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Abstract: A new method for the design of fixed-order dynamic output-feedback Linear
Parameter Varying (LPV) controllers for discrete-time LPV systems with bounded scheduling
parameter variations is presented. Sufficient conditions for stability and induced l2-norm
performance of an LPV system are given through a set of Linear Matrix Inequalities (LMIs) and
exploited for design. Controller parameters appear directly as decision variables in the convex
optimisation program, which enables preserving a desired controller structure in addition to the
low order. Efficiency of the proposed method is illustrated on a simulation example, with an
iterative convex optimisation scheme used for the control system performance improvement.
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1. INTRODUCTION

The LPV system modelling and control paradigm arises
naturally as a successor of classical gain-scheduling con-
troller design approaches (Shamma and Athans (1991),
Leith and Leithead (2000)). It allows modelling a wide
class of nonlinear systems and the use of many tools from
linear systems theory for analysis and control. Recently,
a number of applications have been treated in the LPV
framework; modelling and control of turbofan engines (W.
Gilbert et al. (2010)), active braking control (G. Panzani
et al. (2012)) and semi-active vehicle suspension design (C.
Poussot-Vassal et al. (2008)), to name just a few.

Over the last 20 years, different continuous-time LPV con-
troller design strategies for LPV systems with state-space
description were proposed (e.g. F. Wu et al. (1996), Ap-
karian and Adams (1998), Sato (2011), Wu (2001)). Some
important results for the stability analysis of uncertain and
LPV polytopic discrete-time systems are presented in M.
C. de Oliveira et al. (1999), R. C. L. F. Oliveira and P.
L. D. Peres (2005), J. Daafouz and J. Bernussou (2001).
These ideas establish a good starting point for an LPV
controller synthesis. A few recent publications cover the
case of controller synthesis for discrete-time LPV systems
affected by scheduling parameters with limited variations
(R. C. L. F. Oliveira and P. L. D. Peres (2009), F. Amato
et al. (2005), J De Caigny et al. (2012)).

All enlisted methods result in a controller in either state-
feedback or full-order output-feedback form. For online
reconstruction of the full-order controller, time-consuming
linear algebraic operations need to be employed. Moreover,
the order of the controller may be too high since it depends
on the augmented plant model order. Some methods for
the LPV controller reduction are available (Beck (2006)),
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but there is no guarantee of preserving stability or per-
formance of the original LPV system with reduced con-
troller. On the other side, a state-feedback LPV controller
demands state estimation, which is a non-trivial task for
LPV systems. In both cases controller is restored from the
optimisation results by a nonlinear change of variables,
which ruins user requested structure in the controller. As
well, in most practical applications, resources available for
control are highly limited. This is why a method for the di-
rect design of low-order output-feedback LPV controllers,
which are easier to implement and with accordingly lower
execution times, is highly needed.

Some methods for the fixed-order LPV controller design in
the transfer function setting are presented in W. Gilbert
et al. (2010), S. Formentin et al. (2013) and Z. Emedi and
A. Karimi (2012). The use of transfer function models is
very well aligned with industrial practice and modelling
paradigm in the SISO case (Tóth (2010)). However, the
extension to the MIMO case can be highly non-trivial
comparing to its simplicity in the state-space setting.

The importance of the discrete-time LPV controller design
methods comes from the fact that the LPV models pro-
duced by identification procedures are usually in discrete-
time (e.g. Toth et al. (2009), V. Cerone et al. (2012),
Verdult (2002)). As well, control is anyway performed
using digital computers in practice. The problem is that
preservation of the closed-loop stability under the discreti-
sation of a continuous-time LPV system could require too
high sampling frequency (R. Toth et al. (2008)).

To the best of our knowledge, there is no fixed-order
discrete-time state-space LPV controller design method
presented in the literature. In this paper a class of discrete-
time LPV state-space plants, affine in the scheduling
parameter vector, is considered. User imposed controller
structure is preserved since controller parameters appear
directly as decision variables in the convex optimisation
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program. The realistic case of limited scheduling parame-
ter variations is treated through the use of Parameter De-
pendent Lyapunov Functions (PDLF) affine in the schedul-
ing parameter vector. Upper bound on the induced l2-norm
performance of a control system is enhanced through the
use of iterative convex optimisation procedure.

The paper is organised as follows. First, preliminaries
about the LPV system stability and performance are given
in Section 2. Stabilising LPV controller design procedure
is proposed in Section 3. Extension of the procedure to
induced l2-norm performance design are given in Section
4. An illustrative simulation example is given in Section 5
and the concluding remarks in Section 6.

2. PRELIMINARIES

2.1 LPV plant and controller

The class of LPV discrete-time systems considered in this
paper can be represented by the following model:

xg(k + 1) = Ag(θ)xg(k) +Bu(θ)u(k) +Bw(θ)w(k)

z(k) = Cz(θ)xg(k) +Dzu(θ)u(k) +Dzw(θ)w(k)

y(k) = Cyx(k) +Dyww(k).

(1)

Here xg(k) ∈ R
n represents the state vector, u(k) ∈ R

nu

is the control input vector, z(k) ∈ R
nz is the vector

of controlled outputs and y(k) ∈ R
ny is the vector of

measured outputs. The time-varying scheduling parameter
vector θ = [θ1(k), . . . , θnθ

(k)]T is assumed to belong to a
hyper-rectangle Θ ∈ R

nθ , or equivalently

θi(k) ∈ [−θi, θi], i = 1, . . . , nθ. (2)

where, without loss of generality, symmetric bounds
around θi = 0 is assumed. The scheduling parameters θi
are assumed to be independent.

Strict properness of the plant model is a non-restricting
assumption, since in discrete-time systems there is always
a delay of at least one sampling period. For a technical rea-
son matrices Cy andDyw are assumed to be independent of
the scheduling parameter vector. However, similar results
could be obtained for the case of Cy and Dyw depending
on θ, and Bu and Dzu being constant.

Affine dependence on the scheduling parameter vector
is assumed for all θ-dependent matrices. This can be
represented, for example for Ag, as

Ag(θ(k)) = Ag0 +

nθ∑
i=1

θi(k)Agi . (3)

The following fixed-order LPV dynamic output feedback
controller structure is considered:

xc(k + 1) = Ac(θ)xc(k) +Bc(θ)y(k)

u(k) = Ccxc(k) +Dcy(k),
(4)

where xc(k) ∈ R
nc represents the controller state vector.

The choice of controller order nc is fully left to user.

Matrices Ac(θ) and Bc(θ) are supposed to have an affine
dependency on scheduling parameter vector. This implies
that the closed-loop matrices are as well affine in the
scheduling parameters. Closed-loop system can be written
as

x(k + 1) = Acl(θ)x(k) +Bcl(θ)w(k)

y(k) = Ccl(θ)x(k) +Dcl(θ)w(k),
(5)

where x(k) = [xg(k) xc(k)]
T and

Acl(θ) =

[
Ag(θ) +By(θ)DcCy Bg(θ)Cc

Bc(θ)Cy Ac(θ)

]

Bcl(θ) =

[
Bw(θ) +By(θ)DcDyw

Bc(θ)Dyw

]

Ccl(θ) = [Cz(θ) +Dzu(θ)DcCy Dzu(θ)Cc ]

Dcl(θ) = [Dzw(θ) +Dzu(θ)DcDyw ]

(6)

Remark 1. The closed-loop matrices in (6) are affine in θ
as some plant matrices are limited to be θ-independent.
If this was not the case, the problem could be treated
using the homogenous polynomials relaxations (e.g. as in
J De Caigny et al. (2012)). However, for the simplicity of
presentation we continue with this assumption.

2.2 Discrete-time LPV system stability conditions

Assessing the stability of an LPV system through the
use of a Lyapunov function quadratic in the state is
well treated in the literature (e.g. M. C. de Oliveira
et al. (1999)). In the discrete-time case, keeping the
Lyapunov matrix P constant over Θ is too restrictive
even if the scheduling parameters can change from one
extremal value to another over the course of one sampling
period (J. Daafouz and J. Bernussou (2001)). Usually in
practical applications the maximum possible variation of
a scheduling parameter is bounded as in

θ+i − θi ∈ [−δi, δi], 0 < δi < 2θi, i = 1, . . . , nθ, (7)

where θ+ = θ(k + 1). To exploit the bounds on schedul-
ing parameter variation, Lyapunov matrix affine in the
scheduling parameter vector is considered:

P (θ) = P0 +

nθ∑
i=1

θiPi > 0, ∀θ ∈ Θ. (8)

Using (8), well-known stability condition for a discrete-
time LPV system can be written as

P (θ)−AT
cl(θ)P (θ+)Acl(θ) > 0. (9)

This condition has to be satisfied for all admissible values
of (θ, θ+). The limits on scheduling parameters (2) and
their variations (7) imply that (θi, θ

+
i ) belongs to a set

presented by filling on Fig. 1. The set of vertices of hexagon
AiBiDiEiFiHi will be denoted by Ωvi . This means that
the pair (θ, θ+) always belongs to the polytope Ω whose
vertex set Ωv is given by Ωv = Ωv1 × Ωv2 × · · · × Ωvnθ

.
The logic behind Fig. 1 is rather intuitive. For example,
point Hi comes from the fact that if θi = −θi, then
θ+i ≤ −θi+ δi, since δi is maximum possible increase of θi
over one sample. Points Bi, Di and Fi can be obtained in
a similar manner.

Remark 2. There are two limit cases that are covered by
this setup. First is the fixed scheduling parameter case,
which is defined by δi = 0. In this case the hexagon
AiBiDiEiFiHi collapses into a line AiEi. In the case of
maximum possible variations, defined by δi = 2θi, the
filled hexagon degenerates into a square AiCiEiGi. Here,
however the primary focus is on the non-degenerate case,
taking its importance into account.

Remark 3. The case of non-symmetric variation bounds
could be treated straightforwardly. Symmetric bounds are
assumed for the simplicity of presentation.
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θi(k + 1)

θi(k)−θi −θi + δi 0 θi − δi θi

−θi

−θi + δi

0

θi − δi

θi

Ai Bi Ci

Di

EiFiGi

Hi

Fig. 1. Admissible (θi, θ
+
i ) space (filled).

Equivalent representation of (9) in the literature is[
P (θ) AT

cl(θ)P (θ+)
P (θ+)Acl(θ) P (θ+)

]
> 0. (10)

As controller variables appearing in Acl multiply unknown
Lyapunov matrix P in (10), the controller synthesis is a
Bilinear Matrix Inequality (BMI) optimisation program.
As it is a non-convex optimisation problem, obtaining
even (good) local solution is far from trivial. Another
issue is that multiplication of θ and θ+ produces the
infinite number of constraints. This can be substituted by
the finite number of constraints by application of some
relaxation technique (see Scherer (2006)). The idea applied
in this publication is to substitute the given infinite set
of non-convex constraints on design variables by a finite
number of linear matrix inequalities in the controller and
Lyapunov function parameters.

3. STABILISING FIXED-ORDER DISCRETE-TIME
LPV CONTROLLER SYNTHESIS

Over the last 15 years, stability of uncertain and LPV
systems is treated using different “slack matrix variable”
approaches (e.g. M. C. de Oliveira et al. (1999), R. C.
L. F. Oliveira and P. L. D. Peres (2005), J. Daafouz and
J. Bernussou (2001)). Similar conditions are developed
in M. S. Sadabadi and A. Karimi (2013) and applied to
robust fixed-order controller design for uncertain polytopic
systems. The following lemma based on the theory from
M. S. Sadabadi and A. Karimi (2013) represents a basis
for this LPV fixed-order controller synthesis approach.

Lemma 1. Strictly Positive Real (SPR) transfer func-
tions H(z) and H−1(z) satisfy discrete-time Kalman-
Yakubovic-Popov (KYP) lemma with a common Lya-
punov matrix P .

Lemma 2. Matrix inequalities[
P −MTPM MTP −MT + T TAT

clT
−T

PM −M + T−1AclT 2I − P

]
> 0

(11)
and

[
PT −AT

clPTAcl AT
clPT −AT

clX +MT
T

PTAcl −XAcl +MT 2X − P

]
> 0, (12)

where

PT = T−TPT−1, MT = T−TMT−1, X = T−TT−1,

are equivalent.

Proof. This lemma is a consequence of Lemma 1. Inequality
(11) represents the KYP lemma inequality for

H(z) =

[
M I

M − T−1AclT I

]
(13)

Inequality (12) represents the KYP lemma inequality for

H−1(z) =

[
T−1AclT I

T−1AclT −M I

]
(14)

which is pre- and post-multiplied by the block-diagonal
matrix diag(T−T , T−T ) and its transpose. �

Alternatively, the equivalence of (11) and (12) can be
proven using the matrix

L =

[
T−1 0

MT−1 − T−1Acl T
−1

]
. (15)

Namely, (12) is obtained as (11) pre- and post-multiplied
by LT and L. Since pre- and post-multiplication of matrix
by the invertible matrix and its transpose does not change
its positive definiteness, the matrix inequalities (11) and
(12) are equivalent.

Remark 4. It can be noticed that Schur stability of both
matrices A and M is implied through the positive definite-
ness of the upper left blocks of given matrix inequalities.

3.1 Fixed-order LPV Controller Design Conditions

Using Lemma 2, a sufficient condition for the fixed-order
LPV controller synthesis is proposed.

Theorem 1. Assume that are given a discrete-time LPV
plant affine in scheduling parameter vector θ, bounds
on the scheduling parameter vector and its variation as
in Preliminaries. Furthermore, assume an LPV controller
structure (4). Given matrices M and T , there exists an
LPV controller stabilising the given LPV plant for all
admissible scheduling parameter trajectories if[

P (θ)−MTP (θ+)M (∗)
P (θ+)M −M + T−1Acl(θ)T 2I − P (θ+)

]
> 0, (16)

P (θ) > 0 , ∀(θ, θ+) ∈ Ωv,

with (∗) representing the terms completing the symmetric
matrix.

Proof. First it can be observed that the left-hand side of
(16) is affine in pair (θ, θ+). This means that its validity for
∀(θ, θ+) ∈ Ω can be proven using an appropriate convex
combination of vertex inequalities.

Next, it has to be proven that validity of (16) implies
stability condition for the closed-loop system ∀(θ, θ+) ∈
Ω. Similarly to the alternative proof of Lemma 2, the
following matrix can be considered:

L(θ) =

[
T−1 0

MT−1 − T−1Acl(θ) T−1

]
. (17)

Pre- and post-multiplication of (16) by LT (θ) and L(θ)
imply positive-definiteness of
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[
PT (θ)−AT

cl(θ)PT (θ
+)Acl(θ) (∗)

PT (θ
+)Acl(θ)−XAcl(θ) +MT 2X − PT (θ

+)

]
(18)

for ∀(θ, θ+) ∈ Ω, with the same shorthands as in Lemma 2.
The top left block of (18) represents the stability condition
(9) for the closed-loop LPV system. Since its positivity
for ∀(θ, θ+) ∈ Ω is guaranteed by the Schur complement
lemma, stability of the closed-loop system is guaranteed
for all allowable scheduling parameter trajectories. �

Remark 5. The total number of constraints in the non-
degenerate case corresponds to the cardinality of the set
Ωv, which equals 6nθ . Considering that in realistic applica-
tions there are rarely more than 3 scheduling parameters
(F. Wu et al. (1996)), this number of LMIs should be
numerically tractable in acceptable execution time.

3.2 Fixed-order LPV Controller Synthesis Algorithm

In the continuous-time LPV controller design method
presented in Z. Emedi and A. Karimi (2013), the idea
for choosing matrix M is based on the design of initial
controllers for all vertices of Θ, and solving the inverse of
the synthesis problem. Similar idea can be applied here to
find appropriate values for M and T .

Remark 6. It is important to emphasise that the fixed-
order controller design is not a trivial task even for an LTI
plant, being a non-convex optimisation problem as well.
A few approaches are available in the form of Matlab R©
toolbox for H∞ and H2 controller design, for example
hinfstruct (Apkarian and Noll (2006)), HIFOO (Burke
et al. (2006)) and FDRC (Karimi (2013)). Since we need
an LTI controller just to initialise the algorithm (not
necessarily an optimal one, in any sense), one of these or
similar methods should suffice.

Suppose that initial controllers Ki, i = 1, . . . , 2nθ corre-
spond to the vertices of hyper-rectangle Θ. This means
that for each LTI system obtained by fixing θv ∈ Θv one
of the above-mentioned fixed-order LTI controller design
methods is used to design appropriate stabilising LTI
controller Ki. The next step is the choice of matrices M
and T . Based on Ki, i = 1, . . . , 2nθ , closed-loop matrices
Acl(θv) can be calculated. By introducing Acl(θv) into
(18), feasible X , MT and PT can be obtained. Then,
from matrix X the similarity transform matrix T can be
reconstructed by Cholesky factorisation, and fromMT and
T risesM = T TMTT . Now the controller design phase can
be performed using M and T in (16).

Evidently, this kind of method could fail already in the first
phase, having no feasible X , MT and PT for given choice
of initial controllers. For this reason, we replace (16) and
(18) by[

σ2P (θ)−MTP (θ+)M (∗)
P (θ+)M −M + T−1Acl(θ)T 2I − P (θ+)

]
> 0, (19)

[
σ2PT (θ)−AT

cl(θ)PT (θ
+)Acl(θ) (∗)

PT (θ
+)Acl(θ)−XAcl(θ) +MT 2X − PT (θ

+)

]
> 0.

(20)

The idea is now to iterate between (20) and (19) until
minimal σ is not obtained. This corresponds to the expo-
nential decay minimisation, and σ ≤ 1 guarantees stability
of the closed-loop system.

This algorithm can be summarised in the 4 following steps:

step 1 : choose small ε > 0; set j = 0; design the initial
controllers Ki, i = 1, . . . , 2nθ for θv ∈ Θv

step 2 : for ∀θv ∈ Θv calculate Acl(θv) using Kj−1 (use
initial controllers if j = 0);
set (20) for ∀(θ, θ+) ∈ Ωv using Acl(θ) and find feasible
X , MT and PT (θ) while minimising σ by bisection;
reconstruct T from X = T−TT−1 and subsequently
M = T TMTT .

step 3 : set (19) for ∀(θ, θ+) ∈ Ωv using M and T
obtained in step 2 and search for feasible Kj+1(θ),
PT (θ) and minimal (by bisection) σj ;

step 4 : if σj − σj−1 > ε set j = j + 1 and jump to the
step 2; otherwise stop.

Equivalence of (19) and (20) ensures that at worst case in
step 3 we will obtain exactly the same controller and σj

as those applied in step 2. Therefore stability indicator
(and exponential decay parameter) σj is monotonically
non-increasing in this synthesis procedure.

4. INDUCED L2-NORM PERFORMANCE DESIGN

While ensuring stability of the controlled system, it is im-
portant to optimise some performance index of the closed-
loop system. A widely used performance measure for the
LPV control systems is the induced l2-norm performance,
an extension of the H∞ norm of LTI systems. In general,
it gives a good upper bound on the ratio of “energy” of the
performance output and external excitation, as observed
in a formal definition (J De Caigny et al. (2012)):

Definition 1. Suppose that the external input w(k) be-
longs to l2, the set of all discrete-time signals with bounded
2-norm. Then, γ is an upper bound on the induced l2-norm
performance of the LPV system (5) if

sup
w �=0

‖z‖22
‖w‖22

< γ (21)

for all allowable scheduling parameter trajectories.

Induced l2-norm performance of an LTI system can
be characterised through the well-known Bounded Real
Lemma. Its extension to the LPV system case can be found
in the literature in the following form:

Lemma 3. γ is the upper bound on the induced l2-norm
performance of the LPV system (5) if

P −AT
clP

+Acl − γ−1CT
clCcl−

ET
(
I − γ−1DT

clDcl −BT
clPBcl

)−1
E < 0 (22)

is satisfied for ∀(θ, θ+) ∈ Ω, where

E = BT
clP

+Acl + γ−1DT
clCcl (23)

and dependence on θ and θ+ is omitted.

Our goal is to propose a method for fixed-order discrete-
time LPV controller design, guaranteeing good induced l2-
norm performance for a given LPV system. Similarly to the
stabilising LPV controller design problem, constraints (22)
define a non-convex set in the space of design variables.
The following theorem proposes an inner convex approxi-
mation of the non-convex solution set.

Theorem 2. Assume that are given a discrete-time LPV
plant affine in scheduling parameter vector θ , bounds
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on the scheduling parameter vector and its variation as
in Preliminaries. Furthermore, suppose that the LPV
controller structure is given by (4). Given decoupling
matrix M and state transformation matrix T , there exists
an LPV controller stabilising the given LPV plant and
ensuring the induced l2-norm performance to be at most
γ for all admissible scheduling parameter trajectories if


P −MTP+M (∗) (∗) (∗)
P+M −M + T−1AclT 2I − P+ (∗) (∗)

0 BT
clT

−T I (∗)
CclT 0 Dcl γI


 > 0, (24)

P > 0 , ∀(θ, θ+) ∈ Ωv.

Proof. As the expression (24) is affine in the pair (θ, θ+),
we can conclude that its validity for ∀(θ, θ+) ∈ Ωv

guarantees the validity for ∀(θ, θ+) ∈ Ω as well. Next,
we will prove that validity of (24) for ∀(θ, θ+) ∈ Ω implies
the satisfaction of (22). Consider the non-singular matrix

L1(θ) =

[
T−T T−TMT −AT

cl(θ)T
−T 0 −γ−1CT

cl(θ)
0 BT

cl(θ)T
−T −I γ−1DT

cl(θ)

]
.

Pre- and post-multiplication of (24) by L1(θ) and LT
1 (θ),

and then immediate application of Schur complement
lemma around the bottom-right block, produces exactly
(22) with PT = T−TPT−1 instead of P . This guarantees
the upper bound γ on the induced l2-norm performance
for all possible scheduling parameter trajectories. �

To be able to choose M and T , we propose a matrix
inequality equivalent to (24) in which matrices M , T and
P are decoupled.

Lemma 4. The matrix inequality


PT −AT
clP

+
T Acl (∗) (∗) (∗)

P+
T Acl −XAcl +MT 2X − P+

T (∗) (∗)
BclMT −BT

clXAcl BT
clX I (∗)

Ccl 0 Dcl γI


 > 0 (25)

is equivalent to (24) for ∀(θ, θ+) ∈ Ω.

Proof. Observe the matrix

L2(θ) =



T−T T−TMT −AT

cl(θ)T
−T 0 0

0 T−T 0 0
0 0 I 0
0 0 0 I


 . (26)

Pre- and post-multiplication of (24) by L2(θ) and LT
2 (θ)

gives exactly (25). Since the matrix L(θ) is non-singular,
these two matrix inequalities are equivalent by the same
argument as in Lemma 2. �

Now, similar algorithm to the one in Section 3 can be de-
veloped. Here the initialisation can be performed directly
using the previously designed stabilising LPV controller.
The optimal cost γi will be monotonically non-increasing
for the reason of equivalence of (25) and (24).

5. SIMULATION RESULTS

To illustrate the potential of the proposed method, an LPV
controller is designed for a random 4th order discrete-time
LPV system. Generated plant matrices are :

A(θ) =




0.5216 −0.1788 0.6895 −0.4840
0.4259 + 0.5412θ 0.4998 −0.8022 0.1666

−0.6085 0.8867 0.4388 −0.0190
0.4358 −0.1857 0.1947 + 0.1725θ 0.6140


 ,

BT
u = [−2.0259 −4.5084 1.9318 1.5011 ] ,

BT
w = [ 0.1629 0.1812 0.0254 0.1827 ] ,

Cy = Cz = [ 4.8299 0.5267 −0.9993 −3.0121 ] ,

Dyw = Dzw = 0.1897, Dyu = Dzu = 0.0.

Bounds on the scheduling parameter and its variation are
assumed as θ ∈ [−1, 1] and δ ∈ [−1/3, 1/3]. It is important
to notice that the given system is unstable even for frozen
values of θ. The LPV controller order is chosen equal to 2,
and all controller matrices are assumed to be θ-dependent
(this causes no problem as only Ag depends on θ).

First, random initial controllers of order 2 are designed
for two vertices of the scheduling parameter interval.
Motivation for this comes from the initialization procedure
in the HIFOO toolbox (H∞ Fixed-Order Optimization,
Burke et al. (2006)). For this purpose the function fminunc
from the Matlab R© Optimization ToolboxTM is used. The
cost function is chosen as the spectral radius of the closed-
loop state matrix. For each of the two vertices, 50 runs of
fminunc with different randomly chosen initial points are
performed. As a result, 4 stabilising LTI controllers are
found for the first vertex, and 11 stabilising LTI controllers
for the second one. Obtained closed-loop spectral radii all
belong to [0.9, 1].

Next, a search for the stabilising LPV controller of order 2
can be performed using the algorithm presented in Section
3. In total, 44 experiments are performed for each possible
combination of 4 initial controllers for the first vertex
and 11 for the second one. As a convex optimisation
solver, SDPT3 (Toh et al. (1999)) is used. For any initial
controller combination, algorithm stalls after 15 to 25
iterations. In only one out of 44 cases the final controller
is not stabilising (spectral radius of 1.0478). In 35 out of
44 cases the final spectral radius is in [0.74, 0.75], a great
improvement from initial radius valid just for vertices. It is
interesting to notice that in the first few iterations of the
algorithm, obtained LPV controllers do not stabilise the
system, spectral radius begin larger than 1. The execution
time depends on the initial controller and is in the interval
[150, 250]s, but there may be a way to reduce this for one
order of magnitude by avoiding bisection over σ.

Finally, obtained stabilising LPV controllers can be used
as starting points for the induced l2-norm performance
controller design. The execution time here is much smaller
(around 20 seconds) since no bisection algorithm is in-
volved. For around the half of the controllers, the final γ
is between 63 and 64. The optimal γ is 63.7044, and the
optimal controller:

Ak(θ) =

[−1.8304 −1.2880
−3.1562 −0.9414

]
+ θ

[
0.2477 0.2138
0.3821 −0.0529

]

Bk(θ) =

[
0.4548
0.6232

]
+ θ

[−0.1210
−0.1126

]

CT
k (θ) =

[−0.3958
−0.2988

]
+ θ

[
0.1101
0.0003

]

Dk(θ) = 0.0762− 0.0380θ.
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6. CONCLUSION

In this paper a method for designing fixed-order dy-
namic output-feedback Linear Parameter Varying (LPV)
controllers for discrete-time LPV systems with bounded
scheduling parameter variations is presented. Proposed
controller design scheme can iteratively improve induced
l2-norm performance of the controlled system. Provided
simulations illustrate that a wide range of initialisation
values leads to good performance of the controlled system.
In the future work, comparison with existing LTI controller
design methods for fixed values of scheduling parameter
could be performed, to approximately measure the quality
of obtained induced-l2 performance.
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