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Abstract: An output-feedback sliding mode based extremum seeking controller was recently
introduced for linear uncertain systems by using periodic switching functions. Nonlinear systems
were also considered but restricted to relative degree one plants as well as the former linear
case. Here, generalization is achieved to include more general dynamics with arbitrary relative
degree. Global stability properties of the closed-loop system with convergence to a controlled
neighborhood of the desired maximum point are also rigorously proved. Simulation results
illustrate the performance of the proposed extremum seeking control algorithm.
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1. INTRODUCTION

Extremum seeking is a real-time, non-model based adap-
tive control technique for tuning parameters to optimize
an unknown nonlinear map. The most popular extremum
seeking approach relies on persistence of excitation, usu-
ally a sinusoid, to perturb the parameters being tuned
[1, 2, 3, 4]. This quantifies the effects of the parameters
on the output of the nonlinear map, then uses that in-
formation to generate estimates of the optimal parameter
values.

As an alternative, a novel output-feedback extremum seek-
ing sliding mode control (SMC) for a class of linear plants
with relative degree one and nonlinear output function was
introduced in [5]. In lieu of the traditional sinusoidal dither
perturbation technique [1, 2, 3, 4], the real-time opti-
mization problem was solved through a periodic switching
function [7]. Related results for more general dynamics
including state dependent and unmatched nonlinearities
which may provoke finite-time escape were explored in [8]
and [9]. The latter by using another tool, named monitor-
ing function. In both approaches, only relative degree one
plants could be coped with.

In this paper, the arbitrary relative degree case is pursued.
Relative degree compensation and the extremum searching
are achieved by combining a high gain observer (with
time varying gain) and a norm observer. We also remove
some restrictions on the plant dynamics founded in the
extremum seeking control literature [10]. This opens the
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possibility of effective application to autonomous vehicles
navigation without position measurements [11, 12, 13].

Global asymptotic convergence with respect to a compact
set is demonstrated and, in contrast with high gain ob-
server based schemes [14], the control signal is free of
peaking. The resulting approach guarantees convergence
of the system output to a small neighborhood of the
extremum point using only output-feedback. Numerical
simulation examples corroborate the effectiveness of the
proposed extremum seeking controller.

Remark 1. In what follows, control signals or inputs (dis-
turbances) are assumed to be measurable locally essen-
tially bounded functions f : IR+ → IR. The set of all such
functions, endowed with the (essential) supremum norm
||f || = ess sup{|f(t)|, t ≥ 0} is denoted by L∞. Moreover,
for any pair of times 0≤ t1≤ t2,
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∣=supt∈[t1,t2]|f(t)|.

Note that, |·| stands for the Euclidean norm for vectors, or
the induced matrix norm for matrices. For any measurable
function Classes K, K∞, KL functions are defined as usual
([14]). Here, Filippov’s definition for the solution of discon-
tinuous differential equations is assumed.For each initial
condition and each control/inputs in L∞, the Filippov’s
solution of discontinuous differential equations is defined
on some maximal interval [0, tM ), where tM may be finite
or infinite.

2. PROBLEM STATEMENT

Consider SISO nonlinear plants composed by a general
subsystem
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ẋ= f(x) + g(x)u , (1)

z = h(x) , (2)

in cascade with a static subsystem

y = Φ(z) , (3)

where u ∈ IR is the control input (discontinuous), z ∈ IR
is the unmeasured output of the first subsystem, y ∈ IR is
the measured output of the static subsystem, x is the state
and the uncertain functions f(·), g(·) and h(·) are locally
Lipschitz continuous and sufficiently smooth (all required
derivatives are continuous) to ensure local existence and
uniqueness of the solution through every initial condition
(x0, t0). For each solution of (1) there exists a maximal
time interval of definition given by [0, tM ), where tM
may be finite or infinite. Thus, finite-time escape is not
precluded, a priori.

The function Φ : IR → IR is regarded as an uncertain
(unknown) and smooth cost function. We consider that
there exists a unique point z∗ (unknow) such that y∗ =
Φ(z∗) is the extremum (maximum) of Φ, which gradient
is unknown for the control designer.

The global real-time optimization control problem, i.e.,
maximization 1 of (3) under (1)–(2). We wish to find
an output-feedback control law u so that, for any initial
conditions, the system is steered to reach the extremum
point and remain on such point thereafter, as close as
possible.

Our output-feedback strategy relies on: (i) the implemen-
tation of a norm observer for the plant state x (1); (ii)
representation of the plant in the normal form [14, pp.
516] and (iii) a HGO to estimate the time derivatives of
the plant output.

3. MAIN ASSUMPTIONS

In order to obtain the uncertainty bounds for control
design, consider the following assumption:

(A0) (On The Uncertainties) All the uncertain plant
parameters belong to a compact set Ω.

3.1 Cost Function

Reminding Assumption (A0), the further assumption here
is that in Ω:

(A1) (Cost Function) The uncertain cost function Φ :
IR → IR is locally Lipschitz continuous, sufficiently
smooth and radially unbounded. Moreover, y = Φ(z)
has a unique maximum point z∗ and for any given ∆>0,
there exists a constant LΦ(∆)>0 such that

LΦ ≤

∣

∣

∣

∣

dΦ

dz

∣

∣

∣

∣

, ∀z /∈ D∆ := {z : |z − z∗| < ∆/2} ,

where D∆ is called ∆-vicinity of z∗ and ∆ can be made
arbitrary small by allowing a smaller LΦ.

1 Without lost of generality, we only address the maximum seeking
problem.

3.2 Norm Plant State Estimation

According to the following assumption, it is possible to
implement a norm observer for the plant state x (1)
providing a norm bound for x by using only the available
signals u and y. One possible class of norm observers is
presented and discussed along the paper.

(A2) (Norm Observability) The plant (1)–(3) admits
a norm observer, with state vector ω, such that

|x(t)| ≤ ϕo(ω(t)) + πo(t) , (4)

where ϕo(·) is a non-negative continuous function, πo :=
βo(|ω(0)|+|x(0)|)e−λot with some βo ∈ K∞ and positive
constant λo.

It is well known that, if (1)–(3) is IOSS then it admits a
norm observer.The class of norm observer considered here
encompasses plants with linear growth condition in the un-
measured states and growth rate possibly depending on y.
It should be stressed that strong polynomial nonlinearities
in y are allowed.

Remark 2. [Unboundedness Observability Property]
From Assumption (A2), the system possesses an un-
boundedness observability property, i.e., if any closed loop
system signal escapes in some finite time, then ω also
escapes not latter than that. We will use this fact to design
the control law so that finite time is avoided.

3.3 Normal Form

For time invariant plants, the uniform relative degree
assumption [14] is a necessary and sufficient condition
for the existence of a local change of coordinates (local
diffeomorphism) which transforms (1)–(2) into the normal
form [14].

Considering the output function h̄(·) = Φ(h(·)) and denot-
ing the Lie derivative of h̄ along a vector field f by Lf h̄, it
is well known that a sufficient condition to assure that the
plant (1)–(3) is transformable to the normal form is given
by [14, pp. 510]:

(A3) (Normal Form) Assume that Lg[L
k
f h̄] ≡ 0 (k ∈

{0, . . . , ρ− 2}) and Lg[L
ρ−1
f h̄] 6= 0.

From (A3), system (1)–(3) is transformable into the
normal form [14]:

η̇ = f0(x) , (5)

ξ̇ = Aρξ +Bρk̄p(x)[u + d(x)] , y = ξ1 , (6)

where the transformed state is defined as

x̄ := [ηT ξT ]T = T (x)=[ηT T T
ξ (x)] , (7)

with Tξ :=
[

L0
f h̄ Lf h̄ . . . L

ρ−1
f h̄

]T

, η ∈ IRn−ρ and

ξ :=[ y ẏ . . . y(ρ−1) ]T . (8)

The η-subsystem (ξ-subsystem) represents the inverse
dynamics (external dynamics). The pair (Aρ, Bρ) is in
Brunovsky’s canonical controllable form. Note that, it is
implicitly assumed that the plant (1)–(3) has a strong
relative degree ρ.

The control signal coefficient kp and the input disturbance
d are such that

k̄p(x) = Lg[L
ρ−1
f h̄] = Lg[L

ρ−1
f h]

dΦ

dz
= kp(x)

dΦ

dz
,
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and k̄p(x)d(x) = (Lρ
f h̄), respectively. In the following

assumption we formulate the restrictions imposed on T (x),
k̄p(x) and d(x), where the dependence on y = h̄(x) is
explicitly given.

3.4 Minimum-Phase

The following assumption assures that the inverse dynam-
ics (5) has an ISS property with respect to an appropriate
function of ξ.

(A4) (Minimum-Phase]) There exists a storage func-
tion V (η) satisfying β(|η|) ≤ V (η) ≤ β̄(|η|) with β, β̄ ∈
K∞, such that:

∂V

∂η
f0(x) ≤ −β0(|η|) + ϕ0(|ξ|) ,

∀x, y , ∀t ∈ [0, tM ), for some non-negative scalar function
ϕ0(|ξ|), continuous in |ξ| and some β0 ∈ K∞.

3.5 Bounding Functions

In the following assumption, let (for i = 1, 2, 3): (a)
ϕi(|x|, y) are non-negative functions continuous and in-
creasing in |x| and continuous in y; (b) ϕ̄i(y) are non-
negative functions continuous in y and (c) αi(|x|) are
locally Lipschitz class-K functions.

(A5) (Bounding Functions) There exist known func-
tions ϕi, ϕ̄i, αi and a known positive constant cp such
that the following inequalities hold ∀x, y , ∀t ∈ [0, tM ):

βT (|x|) + γT (y) ≤ |T (x)| ≤ ϕ1(|x|, y) ,

0 < cp ≤ |k̄p(x)| ≤ ϕ2(|x|, y) ,

|d(x)| ≤ ϕ3(|x|, y) ,

where ϕi satisfies ϕi(|x|, y) ≤ αi(|x|)+ ϕ̄i(y), βT is some
class-K∞ function and γT is some scalar non-negative
function continuous in y.

The lower bound for |T | assures boundedness of x from
boundedness of x̄ and the lower bound for |k̄p| guarantees
that it is bounded away from zero. On the other hand,
the upper bounding functions for T, k̄p and d are used to
obtain implementable norm bounds for ξ, k̄p and d from
the plant state norm estimator vector ω (16)–(17).

In general, the upper bounds given in Assumption (A5)
impose no significant restriction since T, k̄p and d are
continuous in x.

4. HIGH GAIN OBSERVER

The estimate for ξ in (6) is provided by the following HGO:

˙̂
ξ = Aρξ̂ +Bρkou+HµLo(y − Cρξ̂) , (9)

where Cρ := [1 0 . . . 0] and Lo and Hµ are given by

Lo :=[ l1 . . . lρ ]T and Hµ :=diag(µ−1, . . . , µ−ρ) . (10)

The observer gain Lo is such that sρ + l1s
ρ−1 + . . .+ lρ is

Hurwitz. The HGO parameter µ is a variable parameter
µ = µ(t) 6=0, ∀t ∈ [0, tM ), of the form

µ(ω, t) :=
µ̄

1 + ψµ(ω, t)
, (11)

where ψµ, named domination function, is a non-
negative function (to be designed later on) continuous in
its arguments and µ̄ > 0 is a design constant. For each
system trajectory, µ is absolutely continuous and µ ≤ µ̄.
Note that µ is bounded for t in any finite sub-interval of
[0, tM ). Therefore,

µ(ω, t) ∈ [µ, µ̄] , ∀t∈ [t∗, tM ) , (12)

for some t∗ ∈ [0, tM ) and µ∈(0, µ̄).

4.1 High Gain Observer Error Dynamics

The transformation

ζ := Tµξ̃ , ξ̃ := ξ − ξ̂ , Tµ := [µρHµ]−1 , (13)

is used to represent the ξ̃-dynamics in convenient coordi-
nates to allow us show that ξ̃ is arbitrarily small, modulo
exponentially decaying term. First, note that: Tµ(Aρ −

HµLoCρ)T
−1
µ = 1

µ
Ao, TµBρ = Bρ and ṪµT

−1
µ = µ̇

µ
∆,

where Ao :=Aρ−LoCρ and ∆ := diag(1 − ρ, 2 − ρ, . . . , 0).
Then, subtracting (9) from (6) and applying the above

relationships (i), (ii) and (iii), the dynamics of ξ̃ in the
new coordinates ζ (13) is given by:

µζ̇ = [Ao + µ̇(t)∆]ζ +Bρ[µν] , (14)

where
ν := (k̄p − ko)u + k̄pd . (15)

5. NORM OBSERVER

Our output-feedback strategy relies on the implementation
of a norm observer for the plant state x (1). In the following
definition let: (i) u be the plant input, (ii) y be the plant
output, (iii) γo be a smooth function and (iv) ϕo(·, ·, t) and
ϕ̄o(·, t) be non-negative functions, piecewise continuous
and upperbounded in t and continuous in their other
arguments.

Definition 1. A norm observer for system (1)–(3) is a m-
order dynamic system of the form:

τ1ω̇1 = −ω1 + u , (16)

τ2ω̇2 = γo(ω2) + τ2ϕo(ω1, y, t) , (17)

with states ω1 ∈ IR, ω2 ∈ IRm−1 and positive constants
τ1, τ2 such that for t ∈ [0, tM ): (i) if |ϕo| is uniformly
bounded by a constant co>0, then |ω2| can escape at most
exponentially and there exists τ∗2 (co) such that the ω2-
dynamics is BIBS (Bounded-Input-Bounded-State) stable
w.r.t. ϕo for τ2 ≤ τ∗2 ; (ii) for each x(0), ω1(0), ω2(0), there
exists ϕ̄o such that

|x(t)| ≤ ϕ̄o(ω(t), t) + πo(t) , ω := [ω1 ω
T
2 y]T , (18)

where πo := βo(|ω1(0)|+ |ω2(0)|+ |x(0)|)e−λot with some
βo ∈ K∞ and positive constant λo.

Remark 3. (On the Availability of the Signal z)
If one can obtain a norm bound for z by using only
the measured output y and/or the control signal u, the
output z is not required to be measured. Indeed, first
note that the radially unbounded condition in (A1) and
the nonsingularity of ∂Φ

∂z
assure that Φ(·) has a piecewise

continuous inverse. Thus, it is reasonable to assume that
one can obtain a known function ϕ ∈ K and a known
constant kφ≥0 such that

|z| ≤ z̄ := ϕ(|y|) + kφ .
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Moreover, when (1)–(2) is strictly stable, z̄ can be gener-
ated by a proper first order linear filter driven by the norm
of the average control uav which satisfies τavu̇av = −uav +
u, with an appropriate constant τav>0.

6. OUTPUT-FEEDBACK EXTREMUM-SEEKING
CONTROLLER

6.1 Periodic Switching Function

Consider the unmeasured signal e given by

e(t) = σ(t) − σm(t) (19)

where σm is a simple ramp time function. For analysis
convenience such a ramp is generated by

σ̇m = km , σm(0) = σm0 , (20)

with km > 0 and σm0 being design constants. Regarding
the plant (1)–(3), σ is the relative degree one (unmeasured)
output

σ = Sξ ,
where

S := aρCρ + aρ−1CρAρ + . . .+ a1CρA
ρ−1
ρ ,

and ai (i = 1, . . . , ρ) is such that

L(s) := a1s
ρ−1+a2s

ρ−2+. . .+aρ

is Hurwitz. Therefore, one has

σ = L(s)y ,

and, equivalently,

y =
1

L(s)
σ .

Moreover, the e-dynamics is given by

ė = σ̇ − km = Sξ̇ − km = SAρξ + SBρk̄p[u+ d] − km ,

where SBρ 6= 0 and can be rewritten as

ė = κu+ de , (21)

where κ = SBρk̄p and

de := SAρξ + SBρk̄pd− km . (22)

Now, considering the estimate for σ defined as

σ̂ = Sξ̂ , (23)

and the corresponding estimate ê for e,

ê = σ̂ − σm ,

the proposed output-feedback ESC with periodic switching
function is given by

u=̺(t)sgn
(

sin
[π

ε
ê(t)

])

, (24)

where ̺(t) is a designed modulation function (continuous
in t) to be defined later on and ε > 0 is an appropriate
constant. Note that, the estimate ê satisfies

ê = e− ẽ ,

where
ẽ = σ − σ̂ = Sξ̃ .

Hence, the signal e − ẽ is available and the control signal
can be written as

u=̺(t)sgn
(

sin
[π

ε
e(t) −

π

ε
ẽ(t)

])

. (25)

Remark 4. Note that, for the case where the HGO has
a constant parameter µ and ko = 0, the estimate σ̂ is
obtained by the following linear lead filter:

σ̂ = S[sI − (Aρ −HµLoCρ)]
−1HµLo y ,

which approximates the unmeasured signal

σ = L(s)y .

6.2 Available Bounding Functions

The following available norm bounds for ξ, k̄p and d are
obtained, modulo exponentially decaying term, by using
the bounding functions given in (A5) and the norm
observer state vector in (A2):

|ξ| ≤ ψ1(ω, t) + π1 , (26)

k̄p(x) ≤ ψ2(ω, t) + π1 , (27)

|d(x)| ≤ ψ3(ω, t) + π1 , (28)

where ψi(ω, t) := ϕi(2ϕ̄o, y, t) + ϕ̄i(y, t) (i = 1, 2, 3) and
π1 = β1(|ω(0)| + |x(0)|)e−λot with some β1 ∈ K∞ and λo

in (A2).

6.3 Modulation Function Design

The modulation function is designed to overcome the
disturbance de, in (21), outside the ∆-vicinity D∆, i.e.,
when κ in (21) is bounded away from zero. So, a norm
bound for de must be implemented by using only available
signals (ω). First, from (22) one can verify that |de| ≤
|kpd| + (|SAρ||ξ| + km). Moreover, with cp defined in
Assumption (A5) and (26) and (28) the following upper
bound holds:

|de(x, ξ)| + δ ≤ ¯̺(ω, t) + π2 , (29)

where δ is an arbitrary non-negative constant,

¯̺(ω, t) := ψ3 + (|Km|ψ1 + km)/cp + δ , (30)

and π2 := |Km|π1/cp + π1. Now, choose a polynomial
p̺̄(|ω|) in |ω|, with positive real coefficients, such that
p̺̄(|ω|) ≥ ¯̺(ω, t) and implement the modulation functions
as

̺(ω) := p̺̄(|ω|) + ‖ωt‖e
−β̺t , (31)

where β̺>0 is a design constant.

6.4 Variable Gain (µ) Design

Choose a polynomial p̄µ(|ω|) in |ω|, with positive real
coefficients, such that the functions ϕo, ϕ̄o (Definition 1)
and the bounding functions ϕi, ϕ̄i in (A5) satisfy (i =
1, 2, 3):

|γo(ω2)| , |ϕo(ω1, y)| ≤ p̄µ(|ω|) ,

ϕi(2ϕ̄o(ω, t), y) , ϕ̄i(y) ≤ p̄µ(|ω|) .

This is not so restrictive since only polynomial growth
condition is imposed on ϕo, ϕ̄o, γo, ϕi, ϕ̄i. We choose ψµ

as:
ψµ(ω, t) := pµ(|ω|) + ‖ωt‖e

−βµt , (32)

where βµ>0 is a design constant.

Remark 5. The exponential terms with rates β̺ and βµ in
(31) and (32) act like a forgetting factor which allows a less
conservative design. Note that the functional norm term
is fundamental to avoid finite-time escape of the system
signals.

7. MAIN CONVERGENCE RESULTS

7.1 Preliminaries

Let S be the set of real numbers x such that sinπx/ε = 0,
i.e., real numbers of the form x = kε, k ∈ Z. The set
S is given by S = {. . . ,−2ε,−ε, 0, ε, 2ε, . . .}. Moreover,
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given an arbitrary constant r > 0, let Sr be the union
of neighborhoods of radius r centered at x = kε, i.e.,
the set defined by Sr = {x ∈ IR | x ∈ (kε − r, kε +
r) , ∀k ∈ Z} = . . . ∪ (−r − 2ε, r − 2ε) ∪ (−r − ε, r − ε) ∪
(−r, r)∪ (−r+ ε, r+ ε)∪ (−r+2ε, r+2ε)∪ . . .. Note that,
Sr = IR, for r ≥ ε/2.

Lemma 1. For any x /∈ Sr one has that

sgn(sin(πx/ε+ β)) = sgn(sin(πx/ε)) ,

provided that |β| < r < ε/2.

Proof: If x /∈ Sr then the following inequality holds for
some integer k∗

k∗ε+ r ≤ x ≤ (k∗ + 1)ε− r ,

and since r > 0 one has that x ∈ (k∗ε, k∗ε+ ε). Moreover,
by adding γ one has that

k∗ε+ γ + r ≤ x+ γ ≤ (k∗ + 1)ε+ γ − r ,

and since −r < γ < r, one can further conclude that

k∗ε < k∗ε+ γ+ r ≤ x+ γ ≤ (k∗ +1)ε+ γ− r < (k∗ +1)ε .

Therefore, x , x + γ ∈ (k∗ε, k∗ε + ε). Consequently, by
setting γ = εβ/π, one has πx/ε , πx/ε+β ∈ (k∗π, k∗π+π)
and sgn(sin(πx/ε+ β)) = sgn(sin(πx/ε)).

7.2 Auxiliary Lemmas

In what follows, let X T :=
[

xT ωT ζT
]

. The following
lemma assures that the modulation function overcome the
disturbance in the error dynamics after some finite time.

Lemma 2. If ̺ is designed as in (31), then there exists a
finite t̺ ∈ [0, tM ) such that:

|ω| , |X | ≤ α(|X (0)|) , ∀t ∈ [0, t̺) , (33)

|̺| ≥ |de| , ∀t ∈ [t̺, tM ) . (34)

Proof: If π2 ≤ 1 in (29) or tM is infinite it is trivial due to
the vanishing exponential π2. Now, consider that π2 > 1
and tM is finite. Then, one has: (i) e−β̺t ≥ e−β̺tM , ∀t ∈
[0, tM ); (ii) ∃t1 ∈ [0, tM ) such that ‖ωt‖ ≥ δ, ∀t ∈ [t1, tM ),
where δ is an arbitrary constant. Hence, from (i) and (ii)
and taking δ larger enough, one also has that |̺| ≥ |de|,
∀t∈ [t1, tM ). The upper bound (33) is a direct consequence
of the unboundedness observability property of the closed
loop control system, see Remark 2.

The following lemma states the HGO estimation error
convergence.

Lemma 3. If ψµ is designed as in (32), then there exists a
finite tµ ∈ [0, tM ) such that:

|ω| , |ζ| ≤ α(|X (0)|) , ∀t ∈ [0, tµ) , (35)

|µ̇(t)| , µ|ν| , |ξ̃| ≤ O(µ̄) , ∀t ∈ [tµ, tM ) , (36)

with some α ∈ K∞.

Proof: To see that (35) and (36) hold, refer to [6].

Now, let t0 = max{t̺, tµ}. From Lemma 3, since ξ̃ is
of order O(µ̄), ∀t ∈ [t0, tM ), it is easy to conclude that

πẽ(t)/ε is also of order O(µ̄), ∀t ∈ [t0, tM ), once ẽ = Sξ̃.

From Lemma 1, if e(t) /∈ Sr, then sgn(sin(πe/ε+πẽ/ε)) =
sgn(sin(πe/ε)), since |πẽ/ε| < r = O(µ̄) < ε/2. Therefore,
u=̺(t) sgn(sin(πe(t)/ε)) while e(t) /∈ Sr with t > t0.

The following lemma holds while z stays outside the ∆-
vicinity. It assured that no finite-time escape occurs for

the system signals and the error e(t) reach the set Sr and
remains there in after some finite time for a constant r of
order O(µ̄).

Lemma 4. Consider the error dynamics (21) with control
law (23), (24) and (31). Outside the ∆-vicinity D∆, assume
that (A0)-(A5) hold. Then, for any constant 0 < r < µ̄
and sufficiently small µ̄, ε, independently of sgn(κ(t)): (a)
the control signal drives e(t) to the set Sr after some finite
time. Moreover, e(t) remains in Sr thereafter, i.e., there
exists tr > t0 such that e(t) ∈ Sr, ∀t ∈ [tr, tM ) and (b)
tM → ∞.

Proof: Outside the ∆-vicinity, the derivative of the cost
function Φ(z) does not vanish (dΦ(z)/dz 6= 0 , ∀z /∈ D∆).
Thus, by using the lower norm bound cp for k̄p one can be
obtained a lower bound for |κ| from the lower bound LΦ

given in (A2). Without lost of generality, consider that
sgn(κ(t)) < 0, ∀t ∈ [t0, tM ).

In view of the Lyapunov stability theory of nonsmooth
systems, consider the following nonnegative Lure-type
function [14]

V (e) :=

∫ e

0

sgn
[

sin
(π

ε
e(τ)

)]

dτ . (37)

It is easy to verify that:

e ∈ Sr ⇔ V (e) < V (r) ,

and thus, Sr = S := {ν : V (ν) < V (r)}. In addition,
one can conclude that, if there exists ta ≥ t0 such that
e(ta) ∈ Sr, then e(t) ∈ Sr, ∀t ∈ [ta, tM ). Indeed, by
contradiction, assume that there exists some t > ta and
some ǫ > 0 such that V (e(t)) > V (r) + ǫ. Let, tb ≥ ta the
first time instant such that V (e(t)) ≥ V (r) + ǫ. Therefore,
e(tb) /∈ Sr and, from Lemma 1, u=̺(t) sgn(sin(πe(t)/ε)).

At a point where e(t) and V (e(t)) are both differentiable
(almost everywhere), the time derivative of V along the

trajectories of the e-dynamics, V̇ = ∂V
∂e
ė, is given by

V̇ =κ [̺+ de sgn(sin(πe(t)/ε))] , if e /∈ Sr . (38)

Clearly, in this case, V̇ ≤ κ̺ + |κ||de|. Hence, one has

V̇ ≤ −|κ|(̺−|de|), since sgn(κ)<0. Moreover, reminding
that for t > t0 ≥ t̺, the modulation function overcome the
disturbance de, then it is easy to conclude that

V̇ ≤−δ1 , if e /∈ Sr , (39)

holds almost everywhere while e /∈ Sr, with an arbitrary
constant δ1 > 0. Hence, V̇ (e(t)) |t=tb

< 0 and, thus,
V (e(t)) > V (e(tb)), for some t ∈ (ta, tb), which contradicts
the minimality of tb. In addition, the existence of ta is
assured by noting that: (i) for tM infinite, the inequality

V̇ ≤ −δ1 assures that there exists t1 ∈ [t0, tM ) such that
e(t1) ∈ Sr and (ii) assume by contradiction that |e(t)|
escapes in some finite time t0 < tM . Thus, there exists
t2 ∈ [t0, tM ), such that e(t2) ∈ Sr. Let ta = max{t1, t2}.
Finally, during the time interval [ta, tM ), the error signal
e remains bounded, which is a contradiction. Thus, tM →
∞.

7.3 Main Result

In the next theorem, we show that the proposed output-
feedback control law drives z to the ∆-vicinity of the
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unknown maximizer z∗ defined in (A1). It does not imply
that z(t) remains in D∆, ∀t. However, the oscillations
around y∗ can be made of order O(ε+ µ̄).

Theorem 1. (Global ESC) Consider the plant (1), (2),
with output or cost function in (3), control law (24).
Assume that (A0)-(A5) hold. Then: (i) the ∆-vicinity D∆

in (A1) is globally attractive being reached in finite time
and (ii) for LΦ sufficiently small, the oscillations around
the maximum value y∗ of y can be made of order O(ε+ µ̄),
with ε from (24) and µ̄ from (11). Moreover, all signals in
the closed-loop system remain uniformly bounded except
for ê(t) which is only an argument of a sine function in
(24).

Proof: Please refer to [www.coep.ufrj.br/̃ jacoud/IFAC14]
for the detailed proofs of stability.

8. SIMULATION RESULTS

The following academic but nontrivial example illustrates
the performance of the proposed controller. Consider the
simple case where the nonlinear plant is reduced to a linear
plant (ρ=2) with transfer function (from u to z)

G(s) :=
kp

s(s+ δ1)
,

in cascade with the output cost function y = Φ(z) =
−(z − 3)2 + 1. The plant can be trivially transformed
to the normal form. It is assumed uncertain and only
norm bounds are known. The uncertain parameters are:
1≤kp≤2 and 0≤δ1<1. The zero dynamics is dropped.

In order to simplify the control implementation, the norm
observer was disregarded. In fact, for this simple linear
plant and initial conditions z(0) = 2 and ż(0) = 0, the
norm observer was not needed. The control law (24) can be
implemented with modulation function ̺ = |y|+ δ. More-
over, the HGO and the sliding surface are implemented
with l1 = 2, l2 = 1 and S = [ 2 1 ], corresponding to
L(s) = s + 1. The time varying HGO parameter is given
by µ = µ̄/(1 + |y|). The other parameters are: µ̄ = 0.01,
δ = 0.1, ε=2, cd =1, c1 =kp =0.5, km =0.6. Moreover, in

this example, the term ‖ωt‖e
−β̺t in is dropped. The Euler

Method with step-size h = 10−4s is used for numerical
integration. Fig. 1 gives the performance of the control
using ε=2. We can note that the vicinity of the extremum
point was achieved. Fig. 1 (b) and (c) present the behavior
of the variable ê and σ̂, respectivelly.

9. CONCLUSIONS

An extremum seeking sliding mode controller via output-
feedback was developed for possibly unstable and un-
certain nonlinear systems with arbitrary relative degree,
generalizing the controllers in [5] and [8]. The combination
of high-gain observers with time varying gain, a norm
observer and a periodic switching function leads to global
asymptotic stability and ultimate convergence of the sys-
tem output to an arbitrarily small neighborhood of the
extremum point. The proposed control strategy was suc-
cessfully tested with a numerical simulation example. The
application of the presented approach to compensate the
relative degree obstacle in the extremum seeking controller
based on monitoring functions given in [9] seems to be
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Fig. 1. (a) plant output z, (b) variable ê and (c) variable
σ̂.

straightforward. The extension of the theoretical results
to the multivariable problem is under development.
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ing for underactuated vehicles without position measurement,
IEEE Trans. on Robotics, 25, pp. 245–252, 2009.
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