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Abstract: Energy consumption reduction strategies in the mining industry have increased in
the last years due to the energy prices increments. Control strategies in the mining processes are
one of the many ways to optimize energy consumption, especially if the strategies consider global
optimization and ensure the stability of the system. Mineral grinding accounts for as much as
50% of the energy consumption in a mineral concentrator plant. For this reason a centralized
Hybrid model predictive control (HMPC) scheme is presented; this control minimizes the specific
energy consumption and stabilizes the plant by ensuring an output particle size contained on the
mesh 65. This work shows that more complex control solutions can be applied in the grinding
process, substituting conventional control strategies in a successful way, and decreasing the
control strategy implementation complexity, since conventional control strategies rely on expert
systems to handle discrete variables and events, and HMPC strategies allow the inclusion of
discrete events both in the model and in the controller.

Keywords: Hybrid model predictive control; Dynamic modelling; Hybrid modelling; Hybrid
identification.

1. INTRODUCTION

Mineral grinding is one of the main components of a
concentrator plant, its aim is to reduce the particle size
by a combination of impact and abrasion effects (Wills
and Napier-Munn, 2006). Control strategies for the min-
eral grinding process include global energy optimization,
ensuring an output particle size suitable for the flotation
process and ensuring the process stability. To achieve
this, control techniques such as PID, multivariate, expert
systems, fuzzy logic, neural networks, model predictive
control (MPC), statistical process control, hybrid model
predictive control (HMPC) and others (Wei and Craig,
2009) have been proposed.

The use of simple MPC strategies has increased in the last
years because of good performance results in tracking and
optimizing applications, the ability to handle restrictions
and constraints, and a robust management of disturbances
(Wei and Craig, 2009), the disadvantage is that these
techniques do not allow the use of discrete variables,
events, and dynamics; a problem solved by the HMPC
control technique.

The Hybrid Model Predictive Control (HMPC) strategy
is a technique that represents nonlinear dynamics under
different operating modes, by creating a set of linear equa-
tions. Since a linearization process of nonlinear dynamics
can be a difficult task, a hybrid identification procedure
is used, allowing to obtain simple models suitable for a
HMPC controller (Putz and Cipriano, 2013).

⋆ This study was funded by the FONDECYT N◦1120047, “Dis-

tributed Hybrid Model Predictive Control for Mineral Processing".

Given the existence of several operating modes in a grind-
ing plant, regarding the ON/OFF status of secondary
grinding circuits, ON/OFF status of conveyors, quantity
of active hydrocyclones, and others. Hybrid modelling
proposes an interesting and novel solution for the repre-
sentation of the grinding process and the control. In this
paper, we first develop a dynamic hybrid model for grind-
ing stage, then we get a prediction model for the output
particle size and the specific energy consumption through
identification techniques, and last we develop an HMPC
centralized controller to minimize the energy consumption
and maintain the particle size output in certain ranges.

2. PLANT DESCRIPTION

The grinding plant consists on primary and secondary
grinding. The primary grinding breaks the ore by using a
SAG mill, and then its classified by a vibratory screen, the
product goes to a sump or to a pebble crusher to reduce
more the ore size. The secondary stage of the grinding
starts after the sump, where the sump ore is sent to
hydrocyclones batteries using pumps, and it is classified to
go either to the flotation process or to a balls mill circuit
that crushes the ore coming from the hydrocyclones and
from the pebble crusher.

A schematic of the simulated plant is shown in Fig. 1, the
secondary stage consists on a two line grinding mill circuit.
Each hydrocyclone battery has 14 hydrocyclones.

3. MODELLING AND SIMULATION

The plant is modelled by including both dynamic models
and discrete events/variables. This variables represent the
state of plant components such as secondary grinding
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Fig. 1. Grinding schematic

circuits. They are also used to represent the behaviour
of the stockpile feeding process.

3.1 Continuous Modelling

The continuous modelling of the grinding plant makes use
of existing mathematical models of the machinery and
processes involved. This models are taken from Orellana
(2010), which are simplifications of the work developed
in Weymont (1979), Austin et al. (1987) and Barahona
(1984).

Mass flow vectors divided into intervals of ore size ranges
(Orellana, 2010) are used to represent the mineral feeding
from the stockpile. This can can be described by (1)

fs = Ft ∗ fsize (1)

where Ft is the total mass flow and fsize is a vector
dependent of the granulometric distribution of the mineral.

The flow of pulp that passes through the pumps is used to
activate/deactivate the secondary grinding lines, together
with other variables and processes. This can be described
as in (2) (Orellana, 2010):

vtmp = 1+4gcp ∗ [κB1Vb −κB2 ∗ρtP ∗g ∗ (hh −hp)]

f̄bc =

[−1+
√

vtmp

2∗gcP

]

(2)

where κB1 and κB2 are pump constants, Vb is the pump
speed, ρtP is the pulp density, g the gravity force, hh

the height difference between the pump and the hydro-
cyclones, hp is the pulp height inside the sump, and gcP

is defined as (3):

gcP = κB2 ∗
[

κH4

(1− cP )0.25
+κB3

]

(3)

with κB3 representing a geometric parameters constant of
the system and κH4 a pressure constant in the input of
the hydrocyclone battery.

3.2 Hybrid Modelling

The hybrid modelling was achieved by representing the
variables with piecewise equations, or with the use of
activation variables to certain equation terms.

The hybrid modelling in this paper was developed to
achieve the modelling of two events of a grinding plant.

The first event is the stockpile feeding process of the plant,
and the second is the activation/deactivation of secondary
grinding circuits.This section presents the equations in-
volved in the development of the hybrid model.

The stockpile feeding process can be described as follows.
In (Orellana, 2010) the particle size, fsize, can take three
values depending on the granulometric distribution (big,
medium or small), this is be described as in (4):

fs =







Ft∗ fs, ga(t) = 1

Ft∗ fm, ga(t) = 2

Ft∗ fb, ga(t) = 3

(4)

where ga is the variable that allows the selection of the
granulometric distribution of the solids. This modelling al-
lows the development of an independent equation for each
conveyor feeding the SAG mill. This work makes the use
of six conveyors. Two of each granulometric distribution.
After this, the product of the conveyors is added, forming
the feeding mass flow of the grinding plant.

As it is known, a usual stockpile has the finest material in
the centre and the coarsest material on the sides, making
the material discharge process feed the finest granulomet-
ric distribution ore first. This becomes a problem since the
stockpile feeding rate is not infinite, and when the finest
ore stops flowing, the grinding only processes medium and
coarse ore, making it harder to crush. And in worst case
scenario the grinding only processes coarse ore. This forces
the operators to push the remaining material to the centre.
The modelling of the primary feeding is shown in Fig. 2:

The state of the conveyors is modelled by adding an
activation term to the sum as in (5):

fstotal
= α1 ∗ fs +α1 ∗ fm +α3 ∗ fb (5)

where the activation terms are αr ∈ {0,1} with r =
{1,2,3}. Additionally fs, fm and, fb represent the conveyors
mineral flow. In this work only three conveyors have this
activation terms, one of each granulometric distribution,
the other three conveyors feed the ore at a small constant
rate, representing the material mix on the stockpile, allow-
ing a percentage of mixed granulometries feed the process.

ORE
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SAG
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MEDIUM COARSESMALL

Fig. 2. Ore stockpile feeding modelling
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The state of the secondary grinding is modelled by adding
activation terms to the flow of solids and water that pass
through the sump. The solid flow is described as in (6):

f̄b = sls ∗ f̄bc (6)

where sls ∈ {0,1} is the activation term to stop the flow
of solids, and f̄bc represents the flow of pulp passing the
pumps. The water flow is represented as (7):

qoP
= sls ∗ [p̄P ρtP (1− cP )] (7)

with cP representing the solids percentage in the pulp.
ρtP is the pulp density and p̄P is the material output
volumetric flow from the sump.

4. HYBRID IDENTIFICATION

The identification process used in this paper is divided into
two steps. First, hybrid identification of the system is per-
formed, using data generated with the grinding simulator,
which is tuned with industrial data. Then, the identified
variables are transformed into a Mixed Logical Dynam-
ical (MLD) environment, for HMPC strategies through
the Toolbox HYSDEL (HYbrid Systems DEscription Lan-
guage) developed by Jost and Torrisi (2002). As mentioned
in Jost and Torrisi (2002), the MLD framework is a power-
ful tool for modeling discrete-time linear hybrid systems.
Its main favorable feature is its ability to model logical
parts of processes and heuristics knowledge about plant
operation as integer linear inequalities. This framework
allows the convenient modelling using HYSDEL, creating a
well suited model for the formulation of HMPC strategies.

The hybrid identification was developed in a manual
manner, generating one data set for each of the plant
modes. In this case, 6 modes were taken into account.
Three simulating the three states (all granulometries,
medium-coarse granulometries, and coarse granulometries
feeding rates) of the conveyors that represent the stockpile
discharge, with both secondary circuits switched ON, and
the other three with one of the secondary circuits switched
OFF.

The procedure of identification consist on generating an
AutoRegresive eXogenous (ARX) model for each of the
modes, using the Linear Identification Toolbox of Matlab
(Ljung, 2013). The structure of this models can be de-
scribed as in (8)

A(q)y(t) = B(q)u(t−nk)+e(t) (8)

with q as a delay operator, represented as (9):

A(q) = 1+a1q−1 + ...+ana
q−na

B(q) = b1 + b2q−1 + ...+ bnb
q−nb+1

(9)

This allows the creating of a model suitable for HMPC,
as the ARX models are equivalent to Mixed Logical Dy-
namical (MLD) models (Heemels et al., 2001) which are
widely used in hybrid controllers. The MLD model form
and development can be found in Bemporad and Morari

(1999). The process of generating the matrices associated
with the model was developed using HYSDEL (Jost and
Torrisi, 2002) available for Matlab R©. The HYSDEL mod-
els of the plant were translated from the ARX obtained
from the identification, and then used to create the MLD.

5. CONTROL STRATEGIES

In this section a hybrid MPC is developed, showing that
the plant can be controlled in different modes. This modes
include the switching of the granulometric distribution
of the feeding, and the change of ON/OFF state of the
secondary grinding line.

Hybrid model predictive control (HMPC) uses models
characterized by the interaction of dynamic behaviours,
logical rules and operating constraints. Hybrid systems
can be represented in a mixed logical dynamical (MLD)
environment by a set of mixed integer inequalities, that
is, inequalities that include states, inputs and auxiliary
variables that may be continuous and/or discrete (Bem-
porad and Morari, 1999). An MLD system is completely
represented by the following set of equations:

x(t+1) = Ax(t)+B1u(t)+B2δ(t)+B3z(t)

y(t) = Cx(t)+D1u(t)+D2δ(t)+D3z(t)

E2δ(t)+E3z(t) ≤ E1u(t)+E4x(t)+E5

(10)

where x, y and u are the state, output and input of the
system expressed by:

x =

[

xc

xℓ

]

, xc ∈ R
nc , xℓ ∈ {0,1}nℓ (11)

y =

[

yc

yℓ

]

, yc ∈ R
pc , yℓ ∈ {0,1}pℓ (12)

u =

[

uc

uℓ

]

, uc ∈ R
mc , uℓ ∈ {0,1}mℓ (13)

Also, δ ∈ {0,1}rℓ is the auxiliary logical variable and
z ∈ R

rc the auxiliary continuous variable.

The hybrid model predictive control problem can therefore
be stated as follows (Bemporad and Morari, 1999):

min
{u

N−1

0
, δ

N−1

0
,z

N−1

0
}

N−1
∑

k=0

‖u(k)−ue‖2

Q1
+‖δ(k|t)− δe‖2

Q2
+

+‖z(k|t)−ze‖2

Q3
+‖x(k|t)−xe‖2

Q4
+‖y(k|t)−ye‖2

Q5

(14)

subject to:

x(T |t) = xe

x(k +1|t) = Ax(k|t)+B1u(k)+ ...

...+B2δ(k|t)+B3z(k|t)
y(k|t) = Cx(k|t)+D1u(k)+ ...

...+D2δ(k|t)+D3z(k|t)
E2δ(k|t)+E3z(k|t) ≤ E1u(k)+E4x(k|t)+E5

(15)
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where uN−1
0 = {u(0), . . . ,u(N − 1)}, Q1 = Q′

1 > 0, Q2 =

Q′
2 ≥ 0, Q3 = Q′

3 ≥ 0, Q4 = Q′
4 > 0, Q5 = Q′

5 ≥ 0, ‖x‖2

Q =

x′Qx , x(k|t) , x(t+k,x(t),uk−1
0 , δk−1

0 ,zk−1
0 ), and δ(k|t),

z(k|t), y(k|t) are defined in similar manner. The prediction
x(k|t) represents the state future value at t + k given the
state information at time t and the future values of the
optimization variables.

Assuming the solution to the problem exist, the receding
horizon control strategy can be applied, by setting u(t) =
u∗(0), disregarding the optimal sequence for future periods
and repeating the same procedure for t + 1. The HMPC
problem can be solved using mixed integer quadratic
programming (MIQP). From (15) we have

x(k|t) = Akx0 +

k−1
∑

i=0

Ai [B1u(k −1− i|t)

+B2δ(k −1− i|t)+B3z(k −1− i|t)] (16)

Then we add (16) to the objective function and the
constraints, and define the vectors in (17)

Ω ,







u(0)
...

u(T −1)






, Ψ ,







δ(0)
...

δ(T −1)






,

Ξ ,







z(0)
...

z(T −1)






, V ,

[

Ω
Ψ
Ξ

]

(17)

The problem formulated by (14) and (15) can be rewritten
as in (Bemporad and Morari, 1999)

min
V

V ′S1V +2(S2 +x′
0S3)V

subject to: F1V ≤ F2 +F3x0

(18)

6. RESULTS

6.1 Hybrid Identification

The hybrid identification procedure was developed for the
two controlled variables, specific energy consumption and
product particle size (defined as the percentage of product
retained by a 65 mesh sieve). Data was obtained with the
industrial data tuned grinding simulator, with a sample
time of 3.6 seconds. The variables taken into account in the
identification process were the feed rate of the controlled
conveyors, the water feeding the sump, the SAG mill
speed, and the product hardness. Each set of data was
generated by changing the inputs on a PRBS sequence.

The results are shown in Fig.3 and Fig. 4. As it can be
seen, the identification procedure successfully represents
the real data. Each set was generated by changing the
granulometric distribution of the product and switching
OFF one of the secondary grinding lines.
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Fig. 3. Specific Energy Consumption
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Fig. 4. Product Particle Size

6.2 Hybrid Model Predictive Control

On this work, two different control scenarios were tested.
The first one consist on simulating the stockpile discharge
behaviour by turning the conveyors ON/OFF. The results
for this scenario are shown in Fig. 5, Fig. 6, and Fig. 7.

The stockpile granulometric distribution feeding was
switched every 5 hours. This feeding was switched accord-
ingly to the next: on the first 5 hours full granulometric
distribution (fine, medium, and coarse), from 5 to 10 hours
medium-coarse granulometric distribution, from hour 10
to 15 only coarse granulometric distribution, from hour 15
to 20 the state was returned to medium-coarse granulo-
metric distribution, and on the last 5 hours the stockpile
state was returned to its original value. From 10 to 15
hours it is noticeable that the controller could not follow
the reference, the reason of this is because of the physical
restrictions taken into account in the HMPC strategy. On
the other states, the controller successfully followed the
reference, and the energy consumption was minimized.

The second scenario consists in simulating the secondary
line activation/deactivation. The results for this scenario
are shown in Fig. 8, Fig. 9, and Fig. 10. The reference value
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Fig. 5. Scenario 1: Particle Size
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Fig. 6. Scenario 1: Energy Consumption
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was changed when turning ON the secondary grinding
line, since if maintained, the physical restrictions of the
variables would not have allowed a successful result. For
this scenario, the controller successfully follows the given
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Fig. 8. Scenario 2: Particle Size
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Fig. 9. Scenario 2: Energy Consumption
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Fig. 10. Scenario 2: Secondary Grinding Stage

reference on both cases, with the secondary grinding
circuit turned ON and OFF.
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7. CONCLUSIONS AND FUTURE WORK

This paper presents the identification of piecewise ARX
models for mineral grinding and the design of a hybrid
model predictive controller using of the identified hybrid
plant. The plant consist of a primary and secondary
grinding circuits, involving the modelling of the stockpile
discharge to the plant and the ON/OFF state of the
secondary grinding lines.

The hybrid identification procedure was performed by
driving the plant to each one of its operating modes,
generating data sets with PRBS input sequences and us-
ing identification software to develop ARX models. These
models were then converted to MLD systems, a represen-
tation that is suitable for the design of a HMPC control
strategy. Two case scenarios were tested with the designed
controller, in each one of them the results were successful.
On the controller design the physical restrictions of the
variables were included, and the scenarios were tested by
switching the discrete events of the model.

The procedure used in this paper offers a highly system-
atized methodology for the analysis, modelling and devel-
opment of hybrid model predictive controllers, suitable for
complex applications such as grinding circuits.

As future work, this control strategy will be compared
to commonly used control strategies used in the min-
eral grinding profess such as centralized model predictive
control (non hybrid) and descentralized model predictive
control.
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