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Abstract: In order to further improve the overall disturbance rejection response when both input and output 

disturbances are taken into account, we present a design method based on the disturbance observer (DOB) 

control structure. In this paper, optimal analytical DOB design is provided under the combined 2-norm 

objective.  Results show that the proposed observer can optimally eliminate the input/output disturbance 

with the best combined performance criterion.  

 
 

1. INTRODUCTION 

The issue of disturbance rejection has been considered as one 

of the most significant aspects in industry (Morris, M., et al). 

Therefore, it has been paid a great deal of attention both in 

research and applications. After the practice of the past 

decades, internal model control (IMC) theory has been widely 

recognized as one of the most effective strategies for the 

disturbance rejection and has been successfully applied to 

different types of situations in practice. A number of articles 

providing control schemes or tuning strategies in terms of 

IMC principle have been proposed to improve output load 

disturbance rejection performance for different types of plants 

(Morris, M., et al) , (Zhang, WD., et al., 2012). In order to 

separately acquire optimal load disturbance rejection 

performance without decreasing the nominal servo ability, the 

two-degree-of-freedom (2DOF) structure is usually adopted 

(Liu, T., et al., 2005). After years, since the inherent 

shortcoming of the conventional IMC, attention of the search 

for new filters and alterative procedures to cope with the input 

disturbance rejection issue has been raised. Campi et al. firstly 

provided a modified filter which gives easy adjustment for 

unstable linear time-invariant continuous systems to balance 

the closed-loop bandwidth and robustness (Campi, M., et al). 

Then, Horn et al. suggested another type of the IMC-filter to 

enhance the input disturbance attenuation (Horn, I. G., et al). 

From a broader perspective, improved IMC-based filters 

against different cases of disturbances available for both 

stable and unstable plants were proposed by Lee et al (Lee, Y., 

et al., 1998, 2000). For the inevitable negative effect of slow 

poles, Liu proposed new insight into IMC-based filter design 

(Liu, T., et al., 2010, 2011). Furthermore, the input/output 

disturbance trade-off problem is discussed recently. By 

appropriately selecting the weighting function, Alcantara et al 

demonstrated the IMC-based control scheme for balancing 
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input/output disturbance response (Alcantara, S., et al., 2011, 

2013).  

The DOB-based control scheme is a widely adopted 

structure for load disturbance rejection problem after 

originally proposed by Ohnishi (Ohnishi, K., et al). There 

have been plenty of issues providing different structures of the 

observers that are utilized for specific conditions to 

effectively observe the unexpected external disturbance and 

generate appropriate compensation signals to optimally 

restrain the impact of the disturbance to the system (Chen, 

XK., et al) (Yoon, YD., et al). Therefore, the proposed article 

aims to present a simple and effective observer formula in 

terms of the combined 2-norm. The input/output disturbance 

rejection problem is discussed based on the DOB-based 

control structure. A brief introduction of this paper is 

presented as follows: in Section 2, we first discuss the 

problem of system parameterization and the set of filters that 

can guarantee internal stability of the system are provided; 

then, a novel analytical result of the input/output disturbance 

rejection criterion is given and the optimal solution for the 

DOB is proposed. Based on the given results, Section 3 

specifically analyzes a typical first order process. The 

simulation example is given to show the disturbance rejection 

ability of the proposed control scheme. In section4, we 

summarize the main ideas and make some concluding remarks. 

At last, for the sake of notation simplicity, we tend to drop 

arguments (e.g., pG instead of  pG s ,  pG  instead of 

 pG s ) when there is no danger of confusion. 

CONVENTIONAL DOB BASED CONTROL SCHEME 

The block diagram of the standard DOB-based control 

scheme is shown [12] in Fig. 1, where
s

pG e 
is the real  
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 Fig. 1: Block diagram of the standard DOB-based Control Scheme. 

(a) Original structure for design; (b) Equivalent structure for 

implementation. 

plant. pG is the plant free of time delay and se  is the constant 

time delay of the system.
mG is the nominal model of pG ; C is 

the controller. r , d , y and n denote the reference input, input 

disturbance, system output and measurement noise, 

respectively. Q is the DOB to be designed. The original 

structure in Fig. 1a is not causal and sometimes is not 

internally stable (the control plant contains right half plane 

zeros). An equivalent structure shown in Fig. 1b is causal and 

internally stable. Under nominal 

conditions, p mG G and
m  . The nominal model

mG herein 

can be expressed as follows: 

m

KN N
G

M M

 

 

                                 (1) 

Specifically  

1 1

( 1) ; ( 1) , 0
s s u

ji

s

n n n
kk

i j i j
i j n

M s M s   


 
  

            (2) 

where K is a real constant denoting the static gain. The 

subscript minus sign (-) denotes the roots in the left half part of 

complex plane (LHP); correspondingly, the subscript plus 

sign (+) denotes the roots located in the right half plane (RHP). 

The nominal plant satisfies the following two assumptions: 

Assumption 1 (0) (0) (0) (0) 1N N M M       and the 

degree condition satisfies 

       deg deg deg degN N M M       

Assumption 2 the nominal plant mG described as (1) has no 

imaginary axis poles. 

For control system, the first and foremost target is to 

guarantee internal stability of the system. Therefore, we first 

discuss parameterization problem. Then, the following 

subsection provides the observer parameterization formula in 

this article. 

2.1 Observer Parameterization 

A closed-loop system is internally stable if bounded signals 

injecting the system at any point generate bounded responses 

at any other point. For the system configuration in Fig. 1, the 

following Theorem gives the set of all the observers that 

guarantees the system internal stability.  

Theorem 1 The control scheme is depicted as Fig. 1. The 

observer which guarantees the system internal stability can be 

parameterized as  

1Q N
Q

K

                                      (3) 

1Q is any stable transfer function that makes Q proper. 

Besides,
1Q satisfies  

1

1/

d
lim 1 0 ;0

d
m

j

s

jks

Q Nk
e k k

Ks









 
    

 
           (4) 

and there is no right half plane zero-pole cancellation in C . 

Specifically, the observer should also satisfy the following 

equation to obtain zero-steady error for a unit load 

disturbance: 

1

0
lim (1 ) 0m ms s

s

KN N Q N
e e

M M K

    


 

               (5) 

which leads to  

2

1

K sQ
Q

F


                                (6) 

where
2Q is an any stable transfer function and F is also a 

stable transfer function to make it strictly proper. Generally, 

F is given as  =1 1
n

F s  , where  is the low-pass filter 

time constant and n is the degree constant to be settled 

properly.  

 

Proof: Omitted. For details explanations, the readers can refer 

to (Zhang, et al, 2006).                                                                        

           

At the end of this subsection, we provide a lemma which will 

be utilized for the design of the optimal observer in the next 

part. The symbol
2L denotes the family of all the rational 

transfer functions with no poles on the imaginary axis. Then, 

Lemma 1 Let 2 denote the subset of 2L ,
2

 the set of rational 

transfer functions analytic in Re 0s  . Every 

function F in 2L can be uniquely expressed as  

1 2 1 2 2 2, ,F F F F H F H      

then  
2 2 2

1 2 1 22 2 2
F F F F                            (7) 

2.2 Optimal Observer Design 

The subject of this subsection is to design optimal observer. 

With the context in mind, the aim of this article is to take care 

of the input/output disturbance trade-off issue. The general 

idea is to obtain the optimal balanced input/output disturbance 

rejection observer in terms of the combined control objective, 

which is considered as follows: 
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     
2 2

2 2

1 1
1 1 1m m ms s s

mJ G e Qe Qe
s s

     
            (8) 

The combined control objective given above takes into 

account of both input disturbance rejection performance and 

output disturbance rejection performance. They are balanced 

by the adjustable weighting parameter  , which determines 

the importance degree of each type of the disturbance to the 

system. Especially, when 0  , the objective is simplified to 

the optimal input disturbance rejection. With the increase of  , 

the effect of the output disturbance becomes significant. To 

obtain the optimal formula of (8), we rewrite the expression as  

 

 

2

2

1 1 1

1

m m

m

s s

m

s

G e Qe
J

sQe

 







 



     
  

  

               (9) 

The time delay is all-pass, and the following transfer function 

matrix is also all-pass: 

 

 

 

2

2

2
0

0

m

m

s

s

N M
e

N M

N
e

N





 

 





 
 

  
 
 
  

                (10) 

for 

 T I                                    (11) 

In light of the definition of the 2-norm, an all-pass transfer 

function does not affect the value of the 2-norm. Therefore, 

 

 

2

2

1 1 1

1

m m

m

s s
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            (12) 

After a series of equivalent manipulations, we obtain  
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(13) 

where 

X N Y                                    (14) 

In order to obtain the optimal solution of (8), we need to first 

optimize the input disturbance rejection performance 

objective. We provide the optimal result in Appendix A. Here, 

Y is 

2

1,
1 1

( 1)( ) ms u s u

a

sn n n n
a b

b b a
a a bs

sKN N e KN
Y

sN





 

 

 
  

 
  

   
  

  
  

(15) 

Therefore, J can be separated as  

1 2J J J                                    (16) 

where 
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For convenience, we set 
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Then, 
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(19) 

Furthermore, we perform an inner-outer factorization such 

that 
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where i is an inner matrix function, and o is the outer. 

According to the definition of the inner-outer 

factorization,
i satisfies that  

 T

i i I                                    (21) 

Based on i , the following matrix is given 

 

 

T

T

i

i iI

  
   

   
                           (22) 

And satisfies  

 T I                                    (23) 

 is also an all-pass matrix that will not affect the 2-norm. 

therefore 
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In order to get the optimal solution for (8), we mean 

1 4 3inf infJ J J J J                         (32) 

Therefore, the optimization issue is converted to optimize
3J , 

which means that the combined objective is simplified as the 

search of the optimal solution for a single performance 

criterion.  

2.3 Inner-Outer Factorization 

This subsection discusses the inner-outer factorization issue. 

Commonly, we can follow the steps provides by (Francis) to 

obtain the inner outer factorization of (20). Especially, for the 

first order plant plus with time delay which is expressed as 
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Specifically, for (34), we have  
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And 
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EXAMPLES AND SIMULATIONS STUEIES 

In this section, an example is given to clarify the optimal 

observer deriving procedures and illustrate the effectiveness 

of the proposed result. Consider the following plant  
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According to (35) and (36), we have  
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According to (15), Y is 
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Therefore, when 0.1  , the optimal DOB is given as  
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assume 0.5  , which means that the input disturbance and 

output disturbance perform the equivalent impact on the 

system. Table 1 compares the proposed method with the 

optimal solutions for separate performance criterion, 

where 4 3   . Fig 2 shows that results. From the results, 

it can be seen that the proposed performs better disturbances 

rejection ability for the smallest values over the whole range.  

Table 1. Comparison of the proposed with other methods 
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Fig. 2: Comparison of the proposed with other methods for the 

whole range of   

To further demonstrate the result, we present a simulation to 

test the effectivness. All the optimal methods are augmented 

by the same filter 

1

1f

F
s




                                 (43) 

To compare the optimal performance, 0.01f  for all the 

cases. For the limitation of the layout, the simulations that 

filters are tuned for all the systems with fixed robust level will 

be not presented. Here, we only compare the optimal 

performance. For further studies, more details will be given in 

the following publication. The input load disturbance is 

entered at 55it s and the output disturbance at 105ot s . 

The simulations are shown in Fig 3. The results are shown in 

Table 2. Form Table 2, it can be seen that, just as what we 

have analyzed, for input disturbance, the 

observers
iQ performs the best ISE specification; for output 

disturbance, the observer
oQ performs the best; the proposed 

observer /i oQ performs the best overall ISE specification. But 

for the IAE,
oQ performs the best for all the cases, since the 

disturbance rejection response by
oQ  has the largest overshoot 

and undershoot values, which dominant the ISE values. Also, 

it performs the smallest transient time, resulting in the best 

IAE performances. 
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Fig. 3: Simulations for the optimal performance of the proposed 

with other methods 

Table 2. Simulation results for different methods 

methods 
Input. Dist  Output. Dist  Total Values 

ISE IAE ISE IAE ISE IAE 

iQ  1.783 3.814 1.114 2.674 2.898 6.488 

oQ  2.001 3.346 1.002 2.007 3.004 5.354 

i/oQ  1.807 3.595 1.051 2.394 2.858 5.990 

 

CONCLUSIONS 

This note has provided a DOB control scheme for the open 

loop plant with constant time delay when both input. Optimal 

analytical solutions of the DOB have been proposed, in terms 

of the combined 2-norm. The dominant contribution of this 

article is that a novel optimal analytical result of the 

input/output disturbance rejection criterion has been derived. 

Then, the proposed control scheme is analyzed for the first 

order plant. The design procedures and a specific example are 

provided. Simulation results verify that the proposed scheme 

can eliminate the influence of input/output load disturbance 

and obtain the best overall ISE performance specification.  
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Appendix A 

Theorem 2  The control scheme is depicted as Fig. 1. The DOB 

to optimize the input load disturbance rejection criterion in 

terms of
2 norm is given as  
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( )X s should be selected to possess the following properties   
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 ( )N s
is a factor of ( )X s . 

To satisfy these two conditions, firstly, ( )X s states as  
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Without a loss of generality, the uniqueY which could satisfy 

the aforementioned conditions is expressed as  
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Therefore, the expression is rearranged as  
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By minimizing the left hand side part, which is equals to set it 

as zero, we can acquire  
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which leads to 
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and the optimal disturbance rejection criterion is  
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