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Abstract: This paper discusses changes in the market of chemical processing industries 
and its consequences for process operation. The problem of continuously declining 
capital productivity is tackled, which has been faced by the chemical processing 
industries during the past decades. In the paper a motivation is given on how new 
technologies in the area of model predictive control and dynamic process optimization 
can contribute to improve business performance of the chemical processing industries in 
the changed markets. These new technologies have to support dynamic operation of 
plants at intended dynamics. Extensions and changes required to technologies that are 
currently applied in the oil refining industries and in some petrochemical industry 
applications are discussed. These extensions and changes are necessary to meet the 
specific requirements of the chemical processing industries. 
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1. INTRODUCTION 
 
Chemical Processing Industries are currently facing 
an enormous challenge: Within the next few years 
they have to realize a significant improvement in 
their financial performance to remain attractive for 
capital investors.  
Gradual decline of the productivity of invested 
capital over the past three decades is a main problem 
of the chemical processing industries. The financial 
performance of many companies belonging to the 
Chemical Processing Industries has approached 
dangerously low levels, which may make it hard to 
compete with industries that do well like for example 
the Information and Communication Technology 
oriented industries.  
 
An interesting parallel can be observed between this 
situation the Chemical Processing Industries are 
facing now and the situation of the Consumer 
Electronics and Automotive Industries about twenty 
years ago. Consumer Electronics Industries and the 
Automotive Industries also saw their performance 

rapidly going down despite extensive reorganisations 
oriented to reduction of costs. The industries that 
survived this critical situation and that prosper now, 
are the ones that completely turned around their way 
of working from a supply driven approach to a 
market driven approach. The ones that did not 
survive are the ones that did not follow in this 
turnaround. 
The solutions created by the Consumer Electronics 
and Automotive Industries can of course not be 
copied directly by the processing industries. Market 
driven operation is far more complex for a processing 
industry -with its process inertia that spans several 
decades on a time scale- than in industries that 
primarily have to focus on logistics and supply chain 
only. 
 
Chemical Processing Industries are confronted with 
further complicating factors related to tightening 
operating constraints imposed upon production sites 
in terms of required reduction of consumption of 
energy, raw materials and natural resources at one 



hand and in terms of required reduction of ecosphere 
load at the other hand.  
The constraints imposed upon production result in 
increasing complexity of processes and of their 
operations. More sophisticated operation support 
systems will be required to exploit freedom available 
in process operation (Backx, Bosgra and Marquardt, 
1998). 
 
The paper is structured as follows:   
Section two of the paper discusses the economic 
drivers and motivation for improvement of the 
process control and optimization technologies 
applied in process operations. An analysis is made of 
problems faced by industry. A general problem 
definition is given on the basis of the analysis. 
Section three gives an overview of developments that 
have been done and that are currently applied in the 
areas of model based process control and model 
based process optimization. Comparison of 
capabilities of current technologies with the general 
problem definition results in a functional 
specification for new technologies. 
Section four outlines requirements for the integration 
of next generation model based control and model 
based optimization technologies.  
A polymer manufacturing case is elaborated in 
section five as an example. It shows initial results of 
integrated process control and dynamic optimization 
techniques.  
Section six finally gives some final remarks. 
 

2. ECONOMIC DRIVERS FOR MARKET 
DRIVEN PROCESS OPERATIONS 

 
To get a clear understanding of the problems process 
industry is facing, an analysis needs to be made of 
the way processes are operated today in comparison 
with market demand and market opportunities. 
Analysis of the market reveals that most chemical 
industries are operating in a market that is saturated 
to a large extent. The market has become global for 
most suppliers of chemical products and 
intermediates. Market demand is furthermore 
showing unpredictable movements with a growing 
demand for diversification in product specifications.  
The Chemical Processing Industries are still largely 
operating their production facilities in a supply 
driven mode of operation. This implies that no direct 
connection exists in most companies between actual 
market demand and actual production. Products are 
to a large extent produced cyclically in fixed 
sequences. Delivery of orders is largely handled from 
stock of finished products or from intermediates that 
only require finishing. Recent developments in 
chemical processing industry show that many of the 
smaller operating companies have been taken over by 
larger ones. At this moment two tendencies can be 
observed within companies operating in this area: 
- Companies that try to further reduce operating 

costs by minimizing the number of different 
product types produced at a production site and 

by extending the production of well selected sites 
using the ‘economy of scale’ principle. These 
companies focus on minimization of the fixed 
cost component of the product price and try to 
drive towards minimization of total costs of the 
operation. Flexibility is realized by ensuring that 
sufficient production plants are available to cover 
the variety in market demand. Due to the limited 
number of different products per plant relatively 
short production cycles can be applied, which 
reduces the amount of finished products that 
have to be kept in stock to supply the market. 
Each production site can only produce a limited 
and a small range of products. This implies that 
flexibility to respond to actual market demand 
and especially to changes in market demand are 
very limited. 

- Companies that try to significantly increase their 
flexibility in producing and processing a wide 
range of products at their sites and that attempt to 
move to production at demand. These companies 
improve their financial performance by 
minimization of stock, by increase of their 
flexibility to adapt to market demand, even if 
new product specifications are requested, by 
maximization of margins and by reduction of the 
capital turnaround cycle time related to capital 
invested in products and intermediates. 

 
The first category of companies produce products 
clearly at lowest costs initially as they can realize a 
lean operation with minimum overhead costs and no 
significant investments in upgrade of their operation 
support technologies. Longer term it will appear 
however that the average residence time of products 
in warehouses will be long in comparison with the 
average residence time of products in warehouses for 
the second category of companies due to the 
remaining lack of flexibility to directly link 
production to market demand. Also margins will 
continuously be under extreme pressure for a 
significant part of the volume produced due to 
market saturation effects and due to mismatch 
between market demand and supply from stored 
products. The average capital turnaround cycle time, 
although improved due to the limitation of the 
number of grades produced per plant, will remain 
poor. This will continue putting pressure on the 
ultimate business results of these companies.  
Companies belonging to the second category are the 
ones that are setting the scene for turning around the 
way of working in the Chemical Processing 
Industries. These companies are doing exactly the 
same thing as the ultimately successful companies in 
the Consumer Electronics and Automotive Industries 
did: Operate production directly driven by market 
demand to the extent feasible. These companies are 
facing tough times however as their total production 
costs, due to their focus on flexibility, initially appear 
to be higher. They have to make significant 
investments in adapting their production equipment 
and instrumentation to enable the flexible operation. 



Ultimately, these companies will see their overall 
performance rapidly improve. These improvements 
are due to the increase of capital turnaround, the 
better margins they can realize related to improved 
flexibility, their ability to better adapt to changing 
market conditions and their capability to timely 
deliver at (changing) specifications and varying 
volumes of product demand. The influence of 
reduction of the capital turnaround cycle on business 
performance is showing interesting characteristics. 
Defining capital productivity (Cpr) by: 
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with: Cpr  - Capital productivity per year 
  M   - Total margin realized per production cycle 
  K  - Capital ‘consumed’ during the production 

cycle for production and for enabling 
production 

  Tcycle - Length of the production cycle in years 
 
The capital productivity can now be calculated as 
follows: 
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with:  P  - average production rate [kg/hr] 
  F  - fixed costs related to operation of the 

equipment (e.g. salaries, maintenance, 
overhead, …) [DM/hr] 

  Feq  - fixed costs related to depreciation of 
equipment and interest paid on capital 
invested in equipment [DM/hr] 

  Vh  - market value of high spec product [DM/kg] 
  Vw  - market value of wide spec product [DM/kg] 
  Cin  - variable costs related to input materials, 

energy costs, etc. [DM/kg] 
  Th  - average run time of a specific grade [hr] 
  Tw  - average grade transition time during which 

time wide spec product is produced [hr] 
  n  - number of grades in a total production cycle 

[-]  
 

Variable Value dimension 

P 11416 [kg/hr] 

F 2750 [DM/hr] 

Feq 5900 [DM/hr] 

Vh 1.41 [DM/kg] 

Vw 0.90 [DM/kg] 

Cin 0.56 [DM/kg] 

Th 40 [hr] 

Tw 8 [hr] 

n 1-30 [-] 

Tcycle )( wh TTn +⋅  [hr] 

 Table 2.1 Overview of the assumed 
values for calculation of the capital 
productivity 

Taking as an example an average size polyethylene 
production plant this capital productivity can be 
calculated as a function of the number of product 
grades produced within a production cycle. 
Assuming the conditions given in table 2.1 the capital 
productivity as a function of the number of product 
grades in a total production cycle is given in fig. 2.1. 
The underlying assumption made in this calculation 
is that production of a total production cycle is stored 
before it is sold on the average. The capital invested 
in products is released and the margin is made after a 
production cycle. In case flexibility is maximally 
increased to enable production directly on demand, 
the capital productivity realised is equal to the capital 
productivity corresponding with a cycle of one grade 
only as a limit. 
In general, capital productivity can be further 
increased, if flexibility in operation of the plant 
supports production at market demand due to better 
margins that can be obtained for the products 
produced. This further potential for improvement 
stems from the market mechanism that products that 
have high demand can be sold at better prices than 
products that are abound. The average margin 
improvement due to this market mechanism will 
easily be a few percent of the market price of the 
products. The dashed line in fig. 2.1 shows the 
capital productivity for an assumed additional 
average margin improvement of only 0.1 percent of 
the market value of the product due to this 
mechanism.  
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Fig. 2.1 Capital productivity as a function of 
the number of product grades in a 
production cycle 

As can be seen from this figure, a significant 
improvement of performance results when the overall 
cycle time is significantly reduced. Focussing 
operations on enabling market driven operation of 
processes opens up this opportunity amongst others. 
It ultimately ensures that products are almost directly 
delivered to customers after production so enabling 
shortest possible capital turnaround and significantly 
improved capital productivity. 



Market driven process operation puts extremely high 
requirements on predictability and reproducibility in 
process operation. One needs to be able to produce 
products at adjustable specifications in predefined, 
tight time slots and in changing volumes. Flexibility 
and timing are key parameters that drive 
performance. Technologies that support such process 
operation have to provide the functionality to operate 
processes this way. 
 
The problems faced by process industries to turnover 
production control from supply driven process 
operation to market driven process operation may be 
summarized by the following problem statement: 
Given an industrial scale production plant that forms 
one link in a supply chain, provide the process 
operation support technologies for this plant that: 
- Enable operation of the plant in such a way that 

imposed operating constraints related to safety, 
ecology, plant lifetime and plant economics are 
always satisfied 

- Continuously drive the plant towards operating 
conditions that comply with supply chain 
optimum operation within a pre-defined, feasible 
operating envelope for the plant 

- Operate the plant in accordance with process 
operating conditions that push for maximization 
of capital productivity of the company the plant 
belongs to. 

- Exploit remaining freedom in plant operation to 
maximize capital productivity of the plant over 
plant lifetime 

 
This problem definition clearly reveals that a set of 
subproblems needs to be resolved that interfere with 
one another: 
- Optimization of supply chain operation 
- Optimization of overall capital productivity of the 

company the plant is part of 
- Window over which the optimization is done 

together with the weighting applied over this 
window 

- Restricted operating envelope and its resulting 
limitations to business performance 

All freedom available in plant operation must be used 
for driving the plant continuously to the operating 
conditions that best comply with a selected balance 
of mutually conflicting objectives. 
 

3. STATE-OF-THE-ART MODEL BASED 
PROCESS CONTROL AND 

OPTIMIZATION TECHNOLOGIES 
 
State-of-the-art technologies that industry currently 
applies for model predictive control and model based 
process optimization are not well suited to solve the 
problems defined in the previous chapter. A more 
detailed evaluation of the applied technologies is 
required to reveal the problems with these 
technologies in solving the problems related to 
optimal process operation. The main reason for the 
mismatch between current state-of-the-art operation 

support technologies and operation requirements 
related to overall optimization of plant performance 
in the sense described in chapter 2, basically finds its 
cause in the focus on (quasi) steady state behaviour 
in stead of looking for full exploitation of plant 
dynamics (Koolen, 1994).  
Model Predictive Control technology has been 
widely adopted by process industries in general and 
by the Oil Refining and Petrochemical industries 
especially over the past fifteen years to improve 
results from process operations. This technology has 
originally been developed by industry for this 
purpose (Camacho and Bordons, 1995, 1998; Cutler 
and Ramaker, 1979, 1980; Cutler, 1983; Cutler and 
Hawkins, 1987; Froisy, 1994; Garcia, 1984; Garcia 
and Morshedi, 1986; Garcia and Prett, 1986; Garcia, 
et al., 1988; Garcia, et al., 1989; Grosdidier, et al., 
1988; Lebourgeois, 1980; Morshedi, 1986; Peterson, 
et al., 1989; Prett and Gillette, 1979; Richalet, et al., 
1976, 1978; Richalet, 1993; Song and Park, 1993; 
Zafiriou, 1990). Model Predictive Control technology 
has evolved from a basic multivariable process 
control technology (Cutler and Ramaker, 1979; 
Richalet et al., 1976, 1978) to a technology that 
enables operation of processes within well defined 
operating constraints (Allgöwer, et al., 1999; 
Bequette, 1991; Lee, 1996; Qin and Badgewell, 
1997). Essential in model predictive control is the 
explicit use of a model that can simulate dynamic 
behavior of the process at a certain operating point. 
In this respect model predictive control differs from 
most of the model based control technologies that 
have been studied in the Academia in the sixties, 
seventies and eighties. Academic research has been 
primarily focussing on the use of models for 
controller design and robustness analysis of control 
systems only for quite a while (e.g. Alamir and 
Bornard, 1994; Balakrishnan, et al., 1994; Doyle, et 
al., 1995; Doyle, 1984; Doyle, et al., 1989; 
Economou and Morari, 1985; Kalman, 1960; 
Maciejowski, 1989; Zadeh, 1962). With their initial 
work on internal model based control Garcia and 
Morari (1982) made a first step towards bridging 
academic research in the area of process control and 
industrial developments in this area. Significant 
progress has been made in understanding stability 
and performance of model predictive control systems 
since the end of the eighties (e.g. Lee and Yu, 1994; 
Meadows and Rawlings, 1993; Rawlings and Muske, 
1993; Rawlings, et al., 1994; Scockaert, et al., 1999; 
Zheng and Morari, 1994).  A lot of results have been 
obtained on stability, robustness and performance of 
model predictive control systems since the start of 
academic research on model predictive control (e.g. 
Bloemen and Van den Boom, 1999; Clarke and 
Scattolini, 1991; Eaton, et al. 1989; Eaton and 
Rawlings, 1990; Economou, et al. 1986; Kwon, 
1994; Lee, et al., 1994; Lee and Yu, 1994; Lee, 1996; 
Mayne and Michalska, 1990; Michalska and Mayne, 
1993; Morari, 1988; Morari and Zafiriou, 1989; 
Nevisti� and Morari, 1996; Özgölsen et al., 1993; 
Patwardhan, et al. 1990; Saint-Donat, et al., 1991; 



Soeterboek, 1992; Tan and De Keyser, 1994; 
Wahlberg, et al., 1993)  
The quadratic objective function that is minimized by 
the latest model predictive control systems has the 
following generic form: 

∑
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The vector variable )|(ˆ kjkz + in this expression is 
a linear function of manipulated variables, controlled 
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states: 

k

k

k

k

xkxx

ykyy

ukuu

ukuu

∀
∀
∀
∀

≤≤
≤≤

∆≤∆≤∆
≤≤

maxmin

maxmin

maxmin

maxmin

)(

)(

)(

)(

 (3.2) 

 
The objective function (3.1) only regards a finite 
horizon of N samples ahead at each sample interval. 
Todays most widely applied model predictive control 
systems approximate this multivariable receding 
horizon model predictive control problem by solving 
three consecutive subproblems (Qin and Badgewell, 
1997): 
- Prediction of the expected future output behavior 

on the basis of known past inputs, known 
disturbances and expected future disturbances 

- Steady state optimization of an (economic 
criterion based) objective function (QP or LP) 

- Calculation of best future input manipulations by 
minimizing a quadratic objective function (LQ or 
constrained QP based optimization) 

The model applied within the model predictive 
control system plays a crucial role: It enables 
feedforward driving of the process to desired 
operating conditions to compensate for measured and 
observed disturbances to the extent feasible (cf. fig. 
3.1). Feedback control is only applied for 
compensation of inaccuracies in model-based 
predictions and unmeasured disturbances. The model 
is explicitly applied twice in the controller:  
- for the prediction of future outputs 
- and for the calculation of best future input 

manipulations 
The feedforward driving of the process, together with 
its capabilities to respect operating constraints and to 
optimize the use of available degrees of freedom in 
process operation form the strengths of the model 
predictive control technology.  
It is clear that these strengths only apply for process 
behavior that is covered by the model. The models 
applied in model predictive control systems are 
mostly black box type models obtained with process 
identification techniques.  
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Fig. 3.1 Model Predictive Control system 

A lot of research has been done over the past decades 
to develop reliable multivariable system 
identification and model reduction techniques that 
can be applied for process modeling (e.g. �ström 
and Eykhoff, 1971; Backx, 1987; Backx and Damen, 
1992; De Vries, 1994; Eykhoff, 1974; Falkus, 1994; 
Hakvoort, 1994; Heuberger, 1990; Ho and Kalman, 
1966; Ljung, 1987; Moore, 1981; Pernebo and 
Silverman, 1982; Schrama, 1992; Söderström and 
Stoica, 1989; Swaanenburg, et al., 1985; Van den 
Hof et al., 1994; Van Overschee en De Moor, 1993; 
Van Overschee, 1994; Verhaegen and Dewilde, 
1992; Wahlberg and Ljung, 1991; Willems, 1986, 
1987; Zeiger and McEwen, 1974; Zhu and Backx, 
1993). Despite the extensive research done in this 
field with reliable process identification techniques 
as a result, most of the model predictive control 
systems are still based on the use of rather primitive, 
limited complexity, non-parametric model types 
(Finite Step Response models, Finite Impulse 
Response models), low order transfer function 
models (First and Second Order transfer function 
models with time delays) or low order State Space 
models. The models are mostly linear, discrete time, 
time invariant models. If non-linearities are included, 
only static non-linear describing functions are 
applied for input and/or output transformation 
(Hammerstein, respectively Wiener models). 
 The complexity limitation results in models that only 
cover a very small part of all process dynamics that 
may be applied for control. The dynamic range 
covered by a Finite Impulse Response/ Finite Step 
Response model with 60 samples is approximately 
1:10 for example. This implies that the largest time 
constant represented by the model can only be 10 
times slower than the smallest time constant. 
Similarly, a second order transfer function model can 
only cover two major time constants of the process. 
The actual process will cover a much broader 
dynamic range in general. Even a simple distillation 
column may serve as an example: An industrial 
column with 50 trays will have a time to steady state 
that will be in the order of magnitude of 5-6 hours 
approximately. This same column will show a 
change in distillate composition in response to a top 



pressure change well within a minute. The dynamic 
range of this column, applicable for high 
performance control, is therefore at least 1:300. This 
wide dynamic range could be used for control, if the 
model would cover all these dynamics. Due to the 
limited bandwidth of the model and due to the fact 
that the modeling effort focuses on making the model 
responses accurately match with process behavior for 
low frequencies, high frequency response 
characteristics of the process are not covered by the 
model.  
Similarly, the linearity of the system dynamics 
assumed also restricts the performance that can be 
achieved by the control system. Deviation from the 
operating conditions applied for modeling will result 
in an error between the model and the actual process 
behavior. This model error needs to be corrected by 
the feedback loop, which implies that the tuning of 
the controller needs to be such that stability still will 
be guaranteed. As a consequence a robustly tuned 
controller results with its related sluggish responses: 
It will take relatively long time for the controller to 
correct for the errors in the prediction. Although the 
control system will be tuned for robust performance 
over some operating envelope, this envelope will still 
be rather small and often not be large enough to 
include a broad range of different operating points 
corresponding to the production of different product 
grades. 
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Fig. 3.2 Effect of controller bandwidth on 
performance 

The consequence of applying low complexity/low 
order, linear, time invariant models inside the model 
predictive controller is that the controlled process 
will only have low frequent (quasi steady state) 
response characteristics. Model mismatch at 
frequencies higher than about 10 times one over the 
largest time constant of the model will not permit a 
significant loop gain at those frequencies. The tuning 
required for robust performance will prohibit the use 
of these higher frequency process transfer 
characteristics for control. As a result performance in 
terms of enabling extensive reduction of variance and 
fast transitions between various operating points will 
be severely restricted. Fig. 3.2 shows the effect of the 
bandwidth of the control system on reduction of 
variance. The large bandwidth controller applied for 
constructing this figure has a bandwidth, which is 30 
times larger than the bandwidth of the low bandwidth 

control system. A significant additional reduction of 
variance results, which implies both a better 
compliance with specifications and more freedom to 
operate closer to the tolerance limit corresponding 
with minimum cost of operation. 
Model predictive control enables predictable and 
reproducible operation of processes within a given 
operating envelope on the basis of a linear 
approximation of dynamic behavior of the process. In 
addition to the model predictive control techniques 
closed loop plant wide optimization techniques have 
been developed to operate plants at best economic 
operating conditions using an approximate model 
that describes steady state non-linear plant behavior. 
These closed loop optimization techniques use a first 
principles based steady state model of the plant for 
calculation of the operating conditions that will bring 
best economic performance from plant operation 
(e.g. Bailey, et al., 1993). Contrary to the 
optimization done inside the model predictive control 
system by means of a locally valid linear 
approximation of plant behavior, a first principles 
based model is applied that covers non-linearities in 
plant behavior over a large operating envelope. This 
model may therefore be applied to look for best 
operating conditions over a broad operating 
envelope. The objective function that is optimized 
has the following generic form: 
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Fig. 3.3 Flow diagram of a closed loop, real 
time plant optimization system 

After detection of steady state conditions by means 
of statistical analysis of recorded process signals and 
after reconciliation of the recorded process data, this 
objective function is optimized in two subsequent 
steps (cf. fig. 3.3): 
- In a first step a selected set of slack parameters 

ϑ are adjusted to make the model match with the 
actual recorded plant behavior 

- In a subsequent optimization step the operating 
conditions are determined that maximize plant 
economics for given market and plant conditions 
using the adjusted plant model.  



To solve these non-linear optimization problems 
primarily SQP techniques are applied (e.g. Biegler, 
1984). 
 
The closed loop optimization system looks at steady 
state conditions of the plant only, as it does not have 
any information on plant dynamics. Due to 
disturbances that continuously influence plant 
processes, a plant will never really be in steady state. 
The steady state assumed can only be artificial as a 
consequence.  
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Fig. 3.4 Closed Loop Real-Time Optimizer 
configuration 
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Fig.3.5 Quasi steady state operation of a 
plant 

After optimal operating conditions have been 
determined by the optimizer, these conditions are to 
be realized by the model predictive control systems 
that are supervised by the optimizer (cf. fig. 3.4). The 
calculated optimum operating conditions of the plant 
will in the best case follow the true plant optimum 
with a severe lag (cf fig. 3.5). The calculated 
optimum furthermore only reflects the conditions at 
the moment of detection of the steady state. The plant 
may therefore already be at different operating 
conditions at the moment the optimum is realized by 
the underlaying model predictive control systems due 
to disturbances. 
Another problem related to the current state-of-the-
art configuration of closed loop real-time optimizers 
is the potential inconsistency between the models 
applied for optimization and the models used inside 
the model predictive control systems. The model 
predictive controllers use models that essentially are 

valid in one specific operating point of the process 
only due to the linear approximation of process 
behavior in a single operating point. The model(s) 
applied stem(s) from process identification. The 
optimizer uses a non-linear steady state model that is 
assumed to reflect dominant process mechanisms 
over the complete operating envelope. Both models 
will in general be inconsistent at most of the regarded 
operating envelope. 
 
Looking at the problem statement formulated in 
section 2 it is clear that the technologies described 
above don’t really solve the problem related to 
optimal supply driven operation of a plant. Dynamic 
optimization techniques are required to continuously 
drive the plant to optimal operating conditions. Due 
to complexity of the full dynamic optimization of a 
plant, still a separate optimization and control layer 
will be required for practical feasibility. These two 
layers will be operating at different overlapping time-
scales initially. The control layer needs to exploit the 
full dynamics of the plant and its freedom in 
operation for local optimization, whereas the 
dynamic optimizer needs to continuously push 
towards (global) optimal operating conditions. 
Optimization and control need to be fully integrated 
to prevent inconsistencies between the optimization 
and control layer. The full integration also has to 
minimize lag in chasing plant optimal operating 
conditions. 
 

4. CONSISTENT INTEGRATION OF 
MODEL BASED CONTROL AND MODEL 

BASED OPTIMIZATION 
 
Plant optimization and process unit control in general 
cover a time-scale range from seconds to days. Since 
separation of time scales is no longer feasible the 
approaches applied for market driven plant operation 
are characterized by establishing intentional 
dynamics in process operations. In contrast to current 
practice of operating the process as long as possible 
in a certain stationary mode -at a steady-state 
operating point, at a certain production schedule with 
a minimum of planned switches, or with a certain 
operating process or control system structure- 
dynamic (or transient) process operations in an 
encompassing sense must be aimed at in order to 
accomplish the highest possible responsiveness of the 
production to market needs. Realization of this goal 
requires integration along several dimensions :  
- integration across the control hierarchy layers, 

which allows both high performance quality 
control and flexible transient operation of a 
process on all time scales,  

- integration of the various tasks during process 
operations such as automatic control and 
optimization, measurement and estimation as 
well as operator supervision and corrective 
action,  

- integration of intended control actions over a 
wide range of process scales ranging from the 



microscale (e.g. the kinetic processes on a 
catalyst surface), the mesoscale (e.g. physical 
transport phenomena) up to the macroscale (e.g. 
the processes in the worldwide supply chain)  

- integration of process performance diagnosis with 
the engineering design processes aiming at 
continuous overall process improvement. 

 
Plant wide dynamic optimization is a complex 
problem. State-of-the-art dynamic optimization 
techniques (Li and Biegler, 1990; Li, et al., 1990; 
Støren and Herzberg, 1995) only enable closed loop 
real-time optimization of plants with very specific 
characteristics: 
- Fastest relevant dynamics for process operation 

are sufficiently slow in comparison with the 
simulation speed of the dynamic simulator and 
with the time required for optimization. 

- Sufficiently accurate first principles based and/or 
empirical dynamic models are available of the 
plant for closed loop optimization. 

- The optimization problem is well conditioned and 
sufficiently good initial values are available to 
guarantee convergence to the optimum 

The above requirements will only be satisfied for a 
very limited number of plants. The control relevant 
dynamics of most processes will be too fast for 
enabling real-time non-linear closed loop dynamic 
optimization. To overcome this problem a control 
and optimization hierarchy has been defined that uses 
a model based dynamic optimizer for calculating 
optimum trajectories for all relevant process 
variables of the plant. Model predictive control 
systems operating in delta model have to ensure 
optimal tracking of the optimum trajectories (cf. fig. 
4.1). The model predictive control systems are based 
on process models that are assumed to be fully 
consistent with the models applied by the dynamic 
plant optimizer. As the optimizer will generally only 
be capable of covering low frequency dynamics due 
to complexity of the full-scale problem, the optimizer 
only will cover these low frequency dynamics. 
Computational complexity will highly determine 
computation time required for optimum trajectory 
computation (Van der Schot, et al. 1999).  
The model predictive control systems need to apply 
models that are consistent with the model applied for 
optimum trajectory generation by the plant wide 
optimizer. This implies that the models applied by 
the optimizer (Mopt) and by the model predictive 
control systems (MMPC) will need to have equivalent 
dynamics for low frequencies: 
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The model predictive control system models will in 
general cover a larger bandwidth than the models 
applied by the optimizer. The additional bandwidth is 
used to keep the process as tightly as economically 
feasible in the low frequency optimum operating 
condition determined by the optimizer.  
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Fig. 4.1 Closed loop dynamic plant 
optimization 

In case the assumption holds that the optimizer drives 
the process so slowly through its non-linear 
dynamics, that control relevant dynamics may be 
considered to be fast in comparison with changes in 
these dynamics, the model predictive control system 
may be based on time-varying linear models in stead 
of time-invariant non-linear models. These time-
varying linear models have to represent the local 
process dynamics observed in the operating point 
determined by the optimizer: 
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An economically successful production can only be 
established, if the process can follow changing 
market conditions at each point in the supply chain. 
Besides adjustments to changes in the market by 
adaptation of the operation including closed loop 
(feedforward and feedback) model based control and 
optimization, the adaptation to changing conditions 
must also span the engineering design processes to 
modify the plant, its control system, or its operation 
strategy. 
 
The EC funded research project INCOOP is 
focussing on fundamental development of 
technologies that enable consistent integration of 
model based control and model based optimization 
for intentionally dynamic operation of plants as part 
of a supply chain. 
 

5. HDPE POLYMER MANUFACTURING 
CASE 

 
A model based optimization and control system for a 
fluidized bed gas phase polymerization reactor (cf. 
fig. 5.1) is used as an example to demonstrate some 
aspects of the concepts discussed in section 4. The 
optimizer is used for calculating optimum transition 



trajectories. The delta mode model predictive control 
system is applied to closely track these optimum 
(transition) trajectories. 
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Fig. 5.1  Gas phase polymerisation reactor  

 

Fig. 5.2 Intended trajectory (dashed line) and 
actual controlled transition behaviour 
under external disturbances (solid 
line) 

 

Fig. 5.3  Grade transition with severe 
disturbances (dashed: intended 
trajectory; solid: actual controlled 
response of the process) 

The model predictive control system simultaneously 
manipulates Monomer/Co-monomer ratio, 
Hydrogen/Monomer ratio, Catalyst flow, Gascap 
Pressure and Bed Temperature. It controls Density, 
Melt Index and Production Rate by using the full 
bandwidth applicable for control. Direct or inferential 
measurements of the controlled variables are needed 
for this purpose especially for those variables that 
cannot be measured on-line over this full bandwidth.  
The controller calculates required control actions on 
the basis of the inferred measurements. The soft 
sensors are calibrated by means of the real measured 
process values. State estimation techniques are 
applied for this purpose. This functionality enables 
robust operation of the control system at various 
sample rates of Melt Index and Density 
measurements. 
The control system includes linearizing functions to 
cover large, non-linear operating ranges of the 
process with sufficient accuracy (Van der Schot, 
1998). It is designed for robust control of relevant 
polymer properties over a broad operating range of 
the process.  
Figure 5.2 and 5.3 show some results of a grade 
change subject to a variety of external disturbances 
acting on the process. Despite severe disturbances the 
grade transition is performed well. 
 

6. CONCLUDING REMARKS 
 
Changing market conditions enforce chemical 
processing industries to better utilize process 
capabilities. Process operation needs to be closer tied 
with market demand to improve capital productivity. 
Currently applied state-of-the-art model predictive 
control and model based optimization techniques 
have been analyzed for their capabilities to solve the 
problems related to intentional dynamic operation of 
plants in accordance with continuously changing 
market demand. Shortcomings have been revealed 
related to close tracking of optimum operating 
conditions. Optimum transition control is not 
supported by these techniques. They only regard 
(quasi) steady state operating conditions; relevant 
plant dynamics are not used for performance 
improvement.  
New concepts have been discussed that enable 
exploitation of plant dynamics for performance 
optimization. Consistency between model-based 
optimization and model-based control is crucial for 
high performance in plant operation. Intential 
dynamic operation of a plant opens opportunities for 
significant improvement of plant economics and 
capital productivity. Market driven operation of 
plants may become feasible, if plant and process 
designs support it. 
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