have been suggested more recently by Edwards et al.
(1998), Petzold and Zhu (1999), Edwards and Edgar
(2000), Edwards et al. (2000), and Androulakis (2000)
for a reduction of the number of reactions in a network.
The problem formulations presented by these authors
are variants of the MINLP in the previous section and
aim at facilitating the numerical solution for large-scale
problems. However, the parameters �i in (64) are the
stoichiometric coeÆcients of the reaction model and are
(usually) not considered as degrees of freedom in model
simpli�cation.

Simpli�cation of physical property models

A classical example of reducing the computational com-
plexity of a process model is related to the simpli�ca-
tion of physical property models. The development of
local thermodynamic models dates back into the seven-
ties. This research has been initiated by the observation
of the large fraction of computational time spent with
physical property calculations in steady-state 
owsheet-
ing (Grens, 1983). The calculation of K-values in phase
equilibrium models

yi = Ki(x;y; p; T )xi ; i = 1 : : : nc ; (65)

for ideal as well as strongly nonideal mixture has got
particular attention due the high complexity of the mod-
els. Here, x;y; p and T are the liquid and vapor con-
centrations as well as pressure and temperature under
equilibrium conditions. A local model is intended to ap-
proximate the K-values as well as their derivatives with
a functional expression of strongly reduced complexity.
The structure of the local models is derived on physi-
cal arguments. For example, Leesley and Heyen (1977)
neglect concentration dependencies and suggest a modi-
�cation of Raoult's law, whereas Chimowitz and cowork-
ers (Chimowitz et al., 1983; Chimowitz and Lee, 1985),

Hager (1992) and Ledent and Heyen (1994) consider con-
centration dependencies by modi�ed Porter or Margules
models. Hager's equation, for example, is

ln(Kip) = Ai;1 +
Ai;2

T
+ (Bi;1 +

Bi;2

T
)(1� xi)

2

+Bi;3(1� xi)
2(1 + 2xi) : (66)

The local models are only valid in a limited region of the
operating envelope. Hence, at least some of the model
parameters (Bi;1; Bi;2; Bi;3 in the example given) must
be updated along a trajectory in order to retain suÆ-
cient approximation accuracy. The parameter update
can be triggered by the simulation or optimization al-
gorithm or by an estimate of the error between the ap-
proximate local and the original models. Model param-
eters are obtained from some least-squares �t of data
obtained from the original model. Various variants of
updating schemes have been reported by Leesley and
Heyen (1977), Macchietto (1986), Hillestad et al. (1989)
and by Storen and Hertzberg (1997). Obviously, param-
eter updates result in model discontinuities. If not prop-
erly handled, these discontinuities will make simulation
and optimization algorithms fail or converge to wrong
solutions (Barton et al., 1998). Hence, explicit disconti-
nuity handling or discontinuity smoothing is a necessity
with these models. For the latter approach, interpolation
strategies employed in linear multiple models (e.g. Foss
et al., 2000; Johansen and Foss, 1997)) could be adopted
here.

Signi�cant savings in computational time have been
reported for steady-state simulation and optimization
(Chimowitz et al., 1984; Perregaard, 1993), dynamic
simulation (Macchietto, 1986; Hager, 1992; Perregaard,
1993; Ledent and Heyen, 1994) and dynamic optimiza-
tion (Storen and Hertzberg, 1997) if local thermody-
namic models are applied.

Discussion

Nonlinear model simpli�cation has not yet got signi�cant
attention in the systems and control literature. It is par-
ticularly suited to simplify reduced order models arising
from projection methods with the objective to regain at
least to some extent sparsity in the reduced model Jaco-
bian. There has been signi�cant activity in the context
of chemical kinetics and physical property models. The
variety of techniques tailored to these special problems
deserve careful analysis in order to assess the potential
of applying the speci�c concept after generalization to
other model simpli�cation problems.

For example, sensitivity analysis as worked out in
chemical kinetics, is applicable in principle to the simpli-
�cation of any parametric model (cf. the derivation by
Seigneur et al., 1982) but { to the author's knowledge
{ it has not been explored for general model simpli�ca-
tion problems. This is also true for optimization based
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methods given the close correspondence between reac-
tion model and general model simpli�cation.

On the other hand, the success of local physical prop-
erty models suggests to consider similar strategies in a
more general setting. The simpli�ed model should be
based on a fundamental principle rather than on some
arbitrary empirical ansatz. In many cases, the simple
models are only of suÆcient accuracy in a limited region
of the operating envelope. Then, adaptive updating of
the parameters of a simple model structure using data
from a rigorous model can be considered as an interest-
ing alternative to globally valid simpli�ed models. Ob-
viously, a compromise needs to be established between
model complexity and range of model validity. For exam-
ple, a globally valid but complex neural network model
(e.g. Kan and Lee (1996) for a liquid-liquid equilibrium
model or Molga and Cherba�nski (1999) for a liquid-liquid
reaction model) can be used instead of a simpler (local)
model with a limited region of validity which requires
parameter updating along the trajectory.

There is an obvious relation between model simpli�-
cation and hybrid models as discussed above. Hybrid
models are motivated by a lack of knowledge on the
mechanistic details of some physico-chemical phenom-
ena. A nonlinear regression model such as a neural net-
work is used instead of a fundamental model to pre-
dict some process quantity (such as a reaction rate, a
mass transfer rate or phase equilibrium concentrations).
Model simpli�cation on the other hand aims at reducing
the complexity of a given fundamental model. Hence,
hybrid modeling in the sense of Psichogios and Ungar
(1992) can be readily applied to model simpli�cation.
The (typically algebraic) mechanistic model, which { for
example { determines a 
ux (e.g. a reaction rate, see
Molga and Cherba�nski, 1999), or a separation product

ow rate, (see Safavi et al., 1999), a kinetic coeÆcient
(e.g. a 
otation rate constant, see Gupta et al., 1999),
some state function (e.g. a holdup in a two-phase sys-
tem, see Gupta et al., 1999) is replaced by some nonlin-
ear regression model (such as a neural network). This
regression model is typically explicit in the quantity of
interest and hence can be evaluated extremely eÆciently.
Note, that these models can be designed for a large or
a small region of validity. In the latter case, parameter
updating (using the rigorous model to produce the data
required) is required along the trajectory.

Model application

We assume that a detailed dynamic model is available
for example from the process design activities. This
model can be simpli�ed or reduced by physical insight,
by one of the techniques discussed above, or by a com-
bination thereof to meet the requirement of the vari-
ous model-based tasks in integrated dynamic optimisa-

tion and control system following a direct or some de-
composition approach. This section summarizes some
thoughts about the type of reduced and/or simpli�ed
models which might be used most appropriately in a cer-
tain context.

Direct approach

We can make use of any model and apply an optimizing
predictive control and a suitable reconciliation scheme
to realize dynamic real-time optimization by the direct
approach. Instead of following a reference trajectory set
by some upper decision layer in the control hierarchy, an
economical objective is maximized on-line on the reced-
ing control horizon to compute the control moves. The
computational complexity of the reconciliation and con-
trol problems must, however, be quite low, since both
tasks have to be executed roughly with the sampling fre-
quency of the available measurements. Hence, any of
the model order reduction and simpli�cation techniques
or combinations thereof should be employed to come up
with a model of manageable computational complexity
under real-time conditions.

Since there exists a huge number of possibilities for re-
ducing a given detailed model of a realistic industrial pro-
cess, constructive guidelines for designing such models
for both, the reconciliation and the control task, would
be extremely helpful. Such guidelines do not seem to
be available yet. However, hybrid regression or trend
models as well as local linearization along a trajectory
or in di�erent areas of the operating envelope seem to
be attractive candidates provided the prediction horizon
is chosen to re
ect the prediction quality of the model.
The bene�t of model order reduction cannot yet be as-
sessed due to a lack of practical experience with chal-
lenging plant-wide optimisation based control problems.
For large-scale systems, a structured approach to order
reduction exploiting the natural spatial decomposition
of a plant together with an appropriate model simpli�-
cation procedure as outlined above seems to be crucial
for a successful application. Such a structured approach
could also be combined with the horizontal decomposi-
tion approach introduced before.

Vertical decomposition approach

In contrast to the direct approach, two di�erent mod-
els of the same process are required to implement both,
the dynamic optimizer (DO) and the model predictive
controller (MPC) together with their respective estima-
tors on both levels (cf. Fig. 3). Ideally, these models
should be derived from a detailed master model to guar-
antee consistency. The requirements on the models are
di�erent in both cases:

(a) Computational constraints: DO is executed with a
much lower frequency (say in the order of once ev-
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ery one or two hours) whereas MPC is executed with
a higher frequency (say in the order of once every
couple of minutes). Hence, a higher computational
complexity can be tolerated for DO as compared
to MPC. Obviously, higher frequencies would facil-
itate better performance in case a suÆciently valid
model would be available. Therefore, the complex-
ity of the model should be minimal in both cases,
though larger for DO than for MPC, provided the
requirements on prediction accuracy are still satis-
�ed.

(b) Prediction accuracy: DO should be able to predict
economical performance as well as state and out-
put trajectories with suÆcient accuracy over the full
operating region. Hence, a fairly detailed model in-
corporating the major process nonlinearities is re-
quired. In contrast, the model implemented in
the MPC must predict the setpoint deviation, the
outputs and possibly the potentially constrained
states in the vicinity of the reference trajectory only.
Therefore, a simpler model with a much smaller re-
gion of validity can be chosen in this case. Even
a linear model, updated along the trajectory, may
qualify in this case.

(c) Frequency range: Due to the di�erent execution fre-
quencies and the di�erent tasks of both levels, the
models have to cover the low and high frequency be-
haviors of the plant for DO and MPC, respectively.
Hence, a model with an appropriate prediction qual-
ity on a fast time-scale is required for MPC whereas
a model a slow time-scale is needed for DO.

Model order reduction by projection, by equation
residual minimization or by proper orthogonal decom-
position in conjunction with model simpli�cation can be
employed for implementation of DO as well as of MPC.
Di�erent degrees of reduction should be employed for DO
and MPC, however, to account for the speci�c require-
ments on prediction errors and computational complex-
ity. A mildly reduced model can be used for DO, whereas
a strongly reduced model must be used for MPC to
meet the computational complexity constraints. While
requirements (a) and (b) could be met by this choice,
requirement (c) is de�nitely in con
ict. Though not ex-
plicitly incorporated in the model reduction techniques,
a mildly reduced model will cover faster time-scales while
a strongly reduced model will cover slow time-scales
only. This conclusion is based on an interpretation of
the strategy employed during model reduction. For ex-
ample, the integral average of the projection error in
Pallaske's method is reduced by a quanti�able amount,
if the dimension of the reduced model is increased (Pal-
laske, 1987; L�o�er and Marquardt, 1991). The larger

the dimension of the reduced model, the shorter are the
time-scales incorporated.

Provided the model used for DO is updated regularly
and thus provides updated reference trajectories to the
MPC which re
ect process economics and comply with
constraints the requirements on the model used in the
MPC are quite relaxed. In particular, a linearization of
some kind (along the reference trajectory for example)
together with linear model reduction could be fully suf-
�cient to achieve adequate overall performance. A rel-
atively simple approach for the implementation of DO
are the Wiener/Hammerstein hybrid models which build
on an available steady-state fundamental (optmization)
model. A key issue is in all cases the integration of the
model update during reconciliation on the DO and MPC
levels.

Some time-scale separation can be achieved by a
proper choice of the models used on the DO and MPC
levels. However, there is no theoretical basis for keep-
ing the models on both levels consistent to each other.
This problem is well-known even in state of the art
(steady-state) real-time optimisation and control where
serious performance detoriation has been observed in
some cases. If time-scale separation is envisioned, singu-
lar perturbation methods might be more favorable. They
explicitly address this issue by construction to yield two
(or even multiple) dynamic models valid on certain time-
scales. Though it may be doubted whether exact nonlin-
ear techniques (Marino and Kokotovic, 1988; Krishnan
and McClamroch, 1994; Kumar et al., 1998) are widely
applicable to construct a singularly perturbed system in
standard form, the approximate projection methods of
Pallaske (1987) or Lall et al. (1999) employing linear
transformations should be applicable to separate even
large-scale model into a fast (non-dominant) and a slow
(dominant) submodel. If the fast and slow subsystems
are envisioned to be used for implementation of DO and
MPC on a slow and a fast time-scale, the coupling be-
tween both subsystems may lead to serious interaction
which could deterioriate control system performance or
even stability.

There are cases (e.g. Stiharu-Alexe and O'Shea, 1995;
Kumar and Daoutidis, 2000) where not only the state
but also the control and output variables are partitioned
in the slow and fast subsystems by singular perturbation.
In those cases, a completely partitioned DO and MPC
level can be implemented (Stiharu-Alexe and O'Shea,
1995), where the control variables of the fast and the slow
subsystems are manipulated by MPC and DO completely
independently employing the fast and slow output with
high and low sampling rates respectively. A consistent
time-scale separation can be achieved in this case.

It is still a largely open question, when and how singu-
lar perturbation techniques can be applied to partition
a model into a fast and a slow submodel to be used in a
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consistent manner on the DO and MPC levels in time-
scale decomposition.

Alternatively, one may employ multi-resolution meth-
ods (Binder et al., 1998) to develop models on di�erent
time-scales which could be used in DO and MPC, respec-
tively. The basic idea is brie
y discussed next using a
scalar system (8) for the sake of a simpler notation. The
continuous model is projected onto a sparse multi-scale
subspace by a Wavelet-Galerkin method. The state and
control vectors x and u are expanded in a series accord-
ing to

x = dT  (t) = dTs  s(t) + dTf  f (t) ; (67)

u = eT  (t) = eTs  s(t) + eTf  f (t) ; (68)

where  denotes the vector of multi-scale basis func-
tions and the vectors d and e contain the expansion co-
eÆcients for the state and control variable, respectively.
The expansion can be divided into a leading sum re-
ferring to the low frequency content (coeÆcients ds; es
and basis functions  s(t)) and into a residual sum which
covers the high frequency content (coeÆcients df ; ef and
basis functions  f (t)).

A discretized model of the slow system is obtained as


s(d
s
s; es) = 0 (69)

after Galerkin projection. The vector function 
s results
from the projection of the scalar model (8) with the basis
functions  s(t). It �xes the expansion coeÆcients of the
states dss as a function of those of the control variable
es to approximate the low frequency content of the state
xs = (dss)

T  s(t). A discretized model of the fast system
is obtained from a Galerkin projection with the basis
functions  s(t) and  f (t) as


f (dfs ;d
f
f ; es; ef ) = 0 (70)

which �xes the expansion coeÆcients dfs ;d
f
f of the state

variable as a function of those of the control variable,
es; ef , to appoximate the low and high frequency content
of the state

~x = ~xs + ~xf = (dfs )T s(t) + (dff )T f (t) : (71)

We would get a decoupling of the slow and the fast sub-
system, if dss and dfs , the expansion coeÆcients for the
slow contributions to the state in the slow and the fast
models, respectively, would be identical. However, due
to the wavelet properties, we only �nd

dfs = dss + Æf (72)

with typically small corrections Æf 6= 0, i.e. kÆfk =
"kdssk with " < 1.

This approach to time-scale separation may satisfy re-
quirements (b) and (c) above but it is de�nitely in con-

ict with requirement (a) since the size of the fast dis-
cretized model is much larger than that of the slow. It
is still an open issue, whether and how this problem can
be solved. In this case, this approach could be an in-
teresting alternative to implement DO and MPC and its
associated estimators on both levels.

Closed-loop model validation

Obviously, the validity of the various models has to be
assessed in the context of their application in the various
modules of the operations support system.

A comparison of the open loop behavior is possible
by a variety of means. Examples are nonlinearity mea-
sures (Helbig et al., 2000, and references cited therein),
to compare the loss of nonlinearity between two can-
didate models, step responses, or nonlinear describing
function analysis (Amrhein et al., 1993) to reveal the
frequency content of a nonlinear model. One might ar-
gue, that measures of uncertainty could be derived at
least in principle by comparison of the reduced and the
original model to be used later during estimation and
control design. In fact, Andersson et al. (1999) provide
a very interesting result on the comparison and also the
simpli�cation of two uncertain models. These authors
de�ne a simpli�cation error in terms of the L2�induced
gain. They further show that this error can be computed
by convex optimisation for linear uncertain systems and
for a certain (broad) class of nonlinear uncertain systems
with isolated static nonlinearities. The method can be
applied to open-loop as well as closed-loop systems. In
the linear case, their result generalizes truncation and
singular perturbation. Their result is a good basis for
comparing and simplifying large-scale nonlinear process
models.

Open-loop tests are not suÆcient to test the validity
of candidate (reduced) models under closed-loop con-
trol conditions. A key question is to relate any sim-
pli�cation of the model to the unavoidable loss of eco-
nomical performance of the feedback control system and
to guarantee closed loop stability despite the simpli�-
cations made. Stability loss and performance degrada-
tion are well-known phenomena if a controller is designed
by means of a reduced order model and applied to the
plant in a linear setting if no special design technique
is applied (see Zhou et al. (1995), Bendotti and Beck
(1999), Wortelboer et al. (1999) for recent examples).
All these problems will carry over to the nonlinear case
at least in principle. However, there is very little knowl-
edge yet about these issues for integrated dynamic opti-
misation and control as investigated in this work. Ob-
viously, the problem could be addressed from a robust
control perspective. If we assume, at least for the mo-
ment, the detailed (or nominal) model to perfectly match
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the plant, any model reduction introduces quanti�able
uncertainty. This is in contrast to mainstream research
in robust (model predictive) control, where the model
error cannot be quanti�ed precisely. The knowledge on
the uncertainty introduced by model reduction could be
employed to robustly accomodate the mismatch between
the reduced models (of the estimator and controller) and
the real plant (perfectly matched by the nominal model).

There are some starting points for future research in
the recent literature on nonlinear control. For exam-
ple, Scherpen (1993; 1996) proves the stability of reduced
models derived from truncation after nonlinear balanc-
ing. It is worth noting, that similar stability results are
not available for the more empirical methods suggested
by Pallaske (1987), Lohmann (1994), Lall et al. (1999),
or Kordt (1999) though they are based on linear trans-
formations only and should therefore be simpler to ad-
dress. The stability problem of a closed loop system with
a controller designed by means of a reduced model ob-
tained from nonlinear H1 balancing (Scherpen, 1996)
is addressed by Pavel and Fairman (1997). They gen-
eralize results on closed loop H1 balanced truncation
by Mustafa and Glover (1991) from the linear to the
nonlinear case. The authors provide �rst a criterion for
maintaining the closed loop stability if the controller is
designed by solving the nonlinear normalized H1(L2)
control problem for the reduced model and applied to
the plant. Further, the degradation of performance is
analyzed in closed loop.

For reduced models obtained from some singular per-
turbation analysis, there are not only strong results avail-
able for a number of nonlinear control system design
techniques but also for open-loop optimal control. For
example, Artstein and Gaitsgory (2000) proved just re-
cently convergence of the value function of the perturbed
system to that of the slow system for � ! 0 under
mild assumptions (such as controllability of the fast sub-
system) for general systems in standard singularly per-
turbed form. Such results could be a starting point for
the analysis under closed-loop conditions in future re-
search.

Conclusions

Optimization-based control of transient processes re-
quires nonlinear models of suÆcient predictive quality
which can be employed for the various tasks in the feed-
back control system in a real-time environment. On the
basis of a suitable formulation of the control problem
and some thoughts on its implementation, we focussed
on fundamental modeling and in particular on nonlin-
ear model reduction which comprises both, model order
reduction and model simpli�cation. A large variety of
methods with di�ering theoretical justi�cation has been
reviewed and put into perspective. Though, there has

been signi�cant progress in the last 10 years, a thorough
understanding which technique could and should advan-
tageously be used in optimization-based control and how
it should be tailored to a speci�c problem is largely lack-
ing. The situation is even worse, if a (vertical) decom-
position of the optimizing control system is envisioned
in order to extend the state of the art in (steady-state)
real-time optimization where a multi-level architecture is
typically implemented. Some of the major open research
problems are:

(a) Lumped process systems models are usually of
di�erential-algebraic type. With the exception of
the work of L�o�er and Marquardt, there are no gen-
eral model order reduction techniques for this class
of systems available.

(b) All of the nonlinear reduction techniques rely on a
representative set of trajectories. The selection of
this set is crucial for the success of the reduction.
To the author's knowledge there are no systematic
techniques yet to guide this selection. Obviously,
the set should be as close as possible to the trajec-
tories occurring in closed-loop.

(c) In contrast to linear model order reduction, only
truncation reduces the model order reduction sig-
ni�cantly. If residualization or some sort of
steady-state assumption is introduced, di�erential-
algebraic equations result which are often as diÆ-
cult to solve as the original problem. Systematic
approaches based on slaving as introduced in POD
or even nonlinear regression of the set of nonlinear
equations with a simple nonlinear map are required.

(d) Most of the model reduction techniques lead to a
reduced number or equations which are however of
a signi�cantly higher functional complexity. The
structure and the sparsity of the original model is
lost. In particular, in dynamic optimisation, ex-
ploitation of model structure is a key to a high per-
formant numerical solution. Any means of preserv-
ing structure and sparsity at least to some extent
during model order reduction is highly bene�cial.
In addition, sparsity can be reintroduced by system-
atic model simpli�cation for example by eliminating
most of the nonlinear terms in the right hand sides
of the reduced model.

(e) There has been almost no work on the system the-
oretical properties of resulting nonlinear reduced
models. Most of the reduction techniques cannot be
expected to preserve stability, observability, or con-
trollability properties. In principle, equation resid-
ual minimization (Lohmann, 1994, 1995) could be
extended by additional constraints not only pre-
serving steady-state accuracy but also stability (us-
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ing the approach of M�onnigmann and Marquardt
(2000), for formulating appropriate constraints).

(f) All process models are hybrid by nature since they
comprise fundamental and empirical parts. The ap-
propriate combination of fundamental and empiri-
cal knowledge is still an open issue even in case of
open-loop (simulation) applications. In closed-loop,
an appropriate parameterization of the uncertainty
in both model constituents as a basis for an eÆcient
reconciliation is an even more challenging problem.

(g) Excitation frequencies or the magnitude of the con-
trols and disturbances driving the process in closed-
loop are largely unknown in most cases. Ideally,
on-line adaptation of the structure and not only the
parameters of the reduced model on the basis of ac-
tual or historical process data would be most prefer-
able. Computational singular perturbation (Mas-
sias et al., 1999) or adaptive Galerkin methods (von
Watzdorf and Marquardt, 1997; Briesen and Mar-
quardt, 2000) as developed for the treatment of
multicomponent separation and reaction processes
could be a �rst starting point for the development
of a more general technique.

(h) The validity of the model under closed-loop condi-
tions is critical for the success of integrated dynamic
optimisation and control. Since there are most likely
many models interacting in the various functional
blocks of the control and optimisation system sys-
tematic means of constructing consistent models are
required to reach high performance. It is a largely
open issue how to eÆciently assess the validity of
the individual models with respect to the prediction
of states and outputs as well as gradient and sen-
sitivity information, the consistency between these
models, as well as the stability and performance of
the integrated system a priori (i.e. during the early
phases of the design phase of the control system).

Hopefully this review and this list of major research
challenges rises interest in the systems and control com-
munity to work in this fruitful and rewarding area. Ob-
viously, most of the questions are not hard core process
control problems, but they are rather at the interfaces to
related �elds which renders them more interesting and
more challenging at the same time.
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