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Abstract: This paper investigates the state feedback controller design for a class of linear
switched systems with uncontrollable subsystems. After stating the problem discussed in this
paper and some preliminaries, we design a controller that makes the given linear switched
closed-loop system states converging to zero and show its effectiveness by analyzing the system
states norm. Furthermore, we interpret that the presented controller design can be turned into a
LMIs(linear Matrices Inequations) feasible problem which can be solved via existing softwares.
In addition, an illustrative numerical example is presented to demonstrate the utility of the
proposed state feedback controller.
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1. INTRODUCTION

Switched systems consist of a finite number of subsystems.
And there are logical rules that orchestrate switching
between these subsystems. Such systems are common
across a diverse range of application areas. For example,
switched systems modeling plays a major role in the field
of power systems where interactions between continuous
dynamics and discrete events are an intrinsic part of
power system dynamic behavior. One convenient way to
classify switched systems is based on the dynamics of their
subsystems, for instance, continuous-time or discrete-time,
linear or nonlinear and so on. In this paper, we focus on
the stability of a class of linear switched systems, that is,
their subsystems are linear systems.

In recent years, switched systems have attracted a grow-
ing interest(see Serres et al.(2011), Mitra et al.(2001),
Lin et al.(2009), Zhai et al.(2000), and Zhao et al.(2012)
and references therein). For example, sufficient conditions
for the convergence to zero of the trajectories of linear
switched systems are investigated in Serres et al.(2011).
A collection of results that use weak dwell-time, dwell-
time, strong dwell-time, permanent and persistent activa-
tion hypothesis are provided. Mitra et al.(2001) addresses
the issue of structural stability results of switched linear
systems and provide sufficient and non-conservative results
for stability of such systems. Lin et al.(2009) briefly sur-
veys recent results in the field of stability analysis and
switching stabilization for switched systems. The stability
and stabilization problems for a class of switched linear
systems with mode-dependent average dwell time are in-
vestigated by Zhao et al.(2012). However, most of these
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papers focus on the properties of linear switched systems
with subsystems that have similar structures and proper-
ties. Noting that in realistic applications, the subsystems of
a switched system may be very different. Here we consider
the stability problem for a class of linear switched sys-
tems that some of the subsystems are uncontrollable and
the others are controllable. In particular, we consider the
problem of designing a feedback controller for the given
linear switched systems whose switch consequences and
switch instants are fixed. The reason for considering un-
controllable subsystems and linear switched systems with
fixed switch consequences and switch instants is theoretical
as well as the fact that such models cannot be avoided
in many applications. Specially, in some applications, the
switch instants and switch consequences are essential prop-
erties of systems and cannot be changed by us.

We note that there are also a few papers that study linear
switched systems consisting of different subsystems. For
instance, in Zhai et al.(2000), the authors study the stabil-
ity properties of linear switched systems consisting of both
Hurwitz stable and unstable subsystems using an average
dwell time approach. Then they derive a switching law
that incorporates an average dwell time approach so that
the switched system is exponentially stable. However, the
widely-used average dwell time approach aims to specify
activation time period ratio of different subsystems and it
is obvious that such average dwell time approach is hard
to be applied here because of the fixed switch consequence
and switch instants. Furthermore, the fact that common
quadratic Lyapunov functions for all subsystems exist on-
ly in a few situations also leads to the difficulty in our
controller design. Hence, we consider to design in another
way.
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Inspired primarily by the works in Amato et al.(2006)
and Amato et al.(2001), instead of analyzing a Lyapunov-
like function or state norms as the most general ways do,
in our controller design we analyze a scalar consequence
which denotes the state bounds imposed on a given scalar
function xT(t)Rx(t), t ≥ 0 where x(t), t ≥ 0 denotes
the system states and R is a positive defined matrix.
Specially, in Amato et al.(2006) a sufficient condition
for the design of a dynamic output feedback controller
with which the linear closed-loop system states do not
exceed a certain threshold of a given bound during a given
time interval is presented, and it inspires us designing a
controller that guarantees the system states inside required
bounds over given time intervals. We consider different
control strategies for different kinds of subsystems and we
design a state feedback controller which makes the closed-
loop system states converging to zero although over some
time intervals the system states are not convergent, but
inside given bounds. And by analyzing the system state
norms, we show its effectiveness. Furthermore, we show
that the design of such controllers can be turned into a
LMIs(linear Matrices Inequations) feasible problem which
can be solved via existing softwares(for example the LMI
Control Toolbox of MATLABTM) and it is not a hard
problem in realistic applications. Finally, an illustrative
numerical example is presented to demonstrate the utility
of the proposed state feedback controller.

The contents of the paper are as follows. In Section 2 we
state the problem discussed here and some preliminaries.
In Section 3 we present our main results, including design
of a state feedback controller that makes the given linear
switched closed-loop system states converging to zero and
showing its effectiveness by analyzing the system states
norm. In Section 4, an illustrative numerical example
is presented to demonstrate the utility of the proposed
controller. Finally, in Section 5 we draw some conclusions.

The notation used in this paper is fairly standard. Specifi-
cally, R denotes the set of real numbers, Rn denotes the set
of n× 1 real column vectors, I denotes the set of integers,
N0 denotes the set of nonnegative integers, (·)T denotes
transpose. Furthermore, we write dx for the differential
of x, V

′
(x) for the Fréchet derivative of V at x, ∥ · ∥

for a vector norm, ∥ · ∥F for the Frobenius matrix norm,
(·)† for Moore-Penrose inverse, λmax(·) (resp., λmin(·)) for
the maximum (resp., minimum) eigenvalue of a Hermitian
matrix.

2. PROBLEM STATEMENT AND PRELIMINARIES

In this paper we consider the linear switch system G
described by

ẋ(t) = Aix(t) +Bu(t), x(t0) = x0, ti ≤ t < ti+1, i ∈ Z̄+,
(1)

where x(t) ∈ Rn, t ≥ t0 is the state vector, u(t) ∈ Rm, t ≥
t0 is the control input, Ai ∈ A and B ∈ Rn×m are known
matrices where A = {Γj |Γj ∈ Rn×n, j = 1, 2, . . . , p}.
And some of [Γj , B], j = 1, 2, . . . , p are controllable, while
the others are not controllable. ti, i ≥ 1 denotes the
time instant when ith switch happens. Without loss of
generality, assume that [Γj , B], j = 1, 2, . . . , r are not
controllable where 1 ≤ r < p and the control input

u(·) in (1) is restricted to the class of admissible controls
consisting of measurable functions. Moreover, the number
of switch times can be either infinite or finite. Furthermore,
for the given linear switch system G we assume that the
required properties for the existence and uniqueness of
solutions are satisfied. In addition, we assume that the
system state x(t), t ≥ t0 is available for feedback.

Here let Ti = ti+1 − ti ≥ 0, i ∈ Z̄+, S1 = {Γj |Γj ∈
Rn×n, j = 1, 2, . . . , r}, and S2 = {Γj |Γj ∈ Rn×n, j = r +
1, r + 2, . . . , p}.
Our goal here is to develop a control input u(t), t ≥ t0
such that ∥ x(t) ∥→ 0 as t → ∞.

Remark 1 It is very important to note that the matrix
pairs [Ai, B], i ∈ Z̄+ may be not controllable, that is, there
does not exist K ∈ Rm×n such that Ai + BK is stable.
The uncontrollable matrix pairs compound the difficulty
in applying some off-the-shelf control laws and make it
complex to analyze a Lyapunov function. This is because of
the system may not be Lyapunov stable if Ai ∈ S1, i ∈ Z̄+.
As a result, the time derivative of a Lyapunov function can
not be nonpositive for all t ≥ 0 with a widely-used control
law given by u(t) = K(t)x(t), t ≥ t0.

Problem 1 Given the linear switch system G described by
(1), develop a control input u(t) = ui(t), ti ≤ t < ti+1

such that ∥ x(t) ∥→ 0 as t → ∞.

However, Problem 1 may not be solvable in some situa-
tions. For example, if there exists l > 0 such that Ai ∈ S1

for all i ≥ l, there does not exist K(t), t ≥ tl such that
the control input u(t) = K(t)x(t), t ≥ tl guarantees the
closed-loop system stable. This is result from the fact that
the system given by

x(t) = A(t)x(t) +Bu(t), x(tl) = xl, t ≥ tl,

A(t) = Ai, ti ≤ t < ti+1, i ≥ l,

is uncontrollable. Hence, we need another two assumptions
to ensure that Problem 1 is solvable.

Assumption 1 S2 ̸= ∅.

Assumption 2 If the number of switch times is infinite, for
any l ∈ Z̄+, there exist q > l, q ∈ Z̄+ such that Aq ∈ S2.
If the number of switch times is finite, Aρ ∈ S2, where ρ
denotes the number of switch times.

Remark 2 Assumption 1 is equivalence to the condition
r < p in the definition of S1. Hence, it is satisfied. And
it is appropriate in realistic applications. In addition, As-
sumption 2 is also appropriate in realistic applications.
It is equivalence to the condition that there doesn’t exist
ρ1 ∈ Z̄+ such that [Ai, B] is uncontrollable for all i ≥ ρ1.

Here we consider the problem of developing a piece-
wise continuous control input given by u(t) = ui(t) =
Kix(t), ti ≤ t < ti+1 such that ∥ x(t) ∥→ 0 as t → ∞.
And the controller design is divided in two situations. In
the first situation, Ai ∈ S1, i ∈ Z̄+. Since there does not
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exist K ∈ Rm×n such that Ai + BK, i ∈ Z̄+ is stable,
our goal here is to design a control input such that the
system state does not exceed a certain threshold of a given
bound during this time interval. In the second situation,
Ai ∈ S2, i ∈ Z̄+. And our goal here is design a control
input that guarantees the system state converge to a given
bound at the end of this time interval. And it is important
to note that the control strategy here is different from the
classic control law that guarantees Lyapunov asymptotic
stable of the closed-loop system.

The next theorem is needed for the statement of our main
results presented in the next section.

Theorem 1. Consider the linear system given by

ẋf (t) = Afxf (t) +Bfuf (t), xf (tf0) = xf0, t ≥ tf0, (2)

where xf (t) ∈ Rnf , t ≥ tf0 is the state vector, uf (t) ∈
Rmf , t ≥ tf0 is the control input, Af ∈ Rnf×nf and
Bf ∈ Rnf×mf are known matrices. For three given positive
scalars cf1, cf2, Tf , with cf1 < cf2, and a given positive
define matrix Rf such that

xT
f0Rfxf0 ≤ cf1, (3)

if there exist a nonnegative scalar αf , a positive definite
matrix Qf ∈ Rnf×nf and a matrix Nf ∈ Rmf×nf such
that

Af Q̃f + Q̃fA
T
f +BfNf +NT

f BT
f − αf Q̃f < 0, (4)

cond(Qf ) <
cf2
cf1

e−αfTf , (5)

Q̃f = R
− 1

2

f QfR
− 1

2

f , (6)

where cond(Qf ) = λmax(Qf )/λmin(Qf ) denotes the con-
dition number of Qf , the linear system is FTS with respect
to (cf1, cf2, Tf , Rf ), that is, there exist

xT
f (t)Rfxf (t) < cf2, ∀t ∈ [tf0, tf0 + Tf ], (7)

with a state feedback controller given by

uf (t) = Kfxf (t), t ≥ tf0, (8)

where Kf = Nf Q̃
−1
f .

Proof . It is cited from Amato et al.(2006) and is a direct
consequence of Theorem 5 in Amato et al.(2006), hence,
is omitted.

Remark 3 It is very important to note that [Af , Bf ] is
not required controllable here. Furthermore, the closed-
loop linear system presented in Theorem 1 may not be
Lyapunov asymptotic stable. And Theorem 1 provides a
sufficient condition for designing a state feedback con-
troller such that once a time interval is fixed, the system
state does exceed some bounds during this time interval.

3. MAIN RESULTS

In this section, we develop a control input u(t) = ui(t) =
Kix(t), ti ≤ t < ti+1 such that ∥ x(t) ∥→ 0 as t → ∞.
In the situation that Ai ∈ S1, i ∈ Z̄+, our goal here is to
design a state feedback controller such that xT(t)Rx(t) <
γi2, ∀t ∈ [ti, ti+1) with xT(ti)Rx(ti) ≤ γi1 where γi1, γi2
are given positive scalars such that γi2 > γi1 > 0 and R is
a given positive definite matrix. And in the situation that

Ai ∈ S2, i ∈ Z̄+, our goal here is to design a state feedback
controller such that xT(ti+1)Rx(ti+1) ≤ γi3 where γi3 is a
given positive scalar.

The following theorem presents a control law that guaran-
tees the stable of the linear switch system G given by (1).

Theorem 2. Consider the linear switch system G given by
(1), and assume that Assumption 1 and Assumption 2
hold. In addition, assume there exist a positive definite ma-
trix R and a positive scalar sequence {c0, c1, c2, . . .} such
that xT

0 Rx0 ≤ c0 and the given positive definite matrix
R and the given positive scalar sequence {c0, c1, c2, . . .}
satisfy the following conditions:

(I) If Ai ∈ S1, i ∈ Z̄+, there exist nonnegative scalars
αi, i ∈ Z̄+ and positive definite matrices Qi ∈ Rn×n, i ∈
Z̄+ and matrices Ni ∈ Rm×n, i ∈ Z̄+ such that

AiQ̃i+Q̃iA
T
i +BNi+NT

i BT−αiQ̃i < 0, Ai ∈ S1, i ∈ Z̄+,
(9)

cond(Qi) <
ci+1

ci
e−αiTi , i ∈ Z̄+, (10)

Q̃i = R− 1
2QiR

− 1
2 , i ∈ Z̄+, (11)

where cond(Qi) = λmax(Qi)/λmin(Qi), i ∈ Z̄+ denotes
the condition number of Qi, i ∈ Z̄+;

(II) If Ai ∈ S2, i ∈ Z̄+, there exist matrices Fi ∈
Rm×n, i ∈ Z̄+ and positive scalars βi, i ∈ Z̄+ such that

R− 1
2AT

i +R− 1
2FT

i BT +AiR
− 1

2 +BFiR
− 1

2 + βiIn×n < 0,

Ai ∈ S2, i ∈ Z̄+, (12)
ci

ci+1
< eTiβi , i ∈ Z̄+. (13)

In addition, if the number of switch times is infinite,
there exists lim

j→+∞
cj = 0. Then with the state feedback

controller given by u(t) = ui(t) = Kix(t), ti ≤ t < ti+1

where

Ki =

{
NiQ̃

−1
i , if Ai ∈ S1, i ∈ Z̄+,

Fi, if Ai ∈ S2, i ∈ Z̄+,
(14)

the closed-loop linear switch system is stable, that is,
∥ x(t) ∥→ 0 as t → ∞.

Proof . Firstly, we proof that

xT(ti)Rx(ti) ≤ ci, i ∈ Z̄+. (15)

Noting that (15) holds for i = 0, assume that (15) holds
for all i ≤ N where N ≥ 0, N ∈ Z̄+.

If AN ∈ S1, it follows from αN > 0, TN > 0, cN > 0 and
(10) that

cN+1 > cN
λmax(QN )

λmin(QN )
eαNTN > cN . (16)

Since xT(tN )Rx(tN ) ≤ cN and TN = tN+1− tN , it follows
from (9)-(11), (16) and Theorem 1 that

xT(t)Rx(t) ≤ cN+1, ∀t ∈ [tN , tN+1], AN ∈ S1, (17)

which implies that (15) holds for i = N + 1 if AN ∈ S1.

If AN ∈ S2, it follows from (1),(12), and (14) that

x(tN+1) = x(t−N+1) = eTN (Ai+BFi)x(tN ). (18)

Noting that xT(tN )Rx(tN ) ≤ cN , (13) and (18) implies
that
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xT(tN+1)Rx(tN+1)

= xT(tN )eTN (AN+BFN )TReTN (AN+BFN )x(tN )

= xT(tN )eTN (R
1
2 AN+R

1
2 BFN )TeTN (R

1
2 AN+R

1
2 BFN )x(tN )

= xT(tN )eTN [(R
1
2 AN+R

1
2 BFN )T+R

1
2 AN+R

1
2 BFN ]x(tN )

= xT(tN )eTNR
1
2 [R− 1

2 AT
N+R− 1

2 FT
NBT+ANR− 1

2 +BFNR− 1
2 ]R

1
2 x(tN )

< xT(tN )eTNR
1
2 [−βNIn×n]R

1
2 x(tN ) = e−TNβNxT(tN )Rx(tN )

< e−TNβN cN < cN+1, AN ∈ S2.
(19)

Obviously, (19) implies that (15) holds for i = N + 1 if
AN ∈ S2.

Since (15) also holds for i = N + 1, it is straightforward
that (15) holds for all i ∈ Z̄+.

Next, we proof that ∥ x(t) ∥→ 0 as t → ∞.

If the number of switch times is finite, it is obvious that
Aρ + BKρ is Hurwitz stable where ρ denotes the number

of switch times. Since x(t) = e(Aρ+BKρ)(t−tρ)x(tρ) holds
for all t ≥ tρ, it is straightforward that ∥ x(t) ∥→ 0 as
t → ∞.

Then we consider the situation when the number of switch
times is infinite. Noting that x(t), t ≥ t0 is continuous, it
follows from (15) and the definition of the positive scalar
sequence {c0, c1, c2, . . .} that there exists a continuous
function c : R → R such that c(ti) = ci, i ∈ Z̄+ and

0 ≤ xT(t)Rx(t) ≤ c(t), t ≥ t0. (20)

Since lim
j→+∞

cj = 0, it follows that

lim
t→+∞

c(t) = 0. (21)

It follows from (20) and (21) that

lim
t→+∞

xT(t)Rx(t) = 0, (22)

which implies that ∥ x(t) ∥→ 0 as t → ∞, that is, the
closed-loop linear switch system is stable.

This completes the proof.

Remark 4 Since [Ai, B], i ∈ Z̄+ is controllable if Ai ∈
S2, i ∈ Z̄+, (12) is feasible.

Remark 5 It is very important to note that there does
not exist such positive scalar sequence {c0, c1, c2, . . .} de-
scribed in Theorem 2 if one of Assumption 1 and Assump-
tion 2 does not hold. Hence Assumption 1 and Assumption
2 are necessary conditions for the existence of the given
positive scalar sequence {c0, c1, c2, . . .}.
Remark 6 The positive scalar sequence {c0, c1, c2, . . .}
denotes the state bounds imposed on the given scalar
function xT(t)Rx(t), t ≥ 0. If the number of switch times
is infinite, the condition lim

j→+∞
cj = 0 is necessary for the

convergence of the system states because the existence
of uncontrollable subsystems may collapse the stability
of the systems if the state bounds do not convergent.
Furthermore, this condition is not very hard to be satisfied
in realistic applications. For example, in some industry
applications, the system switches in a circular order, that

is, there exists θ ∈ Z̄+ such that Ai+θ = Ai, i ∈ Z̄+.
Choosing appropriate gains according to the given control
laws, one can guarantees that cθ = λc0 where 0 ≤ λ < 1.
Then there exists ci+θ = λci, i ∈ Z̄+, which implies that
lim

j→+∞
cj = 0.

Remark 7 As mentioned in Amato et al.(2006), (9)-(11)
can be turned into LIMs by using some simple algebra.
Furthermore, (12)-(13) can be turned into LMIs in this
way, too. Therefore the design of our state feedback con-
troller presented here, once values for αi, βi, i ∈ Z̄+ are
fixed, is an LMI feasibility problem which can be solved via
existing software(for example the LMI Control Toolbox of
MATLABTM). In addition, the parameter search may be
necessary here. Nevertheless this does not represent a hard
computational problem.

4. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section we present a numerical example to demon-
strate the utility of the proposed state feedback controller.
Specially, consider the linear switched system given by

ẋ(t) = Aix(t) +Bu(t), x(t0) = x0, ti ≤ t < ti+1, i ∈ Z̄+,
(23)

where x(t) =

[
x1(t)
x2(t)

]
, x0 =

[
x1(0)
x2(0)

]
=

[
−2
−5

]
and A2j =[

1 0
0 1

]
= R, A2j+1 =

[
2 0
0 1

]
, j ∈ Z̄+, B =

[
1
1

]
. Obvi-

ously, since rank[B,A2jB] = 1 < 2, rank[B,A2j+1B] =
2, j ∈ Z̄+, [A2j , B], j ∈ Z̄+ are uncontrollable and
[A2j+1, B], j ∈ Z̄+ are controllable. Here we consider
the problem of utilizing the presented state feedback con-
troller with time intervals given by T2j = 1(sec), T2j+1 =
3(sec), j ∈ Z̄+.

The controller design is divided in two steps. Firstly, we
design the feedback gain K2j = N2jQ

−1
2j , j ∈ Z̄+. Since

c0 ≥ xT
0 Rx0 = 29, we define c0 = 29. Then we fix

α2j = 3 > 0, j ∈ Z̄+, solve the inequations given by
(9)-(11). We obtain

N2j = [1, 1] , Q2j =

[
3 2
2 3

]
, Q−1

2j =

[
0.6 −0.4
−0.4 0.6

]
,

K2j = N2jQ̃
−1
2j = [0.2, 0.2] , j ∈ Z̄+, (24)

with
λmax(Q2j) = 5, λmin(Q2j) = 1,

c2j+1 = 100.5c2j > 5e3c2j = cond(Q2j)e
α2jT2j , j ∈ Z̄+.

Next, solving the inequations given by (12)-(13) with fixed
β2j+1 = 2, j ∈ Z̄+, obtain

F2j+1 = [−12, 6] , A2j+1 +BF2j+1 =

[
−10 6
−12 7

]
, j ∈ Z̄+,

(25)
with

λmax(A2j+1+BF2j+1) = −1, λmin(A2j+1+BF2j+1) = −2,

c2j+2 =
c2j+1

403
> e−6c2j+1 = c2j+1e

−T2j+1β2j+1 , j ∈ Z̄+

.

It is very important to note that

lim
j→+∞

c2j = 0, lim
j→+∞

c2j+1 = 0
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Fig. 1. States trajectories versus time with our state
feedback controller

Fig. 2. States trajectories versus time without our state
feedback controller

since c2j+2 = 100.5
403 c2j , c2j+3 = 100.5

403 c2j+1, j ∈ Z̄+.
It implies that lim

j→+∞
cj = 0. Hence, the state feedback

controller given by

K2j = [0.2, 0.2] ,K2j+1 = [−12, 6] , j ∈ Z̄+ (26)

is feasible.

The system states trajectories versus time with our state
feedback controller is shown in Fig.1. And Fig.2 shows
states trajectories versus time without our state feedback
controller. Obviously, the system states trajectories in
Fig.2 diverge in a short time. The system states trajec-
tories versus time in Fig.1 converge to 0. And it is obvious
that the system switches at t=1(sec),4(sec),5(sec) in Fig.1.
However, since the ∥ x(t) ∥, t ≥ t0 is sufficiently small
when t≥7(sec), the switches at t=8(sec) and t=9(sec) is
not obvious.

Table 1. The values for cj , j ∈ Z̄+

c0 c1 c2 c3 c4 c5 c6 . . .

29 2914.5 7.232 726.8 1.803 181.25 0.450 . . .

Next, define the states norm as V (t) =∥ x(t) ∥R=
xT(t)Rx(t), t ≥ t0. Fig.3 shows the states norm tra-
jectories versus time with our state feedback controller.
Noting the definition of cj , j ∈ Z̄+, obtain the values for
cj , j ∈ Z̄+ given in TABLE I.

Fig. 3. States norm trajectories versus time with our state
feedback controller

Fig.3 shows that the states norm V (t), t ≥ t0 satisfies the
conditions given by

V (t) < c2j+1, ∀t ∈ [t2j , t2j + 1), V (t2j) ≤ c2j , j = 0, 1, 2.

However, since we do not impose any bound on the state
norm over the time intervals [t2j+1, t2j), j ∈ Z̄+, the states
norm may be very large over these intervals. This may lead
to some undesirable phenomena in realistic applications.
The state feedback controller with sates norm bound for
all t ≥ t0 is included in our future work.

5. CONCLUSION

In this paper we investigate the state feedback controller
design for a class of linear switched systems with un-
controllable subsystems. And we design a controller that
makes the given linear switched closed-loop system states
converging to zero and show its effectiveness by analyz-
ing the system states norm. Furthermore, we interpret
that the presented controller design can be turned into
a LMIs feasible problem which can be solved via exist-
ing softwares(for example the LMI Control Toolbox of
MATLABTM) and it is not a hard problem in realistic
applications. In addition, an illustrative numerical exam-
ple is presented to demonstrate the utility of the proposed
state feedback controller.

As mentioned in Section 4, the state feedback controller
with sates norm bound for all t ≥ t0 is included in our
future work. Furthermore, the problem of designing the
controller for nonlinear switched uncertain systems with
uncontrolled subsystems is worth investigating.
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