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Abstract

In this paper we present a generalization of empirical gramians as used

for nonlinear model reduction. This approach enables us to directly

use data, generated by relevant trajectories, to compute the empiri-

cal controllability gramian. The observability gramian can be derived

along the trajectory while ensuring that the perturbed initial condi-

tions remain feasible. The feasibility of the perturbed initial condi-

tions was an issue has not been discussed in literature. The reduction

method is demonstrated on a plant with reactor and distillation unit

with a recycle and base control. The model represents dynamics of

class of real processes an is therefore more relevant than a case study

on one single unit operation.
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1 Introduction

In process industry models that are available for optimization based control

are not suitable for online applications. The dynamic optimization problem

can not be solved within an acceptable time interval. Empirical gramians

can be used to derive reduced order model by projection that can contribute

in the solution of this problem. Although these projected models in general

do not reduce the computational e�ort for numerical integration, it still can

contribute in other steps in the optimization procedure.

Empirical gramians can be computed from data generated by simulations.

Based upon these gramians we can distinguish between a relevant and an ir-

relevant subspace. By projection of the original model we can construct a

reduced order model that represents the original model in its relevant dynam-

ics. In case the data is generated by a linear model the empirical gramians

coincide with the analytical solution. For the empirical gramians for nonlin-

ear models we cannot check the result with a analytical solution since such

a solution does not exist. We will show that these generalized empirical

gramians provide suitable projections for nonlinear model reduction.

In process industry it is common to think in unit operations. Complete

plants are build by connecting unit operations. The smallest plant that is

rich enough to represents a large class of plants is a reaction unit connected

to a separation unit with a recycle stream from separation to the reaction

unit. This recycle stream is of crucial importance because the interconnected

units exhibit completely di�erent dynamics (Luyben et al., 1999) than the

separate unit operations. Since the results of nonlinear model reduction

can be very problem speci�c we need to test techniques upon models that

represent the fundamental characteristics of a real process. Base control

should be considered as part of the plant since it will always be active during

operation and e�ects the dynamics of the process. Nonlinear model reduction

techniques should therefore be tested on a plant model including base control.

In this paper we well show how to derive reduced order models suitable

to mimic the plant behaviour revealed by an optimal trajectory.

2 Nonlinear model reduction

In this paper we will focus on reduction of the number of di�erential equa-

tions. Two distinct phenomena can lead to a reduction of the number of

di�erential equations. The presence of di�erent time scales (Kokotovic et

al., 1986) can motivate a reduction by a suitable quasi steady state assump-

tion (residualization or singular perturbation). Physical insight of the process
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does not always reveal which distinct di�erential equations cause two time

scales. Tatrai et al. (1994a, 1994b) presented a state-eigenvalue association

technique to distinguish between fast and slow di�erential equations. This

technique was further explored by Robertson and Cameron (1997a, 1997b)

and demonstrated on fairly large scale models with di�erent unit operations

and recycles. Since the state-eigenvalue association was done in the physical

coordinates the sparsity of the model remains unchanged.

Weak input-output coupling is the second fundamental model motivation

for model reduction. In control theory this is formalized in the controllabil-

ity and observability properties of a model. For linear models the technique

that provides a reduced order model by truncation is balanced reduction

(Moore, 1981). The controllability and observability gramians that give rise

to the proper coordinates for model reduction can be calculated from Lya-

punov equations for stable linear models (e.g. Zhou, 1995). For nonlinear

models reduction the empirical gramians were introduced by Lall (1998) and

further explored by Hahn et al. (2000). Similar to the linear case the reduced

model is derived by transformation and truncation of the original di�erential

equations. This implies in general complete loss of sparsity of the di�erential

part of the model and explains why this approach does not necessarily reduce

computational e�ort. Scherpen (1993) presented a nonlinear extension of the

linear gramians but are not feasible for large scale models. Lee et al. (2000)

introduced a balanced projection based on subspace identi�cation.

Proper Orthogonal Decomposition (POD) also called Karhunen-Loeve

expansion or method of empirical eigenfunctions explores the weakly input

to state coupling. Berkooz et al. (1993) presented in a review paper on

POD a historical perspective of this research area. Successful applications

of POD were presented in several papers e.g. Aling et al. (1996), Shvarts-

man et al. (2000), Theodoropoulou et al. (1998) and Banks (2000).

A more complete review on nonlinear model reduction techniques was

given by Marquardt (2001).

3 Linear model reduction by projection

Since most nonlinear reduction approaches are extensions of the linear case

we will �rst present a brief summary of relevant linear model reduction tech-

niques.

Linear model reduction utilizes some transformation that provides a proper

coordinate system for the reduction step. This coordinate change can either

be based on some time scale separation or the notion of weak input-output

coupling. In the coordinate system where slow and fast dynamics can be

3



separated the appropriate reduction is achieved by residualization. In the

coordinate system where the strong and weakly coupled dynamics can be

separated reduction is achieved by truncation. In this paper we will not

consider the transformation that provides the separation in fast and slow

dynamics but we consider the separation in strong and weakly coupled dy-

namics. Weakly coupled dynamics is the part of the system that is badly

controllable and observable. Balancing the controllable and observable dy-

namics of a system distinguishes between the strongly coupled dynamics and

the weakly coupled dynamics. This enables us to �nd the dominant dynamics

for the input-output behaviour of the system.

3.1 Balancing linear systems

Balancing of linear systems has been �rst presented by Moore (1981). Let

us de�ne a stable linear time invariant system

�
_x

y

�
=

�
A B

C D

� �
x

u

�
(1)

P and Q are respectively the controllability and observability gramians of

system (1) such that

AP + PA
T +BB

T = 0 (2)

QA + A
T
Q+ C

T
C = 0 (3)

This is a balanced realization i�

P = Q = � (4)

with � diagonal and �1 � �2 � � � � � �n. If the system is not a balanced real-

ization there exists a transformation T after which the transformed system is

a balanced realization. In text books (e.g. Zhou, 1995) di�erent approaches

can be found to calculate T .

For a stable linear discrete time system

�
xk+1

yk

�
=

�
F G

C D

� �
xk

uk

�
(5)

Wc andWo are respectively the discrete time controllability and observability

gramians of system (5) such that

FWcF
T �Wc +GG

T = 0

F
T
WoF �Wo + C

T
C = 0

(6)
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or in recursive form and �nite time

W
k+1
c = FW

k
c F

T +GG
T
; W

k
c =

kX
n=0

F
n
BB

T
F

T n
(7)

W
k+1
o = F

T
W

k
o F + C

T
C; W

k
o =

kX
n=0

F
T n
C

T
CF

n (8)

Similar to the continuous time system the discrete time system is a balanced

realization i�

Wc =Wo = � (9)

with � diagonal and �1 � �2 � � � � � �n.

3.2 Reduction by truncation or residualization

In general we can reduce a linear model that is arranged in a suitable coor-

dinate system

2
4 _z1

_z2
y

3
5 =

2
4 A11 A12 B1

A21 A22 B2

C1 C2 D

3
5
2
4 z1

z2

u

3
5 (10)

by truncation: z2 = 0 () _z2 = 0)

�
_z1
y

�
=

�
A11 B1

C1 D

� �
z1

u

�
(11)

or residualization: _z2 = 0

2
4 _z1

0

y

3
5 =

2
4 A11 A12 B1

A21 A22 B2

C1 C2 D

3
5
2
4 z1

z2

u

3
5 (12)

which results in a set of linear di�erential algebraic equations from which z2
can be eliminated�

_z1
y

�
=

�
A11 � A12A

�1
22 A21 B1 � A12A

�1
22 B2

C1 � C2A
�1
22 A21 D � C2A

�1
22 B2

� �
z1

u

�
(13)

Both reductions are projections: in case of truncation a complete subspace is

projected onto zero and in case of residualization the dynamics is projected

onto a subspace. Note that truncation is a special case of residualization.

5



4 Nonlinear model reduction by projection

A large class of nonlinear models can be described by a set of explicit di�er-

ential and algebraic equations

_x = f(x; y; u)

0 = g(x; y; u)
(14)

where x, y and u are state, algebraic and input variables of suitable dimen-

sion, respectively. Nonlinear models can be reduced by projection similarly

to linear case with the same distinction between truncation and residual-

ization. In general we �rst need to transform to a new coordinate system

that is suitable for model reduction. For the nonlinear case is is favorable

to transform after subtraction of a (preferably) steady state value or some

average value

z = T (x� x0), x = x0 + T
�1
z (15)

Di�erentiation z and substitution of the original di�erential and algebraic

equations yields

_z = Tf(x0 + T
�1
z; y; u)

0 = g(x0 + T
�1
z; y; u)

(16)

We now can distinguish two complementary subspaces for model reduction

(note the abuse of notation of T�11 and T�12 )�
z1

z2

�
=

�
T1

T2

�
(x� x0), x = x0 +

�
T
�1
1 T

�1
2

� � z1

z2

�
(17)

Similar to the linear case we now can reduce the model by truncation (z2 = 0)

_z1 = T1f(x0 + T
�1
1 z1; y; u)

0 = g(x0 + T
�1
1 z1; u; u)

(18)

Like in the linear case truncation reduces the total number of equations by

a reduction of di�erential equations. Residualization of a nonlinear model

yields ( _z2 = 0)

_z1 = T1f(x0 + T
�1
z; y; u)

0 = T2f(x0 + T
�1
z; y; u)

0 = g(x0 + T
�1
z; u; u)

(19)

Note that in general z2 can not be eliminated as in the linear case. Therefore

residualization of a nonlinear model only reduces the number of di�erential

equations but does not reduce the total number of equations.
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5 Empirical Gramians

In the linear case the controllability and observability are calculated by solv-

ing two Lyapunov equations. For nonlinear models these Lyapunov equa-

tions are not de�ned but we can derive empirical gramians introduced by

Lall (1999, 2002). For linear models these empirical gramians coincide with

the analytical solutions of the Lyapunov equations (3) or discrete time Lya-

punov equations (6). The following sets need to be de�ned for empirical

input gramian:

T
n = fT1; : : : ; Tr j Tl 2 R

n�n
; TlT

T
l = I; l = 1; : : : ; rg (20)

M = fc1; : : : ; cs j cm 2 R
+
; m = 1; : : : ; sg (21)

E
n = fe1; : : : ; en j standard unit vectors in Rng (22)

where r is the number of di�erent perturbation orientations, s is the number

of di�erent perturbation magnitudes and n is the number of inputs of the

system for the controllability gramian and the number of states of the full

order system for the observability gramian. The empirical controllability and

observability gramian as de�ned by Lall:

Empirical controllability gramian. Let T p, M and E
p be given as

described above, where p is the number of inputs of the system. The empirical

controllability gramian for system (1) is de�ned by

P =

rX
l=1

sX
m=1

pX
i=1

1

rsc2m

Z
1

0

�ilm(t)dt (23)

where �ilm(t) 2 Rn�n is given by

�ilm(t) := (xilm(t)� xss)(x
ilm(t)� xss)

T (24)

and xilm(t) is the state of the system corresponding to the impulsive response

u(t) = cmTleiÆ(t) + uss with initial condition x0 = xss.

Empirical observability gramian. Let T n, M and E
n be given as

described above, where n is the number of states of the original system. The

empirical observability gramian for system (1) is de�ned by

Q =

rX
l=1

sX
m=1

1

rsc2m

Z
1

0

Tl	
lm(t)T T

l dt (25)

where 	lm(t) 2 Rn�n is given by

�ilm
ij (t) := (yilm(t)� yss)

T (yjlm(t)� yss) (26)
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and yilm(t) is the output of the system corresponding to the initial condition

x0 = cmTlei + xss and input u(t) = uss.

Discrete time empirical controllability gramian. Let T p,M and Ep

be given as described above, where p is the number of inputs of the system.

The discrete time empirical controllability gramian for system (5) is de�ned

by

Wc =

rX
l=1

sX
m=1

pX
i=1

1

rsc2m

qX
k=0

�ilm
k (27)

where �ilm
k 2 Rn�n is given by

�ilm
k (t) := (xilmk � xss)(x

ilm
k � xss)

T (28)

and x
ilm
k is the state of the system corresponding to the impulsive response

uk = cmTleiÆk=0 + uss with initial condition x0 = xss.

Discrete time empirical observability gramian. Let T n, M and En

be given as described above, where n is the number of states of the original

system. The discrete time empirical observability gramian for system (5) is

de�ned by

Wo =

rX
l=1

sX
m=1

1

rsc2m

qX
k=0

Tl	
lm
k T

T
l (29)

where 	lm
k 2 Rn�n is given by

�ilm
ij k

:= (yilmk � yss)
T (y

jlm

k � yss) (30)

and y
ilm
k is the output of the system corresponding to the initial condition

x0 = cmTlei + xss and input uk = uss.

6 Generalized empirical gramians

We will now propose a generalization of the discrete time empirical gramians.

Let u(k) 2 Rr be an arbitrary but relevant input sequence

u(k) = [u0; u1; : : : ; uk; : : : ; uN�1] (31)

where p in the number of inputs of the system and N is the number of

samples. The state response x(k) 2 Rn is

x(k) = [x1; : : : ; xk; : : : ; xN ] (32)
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where n is the number of states of the original system and N is the number

of samples.

De�ne the data matrix XN 2 R
n�N as

XN = [�x1j : : : j�xkj : : : j�xN ] (33)

where �xk = xk � xss and input matrix UN 2 R
(q+1)�N

UN =

2
6664

�u0 �u1 : : : �uq : : : �uN�1
0 �u0 : : : �uq�1
...

. . .
. . .

...
...

0 : : : 0 �u0 : : : �uN�1�q

3
7775 (34)

where �uk = uk� uss and q is the number of samples that is chosen such that

the relevant slow dynamics are present in the data.

Discrete time empirical controllability gramian. Let UN andXN be

given as described above. The discrete time empirical controllability gramian

for system (5) is de�ned by

Wc = XNU
y

NU
y

N

T
X

T
N (35)

where U
y

N 2 R
N�n is right inverse of UN

U
y

N = U
T
N (UNU

T
N )
�1

Proof: The data matrix XN can be written as

XN = �cUN (36)

with controllability matrix

�c =
�
G FG : : : F

q
G

�
(37)

therefore

XNU
y

NU
y

N

T
X

T
N = �cUNU

y

NU
y

N

T
U

T
N�

T
c = �c�

T
c =Wc (38)

which is a solution of the recursive discrete time Lyapunov equation (7).

Let us de�ne a set of N arbitrary perturbations on initial conditions

X0 2 R
n�N

X0 =
�
x
1
0 x

2
0 : : : x

N
0

�
(39)
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where n is the number of states of the original system. Let yi(k) 2 Rh where

h is the number of outputs

y
i(k) =

�
y
j
1; : : : ; y

j

k; : : : ; y
j
q

�
(40)

be the response of the system with initial condition x(0) = x
j
0+xss and input

u(k) = uss.

Let us de�ne a data matrix YN

YN =

2
6664

�y10 �y20 : : : �yN0
�y11 �y21 : : : �yN1
...

...

�y1q �y2q : : : �yNq

3
7775 (41)

where �y
j

k = y
j

k � yss.

Discrete time empirical observability gramian. Let X0 and YN be

given as described above. The discrete time empirical observability gramian

for system (5) is de�ned by

Wo = X
y

0

T
Y

T
N YNX

y

0 (42)

where X
y

0 2 R
N�n is the right inverse of X0

X
y

0 = X
T
0 (X0X

T
0 )
�1 (43)

where q is the number of samples that is chosen such that the system reaches

a steady state at k < q for all any kind of initial condition response.

Proof: The data matrix YN can be written as

YN = �oX0 (44)

with the truncated observability matrix

�c =

2
6664

C

CF

...

CF
q

3
7775 (45)

therefore

X
y

0

T
Y

T
N YNX

y

0 = X
y

0

T
X

T
0 �

T
o �oX0X

y

0 = �T
o �o =Wo (46)
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which is a solution of the recursive discrete time Lyapunov equation (8).

This de�nition of empirical gramians is more general since the only con-

dition on the data is that the right inverses U
y

N and X
y

0 should exist. The

class of admissible input signals and initial condition perturbation is not as

restrictive as for the empirical gramians as de�ned by Lall (1999).

7 Example: CSTR with exothermic reaction

The relevance of the generalization presented in the previous section can be

demonstrated on a simple example.

T 0 D T dF0

z0

Q
T

xd

LC
01

TC
01

F

z

Figure 1: CSTR with �rst order exothermic reaction

The example is a simple continuous stirred tank reactor with an �rst order

exothermic reaction A! B. A proportional level and temperature controller

are added to stabilize the process as depicted in Figure 1. Typically F0 is a

fresh feed and D is a recycling stream from a downstream separation section.

In this particular example we want to calculate controllability and ob-

servability of the process. Therefore we need to de�ne inputs and outputs.

Since the process is already stabilized by proportional controllers we will

consider the set-points as the new inputs: SPLC:01 and SPTC:01. As outputs we

choose overall molar holdup N and temperature T . Since the process is most

likely operated optimal at its constraints we want to generate data near this

operating area. This is depicted in Figure 2. If some other speci�c sequence

is favorable this can be chosen freely.

The state trajectories corresponding to these inputs are shown in Fig-

ure 3. Figures (2) and (3) contain the information from which the empirical
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0.19

0.195

0.2

0.205

0.21

bounded input signals

S
P

 L
C

−
01

0 1 2 3 4 5 6

322

322.5

323

323.5

324

S
P

 T
C

−
01

time [hr]

Figure 2: Input signals used for data generation

controllability gramian can be derived by Equation (35). In order to judge

the numerical values of the empirical gramian we can derive a linear model

and compare solution of the discrete time controllability Lyapunov Equa-

tion (6). Furthermore we can interchange the nonlinear model with the lin-

earized model and derive the empirical gramian again. This result compared

with the solution from the Lyapunov equation shows the quality of procedure

to derive the empirical gramian. Comparing the numerical values we can see

Lyapunov

2
4 7:4860 � 10�2 �2:2155 � 10�5 1:1486 � 10�3

�2:2155 � 10�5 2:9961 � 10�5 �1:4790 � 10�3

1:1486 � 10�3 �1:4790 � 10�3 6:4974 � 10�1

3
5

Empirical Linear

2
4 7:4855 � 10�2 �2:2164 � 10�5 1:1427 � 10�3

�2:2164 � 10�5 2:9961 � 10�5 �1:4790 � 10�3

1:1427 � 10�3 �1:4790 � 10�3 6:4969 � 10�1

3
5

Empirical Nonlinear

2
4 7:4855 � 10�2 �2:0386 � 10�5 1:1177 � 10�3

�2:0386 � 10�5 3:0420 � 10�5 �1:5311 � 10�3

1:1177 � 10�3 �1:5311 � 10�3 6:5694 � 10�1

3
5

Table 1: Controllability gramians

that the empirical gramian or the linear model is a good approximation of the

solution of the Lyapunov solution. This implies that the method indeed can

reproduce the controllability gramian. The empirical controllability gramian
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 [m
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]
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0.45

0.5

0.55

0.6

z 
[−

]

0 1 2 3 4 5 6
320

322

324

326

T
 [K

]

time [hr]

Figure 3: Responses of the system to input sequence and perturbed initial

conditions (dots)

of the nonlinear model is slightly di�erent from the empirical gramian of the

linear model which suggest some minor nonlinear behaviour.

For the empirical observability gramian we will use the same input data

as for the controllability gramian. So this data was close to the constraints of

the process. Since the interval between two di�erent inputs was long enough

to reach a new steady state we can use the previous simulations to retrieve

perturbed initial condition responses. These perturbed initial conditions are

show with the dots in Figure 3 and will be further explained by Figure 4 which

is a detail of Figure 3. It that shows the response of a set point change for

both the molar holdup as well for the temperature. The inputs do not change

from 2 � t < 3. We now can de�ne x20 = x(2), x2ss = x(3) and u
2
ss = u(3)

with its initial condition response �y2(t) = y(t + 2) � y
2
ss. In case that the

system is not controllable the collection of initial conditions does not span the

whole state space and therefore the right inverse as de�ned in Equation (43)

does not exist. We can easily deal with this by adding a perturbation to

the initial condition. This implies that we need to do new simulations with

the perturbed initial conditions. In this case we have a nearly uncontrollable

system and therefore we have to add this extra perturbation to the initial

condition. The original and the perturbed simulation results are shown in

Figure (3) with the solid and dotted line respectively.

Again we want will compare the empirical gramian for the nonlinear

model to the result of the empirical gramian of the linear model and the
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Figure 4: Detail with original (solid line) and perturbed initial condition

(dotted line)

solution of the Lyapunov Equation (6) that can be solved based on the linear

model system matrices. In this setting it is also easy to deal with constraints

Lyapunov

2
4 3:8594 � 100 1:1850 � 100 1:8250 � 10�2

1:1850 � 100 2:0052 � 103 1:5071 � 101

1:8250 � 10�2 1:5071 � 101 1:7400 � 100

3
5

Empirical Linear

2
4 3:8597 � 100 1:1901 � 100 1:8457 � 10�2

1:1901 � 100 2:0052 � 103 1:5074 � 101

1:8457 � 10�2 1:5074 � 101 1:7401 � 100

3
5

Empirical Nonlinear

2
4 3:8606 � 100 2:0178 � 100 2:6687 � 10�2

2:0178 � 100 2:3923 � 103 1:9589 � 101

2:6687 � 10�2 1:9589 � 101 1:8162 � 100

3
5

Table 2: Observability gramians

on state variables. This is important since a perturbation of initial condition

may result in a constraint violation or even in unfeasible values. This is typi-

cally the case for fractions such as the state variable z if close to zero or one.

Adding a perturbation can result in negative values or values larger than one

which are no feasible values for a fraction. This issue is not addressed in

the papers by Lall or Hahn but has a large impact on the applicability of

their Empirical Observability Gramian. We simply can constrain all initial
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conditions as shown in Figure 3, were the somewhat arbitrary constraints

395 � N � 405, 321 � T � 325 and 0:4 � z � 0:5 were implemented just to

show the principle.

This example is too small to demonstrate the value of the empirical grami-

ans for model reduction. The purpose of this example was to show the prin-

ciples of the method and that for the linear case the empirical gramians

approximates the solution of the Lyapunov equations for controllability and

observability. In order to demonstrate the value for model reduction we need

al larger model and that will be presented in the next section.

8 Application: reaction separation process

In chemical process it is not attractive to operate a reactor such that the

desired high quality product is produced at once. This can be explained by

the fact that this production strategy would result in very large reactors and

therefore in high investment costs. Therefore it is very common to combine a

reactor unit with a separation unit where the high quality product is removed

from the process and the low quality product is recycled into the reactor

again. Investment costs related to this second production strategy are in
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Figure 5: Reaction separation process
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general much lower and therefore more common in industry. The recycle

can be considered as a feedback and can have a large impact on the overall

dynamics (e.g. Lyuben, 1999 or Wu, 1996) and makes a plant wide reduction

strategy more favorable than a unit wise reduction strategy. This motivates

the application to a reactor separation process with a recycle in this paper.

The process ow sheet is depicted in Figure 5. The reactor that was used

in the previous example is interconnected with a binary distillation column

(Skogestad, 1997) resulting in a process with a recycle stream.

The plant is controlled by three level controllers, a temperature controller

and two quality controllers. Typically quality measurements can be hard to

obtain and are serious candidates to predict by a model. That motivates the

choice for the three qualities as outputs. The plant is laid out with a push

throughput control strategy which explains the choice of the fresh feed into

the reactor as the input.
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Figure 6: Throughput change of 30%. Original nonlinear (45thorder): solid.

Reduced nonlinear (4thorder): dotted. Linear model (45thorder): dashed

The trajectory relevance of the method as applied here is that the model

reduction is based on the desired trajectory that is known in advance. The

operating envelop described by this trajectory is the envelop where the re-
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duced model should perform with enough accuracy.

To demonstrate the reduction method we choose the fresh feed (F0) of the

reactor as an input and the quality in the reactor, and top and bottom quality

in the column as outputs, respectively z, xd and xb. The relevant trajectory

was de�ned as a increase of the input of 30% in 4 hours as depicted in the

bottom left of Figure (6). Furthermore is shown in Figure (6) the responses of

the original (45thorder) model, reduced (4thorder) model and a linear model.

The linear model is added to reveal the nonlinear behaviour of the process.

9 Conclusion

In this paper we presented a generalization of the empirical gramians. In this

generalized form we can directly use data generated by a relevant trajectory

to construct the empirical gramians. Furthermore, we can assure that per-

turbed initial conditions that are used for the empirical observability gramian

remain feasible. This problem was not addressed in the original setting of

the empirical observability gramian.

The generalized empirical gramians were explained by computing them

for a continuously stirred tank reactor. This example was too small to demon-

strate model reduction and therefore it was also demonstrated on a plant with

two unit operations and a recycle stream and base control. Such a model

represents dynamics of a large class of real processes an is therefore more

relevant than a case study on a single unit operation.

The original model with 45 di�erential equations could be reduced to a 4th

order model that still represents the input output behaviour for the ramped

throughput change.
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