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Abstract: Feedback stabilization of a discrete-time linear stochastic parameter-varying system
is explored. The parameter of the system is modeled as a discrete-time stationary, ergodic, and
aperiodic Markov process on a Euclidean space. We develop a stabilizing control framework for
the case where the system parameter is observed (sampled) periodically. We obtain sufficient
conditions under which almost sure asymptotic stabilization of the closed-loop stochastic
parameter-varying system is guaranteed by our proposed control law, which depends only on
the sampled version of the system parameter.
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1. INTRODUCTION

The dynamics of various complex real life processes from
biology, mechanical engineering, and finance incorporate
randomly varying parameters (see De Koning (1984); Cas-
sandras and Lygeros (2006); Bolzern et al. (2008); Zhu
and Yin (2009); Xie (2011); and the references therein).
Several classes of stochastic parameter-varying system
models have been investigated by researchers. Particularly,
dynamical systems with Markov jump parameters (also
called Markov jump systems) have been studied exten-
sively (de Farias et al., 2000; Costa et al., 2004; Dragan
and Morozan, 2008). Markov jump systems incorporate a
stochastic parameter, which is modeled as a finite-state
Markov chain, to characterize the switching between a
number of subsystems (modes) with different dynamics.
In addition to Markov jump systems, researchers have
also explored linear stochastic systems described by time-
varying matrices that form sequences of independent and
identically distributed random variables (De Koning, 1982;
Farokhi and Johansson, 2012). Furthermore, the case
where the dynamics depend on a stationary and ergodic
stochastic parameter process is studied by Bolzern et al.
(2008) and Xie (2011).

Feedback control of dynamical systems with stochastic
parameters have been explored in several studies (Ghaoui
and Rami, 1996; El Bouhtouri et al., 1999; de Farias et al.,
2000; Fang and Loparo, 2002; Costa et al., 2004; Mao
et al., 2007; Sathanantan et al., 2008; Geromel et al.,
2009). Most of the documented control frameworks for
stochastic parameter-varying systems require the availabil-
ity of parameter information at all time instants. Note that
the parameters of a system usually describe the state of
external environment, and may not be directly measurable
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or may not be observed as frequently as the state of the
system itself. Hence, it is important to investigate the
control problem for the case where the parameters are not
available for control purposes at all time instants.

In our earlier work (Cetinkaya and Hayakawa, 2013a,b),
we investigated stabilization problem for Markov jump
systems for the case where the controller has access only to
sampled information of the system mode, which is modeled
by a finite-state Markov chain.

In this paper we explore feedback control of discrete-
time linear stochastic parameter-varying systems under
sampled parameter information. Specifically, we assume
that the parameter of the system, which is modeled as
a discrete-time aperiodic, stationary, and ergodic Markov
process defined on a Euclidean space, is observed (sam-
pled) periodically. In order to achieve stabilization, we
develop a control framework that depends only on the
sampled version of the parameter. We obtain sufficient
conditions of almost sure asymptotic stabilization of the
closed-loop system by utilizing the stationarity and er-
godicity properties of a stochastic process that represents
the sequences of values that the system parameter takes
between consecutive observation instants. We then explore
a special class of linear parameter-varying systems where
the state matrix is an affine function of the entries of the
parameter vector. We show that stabilization for this class
of parameter-varying systems can be achieved through a
control law with a feedback gain that is an affine function
of the entries of the sampled parameter vector.

The paper is organized as follows. In Section 2, we provide
the notation and some key results concerning discrete-
time stochastic processes. In Section 3, we present the
mathematical model for discrete-time linear stochastic
parameter-varying systems and explain the feedback con-
trol problem under periodically sampled parameter in-
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formation. In Section 4, we obtain sufficient conditions
under which our proposed control law guarantees almost
sure asymptotic stabilization; furthermore, we discuss
almost sure asymptotic stabilization problem for linear
parameter-varying systems with affine parameter depen-
dence. Finally, in Section 5 we conclude our paper.

2. MATHEMATICAL PRELIMINARIES

In this section, we provide notation; furthermore, we
present several definitions and key results concerning
discrete-time stochastic processes. Specifically, we use N

and N0 in order to denote positive and nonnegative in-
tegers, respectively. Moreover, R denotes the set of real
numbers, Rn denotes the set of n× 1 real column vectors,
and R

n×m denotes the set of n×m real matrices. We write
‖ · ‖ for the Euclidean vector norm, (·)T for transpose,
and ⌊·⌋ for the largest integer that is less than or equal
to its real argument. A function V : R

n → R is called
positive definite if V (x) > 0, x 6= 0, and V (0) = 0. The
notations P[·] and E[·] respectively denote the probability
and expectation on a probability space (Ω,F ,P). We use
B(Rl) to denote the Borel σ-algebra associated with R

l.

2.1 Discrete-Time Markov Processes on Euclidean Spaces

A time-homogeneous, discrete-time Markov process de-
fined on a Euclidean state space R

l is a stochastic process
{ξ(k) ∈ R

l}k∈N0
characterized by an initial distribution

ν : B(Rl) → [0, 1] and transition probability function
P : Rl × B(Rl) → [0, 1] such that

P[ξ(0) ∈ S] = ν(S), (1)

P[ξ(k + 1) ∈ S|ξ(k) = s] = P (s, S), (2)

for all s ∈ R
l, S ∈ B(Rl), k ∈ N0. Note that for each

s ∈ R
l, P (s, ·) : B(Rl) → [0, 1] is a probability measure on

the measurable space (Rl,B(Rl)); furthermore, for each
S ∈ B(Rl), P (·, S) : Rl → [0, 1] is a measurable function
on Euclidean space R

l (see Athreya and Lahiri (2006);
Durrett (2010)).

We define i-step transition probability functions P (i) : Rl×
B(Rl) → [0, 1] by

P (0)(s, S) ,

{
1, if s ∈ S,

0, otherwise,

P (n+1)(s, S) ,

ˆ

Rl

P (n)(s̄, S)P (s, ds̄), n ∈ N.

Note that P (1)(s, S) = P (s, S), s ∈ R
l, S ∈ B(Rl). For a

given time k ∈ N0 and step size i ∈ N0, P
(i)(s, S) denotes

the conditional probability that the Markov process will
take a value inside the set S ∈ B(Rl) at time k + i, given
that it had the value s ∈ R

l at time k, that is

P[ξ(k + i) ∈ S|ξ(k) = s] = P (i)(s, S), k, i ∈ N0.

A probability measure π : B(Rl) → [0, 1] is a stationary
distribution of Markov process {ξ(k) ∈ R

l}k∈N0
if

ˆ

Rl

P (s, S)π(ds) = π(S), S ∈ B(Rl). (3)

A Markov process {ξ(k) ∈ R
l}k∈N0

is called aperiodic if
there is no integer d ≥ 2 and non-empty subsets Si ⊆ R

l,
i ∈ {1, 2, . . . , d}, such that Si∩Sj = ∅, i 6= j, P (s, Si+1) =
1, s ∈ Si, i ∈ {1, 2, . . . , d − 1} and P (s, S1) = 1, s ∈ Sd

(see Rosenthal (2011)).

In Section 3, we employ an aperiodic Markov process
defined on a Euclidean space to characterize the parame-
ter of a discrete-time linear stochastic parameter-varying
dynamical system.

2.2 Stationarity and Ergodicity of Stochastic Processes

In this section we first give the definition of stationarity,
then we explain measure preserving transformations and
ergodic stochastic processes.

A stochastic process {ζ(k) ∈ R
l}k∈N0

is called stationary
if for every n ∈ N,

P[ζ(i) ∈ S1, ζ(i+ 1) ∈ S2, . . . ζ(i+ n− 1) ∈ Sn]

= P[ζ(j) ∈ S1, ζ(j + 1) ∈ S2, . . . ζ(j + n− 1) ∈ Sn], (4)

for all Sk ∈ B(Rl), k ∈ {1, 2, . . . , n}, and i, j ∈ N0. Note
that for a stationary stochastic process {ζ(k) ∈ R

l}k∈N0
,

the joint distribution of random variables ζ(k), ζ(k +
1), . . . , ζ(k + n) is the same for all k ∈ N0, in other
words the joint distribution does not change over time
(Athreya and Lahiri, 2006; Klenke, 2008). It is important
to note that a time-homogeneous discrete-time Markov
process {ξ(k) ∈ R

l}k∈N0
characterized with the transition

probability function P : Rl×B(Rl) → [0, 1] and the initial
distribution ν : B(Rl) → [0, 1] is stationary if the initial
distribution ν(·) is also a stationary distribution, that is,

ˆ

Rl

P (s, S)ν(ds) = ν(S), S ∈ B(Rl). (5)

Now consider the probability space (Ω,F ,P). A measur-
able function T : Ω → Ω is called measure preserving
transformation if

P[T−1(F )] = P[F ], F ∈ F ,

where

T−1(F ) , {ω ∈ Ω : T (w) ∈ F}, F ∈ F . (6)

Note that every stationary stochastic process is associ-
ated with a measure preserving transformation (Athreya
and Lahiri, 2006; Klenke, 2008). We define the measure
preserving transformation associated with the stationary
stochastic process {ζ(k) ∈ R

l}k∈N0
in the following way.

First, let Ω ,
(
R

l
)N0

denote the space that includes

all infinite-sequences of R
l-valued vectors, and let F ,

B
((
R

l
)N0

)
denote the product σ-algebra (see Athreya and

Lahiri (2006); Klenke (2008)). Furthermore, let P be the
probability measure induced by {ζ(k) ∈ R

l}k∈N0
. Note

that all sequences of the form ω , {ω(k) ∈ R
l}k∈N0

are
included in Ω; moreover, F includes all sets of the form
{ω ∈ Ω : ω(i) ∈ S1, ω(i + 1) ∈ S2, . . . ω(i + n − 1) ∈ Sn},
for all Sk ∈ B(Rl), k ∈ {1, 2, . . . , n}, and i ∈ N0. For a
fixed ω ∈ Ω, the stochastic process {ζ(k) ∈ R

l}k∈N0
is

given by ζ(k) = ω(k), k ∈ N0.
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Now, we define Tζ : Ω → Ω by

Tζ({ω(k)}k∈N0
) , {ω(k + 1)}k∈N0

, ω ∈ Ω. (7)

Note that Tζ : Ω → Ω shifts the sequence ω ∈ Ω. The
stationarity of the stochastic process {ζ(k) ∈ R

l}k∈N0

implies that the function Tζ : Ω → Ω is a measure
preserving transformation (Athreya and Lahiri, 2006). For
the measure preserving transformation Tζ : Ω → Ω, we

define T i
ξ : Ω → Ω, by T 0

ζ (ω) = ω and T i+1
ζ (ω) =

Tζ(T
i
ζ(ω)), i ∈ N0.

Consider the stationary stochastic process {ζ(k) ∈ R
l}k∈N0

and the associated measure preserving transformation Tζ :
Ω → Ω defined in (7). The stationary stochastic process
{ζ(k) ∈ R

l}k∈N0
is called ergodic if P[F ] = 0 or P[F ] = 1

for all F ∈ F such that T−1
ζ (F ) = F .

Now let {ζ(k) ∈ R
l}k∈N0

be a stationary and ergodic
stochastic process. Furthermore, let f : R

l → R be a
measurable function such that E[|f(ζ(0))|] < ∞. Ergodic
Theorem (Athreya and Lahiri, 2006; Klenke, 2008) states

that limn→∞
1
n

∑n−1
k=0 f(ζ(k)) = E[f(ζ(0))], almost surely.

In Section 3 below, we consider a discrete-time linear
stochastic parameter-varying dynamical system. The pa-
rameter of the dynamical system is modeled as an aperi-
odic, stationary, and ergodic discrete-time Markov process
{ξ(k) ∈ R

l}k∈N0
. We investigate the stabilization problem

for the case where the parameter process {ξ(k) ∈ R
l}k∈N0

is observed (sampled) at every τ ∈ N time steps. The
sequences of values that the parameter ξ(·) takes between
consecutive observation instants are characterized through

the stochastic process {ξ̂(n) ∈ R
l × R

l × · · · × R
l

︸ ︷︷ ︸

τ terms

}n∈N0

defined by

ξ̂(n) ,
(
ξ(nτ), ξ(nτ + 1), . . . , ξ((n+ 1)τ − 1)

)
, (8)

for n ∈ N0. Our main results presented in Section 3 rely on
Lemma 1 below, which shows that the stochastic process

{ξ̂(n)}n∈N0
defined in (8) is also stationary and ergodic.

Lemma 1. Suppose that {ξ(k) ∈ R
l}k∈N0

is a discrete-time
aperiodic, stationary, and ergodic Markov process. Then

the stochastic process {ξ̂(n)}n∈N0
that is defined in (8) for

a given τ ∈ N is stationary and ergodic.

Proof. The proof is omitted due to space limitations. �

In Section 4 we investigate almost sure asymptotic sta-
bilization of a discrete-time linear stochastic parameter-
varying system. The zero solution x(k) ≡ 0 of a stochastic
system with a fixed initial condition x0(·) is asymptotically
stable almost surely if

P[ lim
k→∞

‖x(k)‖2 = 0] = 1. (9)

3. SAMPLED-PARAMETER FEEDBACK CONTROL
OF DISCRETE-TIME LINEAR STOCHASTIC

PARAMETER-VARYING SYSTEMS

In this section, we first provide the mathematical model
for a discrete-time linear stochastic parameter-varying

system. Then we explain the feedback control problem
under periodically observed (sampled) parameter informa-
tion and present our proposed sampled-parameter control
framework for stabilizing discrete-time linear stochastic
parameter-varying systems.

3.1 Mathematical Model

We consider the discrete-time linear stochastic dynamical
system given by

x(k + 1) = A(ξ(k))x(k) +B(ξ(k))u(k), k ∈ N0, (10)

with the initial condition x(0) = x0, where x(k) ∈ R
n

is the state vector, u(k) ∈ R
m is the control input.

Furthermore, A : Rl → R
n×n and B : Rl → R

n×m denote
the parameter-dependent system matrices. The parameter
denoted by {ξ(k) ∈ R

l}k∈N0
is assumed to be an aperiodic,

stationary, and ergodic Markov process characterized by
the transition probability function P : Rl ×B(Rl) → [0, 1]
and the initial stationary distribution ν : B(Rl) → [0, 1].
Note that

P[ξ(0) ∈ S] = ν(S), S ∈ B(Rl), (11)
ˆ

Rl

P (s, S)ν(ds) = ν(S), S ∈ B(Rl). (12)

Note that a class of switched stochastic systems can be
modeled as stochastic parameter-varying systems of the
form (10). For instance, the discrete-time switched linear
stochastic system discussed in Cetinkaya and Hayakawa
(2013a,b) is a special case of the dynamical system (10),
where {ξ(k)}k∈N0

is modeled as an aperiodic and irre-
ducible finite-state Markov chain. Note that in Cetinkaya
and Hayakawa (2013a,b), the parameter ξ(·) indicates the
active mode (subsystem) that governs the overall dynam-
ics of a switched system. Furthermore, note that linear
systems with stationary and ergodic autoregressive param-
eters can also be characterized through (10), since vector
autoregressions are Markov processes (see Durrett (2010)).

3.2 Control Under Periodic Parameter Observations

In this paper, we investigate feedback stabilization of the
linear parameter-varying dynamical system (10) under
the assumption that only a periodically-sampled version
of the parameter process {ξ(k) ∈ R

l}k∈N0
is available

for control purposes. Specifically, we assume that the
parameter ξ(·) is observed (sampled) periodically at time
instants 0, τ, 2τ, . . ., where τ ∈ N denotes the parameter
observation period. The sampled parameter information
that is available to the controller is characterized through
the stochastic process {φ(k) ∈ R

l}k∈N0
defined by

φ(k) = ξ(nτ), k ∈ {nτ, nτ + 1, . . . (n+ 1)τ − 1}, (13)

for n ∈ N0.

In order to achieve stabilization of the dynamical system
(10), we propose the control law

u(k) = K(φ(k))x(k), k ∈ N0, (14)

where K : Rl → R
m×n denotes the sampled-parameter-

dependent feedback gain. Note that the control law (14)
requires only sampled parameter information.
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Fig. 1. Actual parameter ξ(k) and its sampled version φ(k)

Fig. 1 shows sample paths of a parameter process {ξ(k) ∈
R}k∈N0

(modeled as an autoregressive process), and its
sampled version {φ(k) ∈ R}k∈N0

. In this example, the
parameter ξ(·) is observed (sampled) at every τ = 3 steps.
At these parameter observation instants, actual parameter
and its sampled version share the same value. However,
at other time instants, actual parameter may differ from
its sampled version. Hence, the perfect knowledge of the
actual parameter is available to the controller only at the
parameter observation instants.

Note that the system dynamics in (10) depend on the
actual parameter {ξ(k) ∈ R

l}k∈N0
, whereas the feedback

gain of the control law (14) depends on the sampled version
of the parameter, {φ(k) ∈ R

l}k∈N0
. In the following lemma

we present an ergodic theorem for the coupled stochastic
process {(ξ(t), φ(k)) ∈ R

l × R
l}k∈N0

, which is composed
of the original parameter process and its sampled version.
Note that the result provided in Lemma 2 below is crucial
for developing the main results of this paper presented in
Theorems 3, 4, and Corollary 5.

Lemma 2. Suppose {ξ(k) ∈ R
l}k∈N0

is an aperiodic, sta-
tionary, and ergodic Markov process characterized by the
transition probability function P : R

l × B(Rl) → [0, 1]
and the initial stationary distribution ν : B(Rl) → [0, 1].
Furthermore, let {φ(k) ∈ R

l}k∈N0
defined as in (13) be the

periodically sampled version of {ξ(k) ∈ R
l}k∈N0

for a given
sampling period τ ∈ N. Then for any Borel measurable
function γ : Rl × R

l → R, it follows that

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k))

=
1

τ

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

γ(ξ̄, φ̄)P (i)(φ̄, dξ̄)ν(dφ̄), (15)

almost surely.

Proof. Let {ξ̂(n) ∈ R
l × R

l × · · · × R
l

︸ ︷︷ ︸

τ terms

}n∈N0
be the

stochastic process defined in (8). Note that ξ̂(n) denotes
the sequence of values that the parameter ξ(·) takes be-
tween consecutive observation instants nτ and (n + 1)τ .

Furthermore, let N(k) , ⌊k/τ⌋, k ∈ N0. The number of
mode samples obtained up to time k ∈ N0 is given by
N(k) + 1. Note that, for all n̄ ∈ N such that n̄ > τ , we
have

n̄−1∑

k=0

γ(ξ(k), φ(k)) =

N(n̄)−1
∑

n=0

τ−1∑

i=0

γ(ξ(nτ + i), φ(nτ + i))

+

n̄−1∑

k=N(n̄)τ

γ(ξ(k), φ(k)). (16)

Since limn̄→∞
1
n̄

∑n̄−1
k=N(n̄)τ γ(ξ(k), φ(k)) = 0, it follows

from (16) that

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k))

= lim
n̄→∞

1

n̄

N(n̄)−1
∑

n=0

τ−1∑

i=0

γ(ξ(nτ + i), φ(nτ + i))

= lim
n̄→∞

N(n̄)

n̄

1

N(n̄)

N(n̄)−1
∑

n=0

τ−1∑

k=0

γ(ξ(nτ + i), φ(nτ + i))

= lim
n̄→∞

N(n̄)

n̄

1

N(n̄)

N(n̄)−1
∑

n=0

γ̂(ξ̂(n)), (17)

where γ̂(ξ̂(n)) ,
∑τ−1

k=0 γ(ξ(nτ + k), φ(nτ + k)). Now, by

using the definition of N(·), we obtain limn̄→∞

N(n̄)
n̄

= 1
τ
.

Furthermore, it follows from Lemma 1 that the stochastic

process {ξ̂(n)}n∈N0
is stationary and ergodic. Thus, by the

ergodic theorem for stationary and ergodic stochastic pro-

cesses, we obtain limN→∞
1
N

∑N−1
n=0 γ̄(ξ̂(n)) = E[γ̂(ξ̂(0))].

Therefore,

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k)) =
1

τ
E[γ̂(ξ̂(0))]

=
1

τ
E[

τ−1∑

i=0

γ(ξ(i), φ(i))]

=
1

τ

τ−1∑

i=0

E[γ(ξ(i), φ(i))]. (18)

Note that since the value of sampled parameter process
φ(·) does not change between parameter observation in-
stants, we have φ(i) = φ(0) = ξ(0), i ∈ {0, 1, . . . , τ − 1}. It
then follows that

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k)) =
1

τ

τ−1∑

i=0

E[γ(ξ(i), ξ(0))]. (19)

Now by using the transition probability function P : Rl ×
B(Rl) → [0, 1] and the initial stationary distribution ν :
B(Rl) → [0, 1], we obtain

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k))

=
1

τ

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

γ(ξ̄, φ̄)P[ξ(i) ∈ dξ̄, ξ(0) ∈ dφ̄]

=
1

τ

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

γ(ξ̄, φ̄)P (i)(φ̄, dξ̄)ν(dφ̄), (20)

which completes the proof. �

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8149



4. SUFFICIENT CONDITIONS FOR ALMOST SURE
ASYMPTOTIC STABILIZATION

In this section, we utilize the result presented in Lemma 2
and obtain sufficient almost sure asymptotic stabiliza-
tion conditions for the closed-loop stochastic parameter-
varying system (10), (14).

Theorem 3. Consider the linear parameter-varying control
system (10), (14). If there exist a matrix R > 0 and a
measurable function λ : Rl × R

l → (0,∞) such that

0 ≥ (A(ξ̄) +B(ξ̄)K(φ̄))TR

· (A(ξ̄) +B(ξ̄)K(φ̄))− λ(ξ̄, φ̄)R, ξ̄, φ̄ ∈ R
l, (21)

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

ln(λ(ξ̄, φ̄))P (i)(φ̄, dξ̄)ν(dφ̄) < 0, (22)

then the zero solution x(k) ≡ 0 of the closed-loop system
(10), (14) is asymptotically stable almost surely.

Proof. First, let V : Rn → [0,∞) be the positive-definite

function defined by V (x) , xTRx. It follows from (10) and
(14) that for k ∈ N0,

V (x(k + 1)) = xT(k)
(
A(ξ(k)) +B(ξ(k))K(φ(k))

)T
R

·
(
A(ξ(k)) +B(ξ(k))K(φ(k))

)
x(k). (23)

We now use (21), (23) and definition of V (·) to obtain

V (x(k + 1)) ≤ λ(ξ(k), φ(k))V (x(k))

≤ θ(k)V (x(0)), k ∈ N0, (24)

where θ(k) ,
∏k

n=0 λ(ξ(n), φ(n)), k ∈ N0. It follows that

ln(θ(k)) =
k∑

n=0

ln(λ(ξ(n), φ(n))), k ∈ N0. (25)

Furthermore, as a consequence of Lemma 2,

lim
k→∞

1

k
ln(θ(k))

= lim
k→∞

1

k

k∑

n=0

ln(λ(ξ(n), φ(n)))

=
1

τ

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

ln(λ(ξ̄, φ̄))P (i)(φ̄, dξ̄)ν(dφ̄). (26)

It then follows from (22) and (26) that limk→∞
1
k
ln(θ(k)) <

0, almost surely. Hence, limk→∞ ln θ(k) = −∞, almost
surely, and therefore, P[limk→∞ θ(k) = 0] = 1. Now, as
a result of (24), we obtain P[limk→∞ V (x(k)) = 0] = 1,
which implies that the zero solution x(k) ≡ 0 of the closed-
loop system (10), (14) is asymptotically stable almost
surely. �

Theorem 3 provides sufficient conditions for almost sure
asymptotic stability of the zero solution of the closed-
loop system (10) under the control law (14). Conditions
(21) and (22) of Theorem 3 reflect that the stabilization
performance depend not only on the system dynamics but
also on the probabilistic dynamics of parameter transitions
as well as the parameter observation period τ ∈ N.

In the next section, we explore the sampled-parameter
control problem for a linear parameter-varying system

with a state matrix that depend affinely on the stochastic
parameter {ξ(k)}k∈N0

.

4.1 Stabilization of Linear Parameter-Varying Systems
with Affine Parameter Dependence

We now consider a special case of the parameter-varying
dynamical system (10) where the state matrix A(·) is
defined as an affine function of the entries of the parameter
vector ξ(·) ∈ R

l; moreover, the input matrix B(·) is defined
as a constant matrix. Specifically, we consider the linear
parameter-varying system (10) with

A(ξ̄) ,
(
Ā0 +

l∑

i=1

ξ̄iĀi

)
, ξ̄ ∈ R

l, (27)

B(ξ̄) , B̄, (28)

where Āi ∈ R
m×n, i ∈ {0, 1, . . . , l}, and B̄ ∈ R

n×m are
constant matrices. In order to achieve stabilization of the
zero solution of dynamical system (10) with state and
input matrices given by (27) and (28), we employ the
control law (14) with the sampled-parameter-dependent
feedback gain function

K(φ̄) , K̄0 +

l∑

i=1

φ̄iK̄i, φ̄ ∈ R
l, (29)

where K̄i ∈ R
m×n, i ∈ {0, 1, . . . , l}, are constant matrices.

Note that the feedback gain (29) is an affine function of
the entries of the sampled parameter vector φ(·).

In Theorem 4 below, we present sufficient conditions under
which the proposed control law (14) with the feedback gain
(29) guarantees almost sure asymptotic stabilization of the
linear stochastic parameter-varying system (10) with state
and input matrices given by (27) and (28).

Theorem 4. Consider the linear parameter-varying system
(10) with state and input matrices given by (27) and (28).
If there exist a matrix R > 0 and scalars αi ∈ (0,∞), i ∈
{1, 2, . . . , l}, βi ∈ (0,∞), i ∈ {0, 1, . . . , l}, such that

0 ≥ ĀT
i RĀi − αiR, i ∈ {1, . . . , l}, (30)

0 ≥ (Āi + B̄K̄i)
TR

· (Āi + B̄K̄i)− βiR, i ∈ {0, 1, . . . , l}, (31)

and (22) hold with λ : Rl × R
l → (0,∞) given by

λ(ξ̄, φ̄) , (2l + 1)
(
β2
0 +

l∑

i=1

(
(ξ̄i − φ̄i)

2α2
i + φ̄2

iβ
2
i

))
, (32)

then the control law (14) with the feedback gain (29)
guarantees that the zero solution x(k) ≡ 0 of the closed-
loop system (10), (14) is asymptotically stable almost
surely.

Proof. The proof is omitted due to space limitations. �

Note that the conditions presented in Theorem 4 can be
used for assessing almost sure asymptotic stability of the
closed-loop system (10), (14) with the system matrices
(27), (28) when the gain matrices K̄i ∈ R

m×n, i ∈
{0, 1, . . . , l}, for the control law (14), (29) are already
known. In practice, we often need to employ numerical
methods for finding gain matrices so that the proposed
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control law (14) with those gains achieves almost sure
asymptotic stabilization. In Corollary 5 below, we present
an alternative set of sufficient almost sure asymptotic
stabilization conditions, which are well suited for finding
stabilizing gain matrices K̄i ∈ R

m×n, i ∈ {0, 1, . . . , l},
through numerical methods.

Corollary 5. Consider the linear parameter-varying sys-
tem (10) with state and input matrices given by (27)

and (28). If there exist matrices R̃ > 0, L̄i ∈ R
m×n,

i ∈ {0, 1, . . . , l}, and scalars αi ∈ (0,∞), i ∈ {1, 2, . . . , l},
βi ∈ (0,∞), i ∈ {0, 1, . . . , l}, such that

0 ≥ (ĀiR̃)TR̃−1(ĀiR̃)− αiR̃, i ∈ {1, 2, . . . , l}, (33)

0 ≥ (ĀiR̃+ B̄L̄i)
TR̃−1

· (ĀiR̃+ B̄L̄i)− βiR̃, i ∈ {0, 1, . . . , l}, (34)

and (22) hold with λ : R
l × R

l → (0,∞) given in
(32), then the control law (14), (29) with gain matrices

K̄i = L̄iR̃
−1, i ∈ {0, 1, . . . , l}, guarantees that the zero

solution x(k) ≡ 0 of the closed-loop system (10), (14) is
asymptotically stable almost surely.

Proof. The result is a direct consequence of Theorem 4
with R = R̃−1. �

Remark 6. Conditions (22), (33), and (34) of Corollary 5
can be verified using a numerical technique. Specifi-
cally, following the approach presented in Cetinkaya and
Hayakawa (2013a,b), we transform conditions (33) and
(34) into the matrix inequalities

0≤

[
αiR̃ (ĀiR̃)T

(ĀiR̃) R̃

]

, i ∈ {1, . . . , l}, (35)

0≤

[
βiR̃ (ĀiR̃+ B̄L̄i)

T

(ĀiR̃+ B̄L̄i) R̃

]

, i ∈ {0, 1, . . . , l}, (36)

by using Schur complements (see Bernstein (2009)). Note
that given αi, i ∈ {1, 2, . . . , l}, and βi, i ∈ {0, 1, . . . , l},
the inequalities (35) and (36) are linear in R̃ and L̄i,
i ∈ {0, 1, . . . , l}. We first find a set of values of αi, i ∈
{1, 2, . . . , l}, and βi, i ∈ {0, 1, . . . , l}, that satisfy (22) with
λ(·) calculated according to (32). We then iterate over the
values of αi, i ∈ {1, 2, . . . , l}, and βi, i ∈ {0, 1, . . . , l}, in
this set, and look for feasible solutions to the linear matrix
inequalities (35) and (36).

5. CONCLUSION

We investigated feedback control of discrete-time linear
stochastic parameter-varying systems under sampled pa-
rameter information. Specifically, we considered the case
where the parameter of the system is observed (sampled)
periodically; furthermore, we proposed a control law that
depends only on the sampled version of the parameter.
We obtained sufficient conditions under which our control
framework guarantees almost sure asymptotic stabilization
of the zero solution.
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