Collaborative Estimation and Actuation for Wireless Sensor and Actuator Networks

Lei Mo, Xianghui Cao∗, Jiming Chen, and Youxian Sun

State Key Lab. of Industrial Control Technology, Zhejiang University,
Hangzhou 310027, China.
Emails: morleyzs@gmail.com, {xbcao, jmchen, yxsun}@iipc.zju.edu.cn
*Corresponding author

Abstract: Wireless sensor and actuator networks (WSANs) facilitate close interactions between human and the environment. Efficient coordination among the sensors and actuators plays a vital role in carrying out sensing and acting in WSANs. In this paper, we develop a collaborative estimation and actuation mechanism, which consists of a sensor-actuator coordination phase and an actuator-actuator coordination phase. The first phase is based on distributed Kalman filter in federated configuration, which is able to provide reliable and precise sensing data. On this basis, the second phase allocates proper tasks based on system requirements and coordinates actuators to accomplish the tasks. Particularly, the actuator-actuator coordination is formulated as an optimization problem and an effective method is proposed to search the solution based on sequential unconstrained minimization technique. Simulation results demonstrate the effectiveness of our proposed mechanism.

Keywords: Wireless sensor and actuator networks, node coordination, federated Kalman filter, actuator task allocation, sequential unconstrained minimization technique

1. INTRODUCTION

Wireless sensor and actuator networks (WSANs) consist of a number of sensors and actuators to enable close interactions between human and environment. Efficient coordination among the sensors and actuators is demanded at different levels of WSANs, which can be categorized into Sensor-Sensor (S-S), Sensor-Actuator (S-A) and Actuator-Actuator (A-A) coordinations (Ruiz-Ibarra and Villasenor-Gonzalez, 2008). Extensive studies have been carried out to address the S-S coordination in collaborative sensing, cooperative transmission, sensor scheduling, etc., in the context of wireless sensor networks (WSNs) (Akyildiz et al., 2002; Yuan et al., 2006). In this paper, however, we mainly focus on S-A and A-A coordinations, which are the key differences between WSANs and WSNs.

The S-A coordination manages sensors to sense the physical world and transmit sensed information to appropriate actuators (Wu, 2011). Most of existing works in this area involves data aggregation and data transmission (Gungor et al., 2008; Ngai et al., 2010; Nakayama et al., 2011). The design of S-A coordination is challenging due to: (1) the amount, the resource and the traffic load are asymmetrical between the sensors and the actuators, (2) the sensor information is usually corrupted due to factors such as noise and sensor failure, and (3) the system must satisfy the real-time requirement. To address these issues, Gungor et al. (2008) propose a real-time and reliable transport protocol to transport event features from sensors to actuators with minimum energy dissipation. However, sensor faults are not considered. Ngai et al. (2010) propose a latency-oriented fault tolerant transport protocol for WSANs. This method combine fault tolerant with data aggregation, but doesn’t take sensor measurement noise into account. Nakayama et al. (2011) develop a mobility scheme to guarantee data gathering from all nodes fairly and efficiently in order to control all the nodes in WSANs. Although it provides a reliable data collection, subsequent data fusion and occasional sensor faults are not studied. Considering computation complexity, node resource, and system requirements, we present a Federated filter (Carlson, 1996) based mechanism to coordinate sensors and actuators. Federated filter technology is a flexible distributed filtering method and particularly suitable for information fusion in WSANs. As a decentralized method, the Federated filter requires only limited node resources for communication and computation, and its cascade structure makes it easy for data fusion.

Based on the information conveyed from sensors, organizing actuators effectively is the kernel of designing A-A coordination (Salarian et al., 2012). It deals with which actuators should be scheduled to execute a specific action and how to control their actions properly. During this procedure, multiple factors should be taken into account, such as, user requirements, actuators capabilities, resource constraints (Akkaya and Janapala, 2008), and quality-of-service (QoS) guarantee, such as real-timeliness (Xia,
2008). Melodia et al. (2007) develop a localized actuation algorithm to minimize task completion time. In the overlapping areas, the algorithm selects actuators that can complete the task with minimum energy expenditure and with a given delay bound. This method provides an efficient way to control actuators in the overlapping areas but this is a centralized way. Cao et al. (2010) propose a centralized and a distributed control schemes in WSANs for building-environment control systems. Chen et al. (2010) develop a distributed estimation and collaborative control scheme for WSANs, which can achieve robust control against inaccurate system parameters. These schemes mainly focus on the optimization problem to reduce control error, while the energy consumption and action complete time are not taken into account. Ota et al. (2012) study actuators’ mobility control in WSANs for efficient events detecting in terms of time and energy consumption, but this method does not mention how to handle these events. In this paper, we propose an efficient A-A coordination mechanism to accurately and timely control the events while minimizing the energy consumption of each actuator.

The major contributions can be summarized as follows. We propose a collaborative estimation and actuation mechanism, which consists of a S-A coordination phase and an A-A coordination phase, for WSANs. Specifically, we formulate the S-A coordination as an estimation based data fusion problem and propose a federated filter based solution. We formulate the A-A coordination problem as a task allocation problem and propose a distributed solution to achieve user requirements and guarantee quality of service. Simulation results validate the effectiveness of the proposed mechanism. The remainder of this paper is organized as follows: Section 2 describes the system model and control requirements. Then the corresponding S-A and A-A coordination algorithms are designed in Section 3 and Section 4, respectively. Section 5 presents simulation results. Finally, Section 6 concludes this paper.

2. SYSTEM FORMULATION

We consider a WSAN for environment monitor and control applications. Normally we are interested in controlling the system states at several points of interest (POIs). We assume n sensors and m actuators are deployed in the region of interest (ROI) to detect and track p POIs and take necessary actions to deal with events occurring there. Let \(X = [x_1, \ldots, x_p] \)' denote the environmental variables, where the subscripts are the indexes of the POIs. \(s_i \) denote the i-th sensor, and \(a_j \) denote the j-th actuator. We define an event \(e_{x_i} \) occurs if the state \(x_i \) varies from its set point \(x_i^\prime \), where the set point \(x_i^\prime \) is the desired environment state at the i-th POI and is prescribed by users. Our objective is to schedule and control the sensors and actuators to counteract with the events and stabilize the states \(X \) at their set points \(X^* = [x_1^*, \ldots, x_p^*] \).

We assume that the POIs are well-separated in the geographical area of ROI such that the corresponding states \(\{x_1, \ldots, x_p\} \) are mutually uncorrelated. The value of \(X \) is influenced by a number of actuators deployed in ROI, for which we define \(F = [f_1, \ldots, f_m] \) as their outputs. Since the information exchanges over the control loop are carried out by discrete wireless packets, we model the dynamics of the states at the POIs with the following discrete-time state space model:

\[
X(k+1) = AX(k) + BF(k) + \omega(k) \tag{1}
\]

where \(\omega(k) \) represents the process noise at step \(k \in \{0, 1, 2, \ldots\} \). \(A \in \mathbb{R}^{p \times p} \) is a diagonal matrix based on the aforementioned uncorrelation assumption. \(B \in \mathbb{R}^{p \times m} \) is an input coefficient matrix whose element \(b_{ij} \) indicates the influence of actuator \(a_j \) exerted on system state \(x_i \).

If \(x_i \) is within \(s_i \)'s sensing range \(r_{s_i}, s_j \) can take a noisy measurement of \(x_i \):

\[
z_i^l(k) = c_j x_i^l(k) + \nu_i^l(k), \quad j \in \{1, \ldots, n\}, \quad i \in \{1, \ldots, p\} \tag{2}
\]

where \(c_j \) is a coefficient, \(\nu_i^l \) is the noise measurement of \(s_j \). Assume that \(\omega(k) \) and \(\nu_i^l(k) \) are Gaussian, white, zero-mean with the following properties:

\[
E\{\omega(k)\omega(l)’\} = Q(k) \delta_{kl}, \quad E\{\nu_i^l(k)\nu_j^l(l)’\} = r_i(k) \delta_{kl} \delta_{ij}, \quad \text{where} \quad \delta_{kl} = 1 \text{ if } k = l, \text{ and } \delta_{kl} = 0, \text{ otherwise.}
\]

Here, we consider a scenario that each sensor only convey one system state; while a system state can be sensed by multiple sensors.

Let \(u_j \) denote the control input to adjust \(a_j \)'s actuation. At every step \(k \), \(a_j \) can be modeled as:

\[
f_j(k) = \alpha f_j(k-1) + \beta u_j(k), \quad j = 1, \ldots, m \tag{3}
\]

where \(\alpha, \beta, \gamma \) are the constants depending on the type of actuator. For ease of exposition, we assume homogeneous actuator in the sequel. From (2) and (3), we can see that each sensor is a time-driven device, since data collection is controlled by the sample time; while each actuator is an event-driven device depending on the control techniques used. Hereby, we assume network-wide clock synchronization is achieved.

Since the actuators’ influence ranges are generally limited, all the actuators can be partitioned into a number of independent sets such that any two actuators from different sets do not influence the state at a common POI.

Mathematically, the system partitioned can be described by the following matrix rearrangements:

\[
A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & \cdots & 0 & A_N \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & \cdots & 0 \\ 0 & \cdots & 0 \\ \cdots & \cdots & \cdots \end{bmatrix} \tag{4}
\]

where \(A_i \in \mathbb{R}^{p \times p}, B_i \in \mathbb{R}^{p \times m_i}, i \in \{1, \ldots, N\} \), and \(\sum_{i=1}^{N} p_i = p, \sum_{i=1}^{N} m_i = m \). Then, the whole system can be divided into \(N \) separated subsystems \(\{GS_1, \ldots, GS_N\} \).

Due to the inter-dependence among the subsystems, we can thus focus on a single subsystem in the following design. Without loss of generality, we assume the parameters of the dth subsystem \(GS_d \) is:

\[
A_d = \begin{bmatrix} a_{rr} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{tt} \end{bmatrix}, \quad B_d = \begin{bmatrix} b_{rt} & \cdots & b_{rq} \\ \vdots & \ddots & \vdots \\ b_{1t} & \cdots & b_{1q} \end{bmatrix} \tag{5}
\]

where \(1 \leq r < t \leq p \) and \(1 \leq l < q \leq m \).

Our collaborative estimation and actuation scheme consists of two phases. In the S-A coordination phase, once an event \(e_{x_i} \) takes place, sensors that covering it are organized to sense the event and collaborate with actuators to estimate \(x_i \). During the A-A coordination phase, the actuators collaboratively decide which actuators will execute specific
actions in response to the event based on the estimation results in S-A coordination phase. The decision also takes response time and energy consumption into consideration.

3. S-A COORDINATION

FKF is a distributed filter consisting of local filters (LFs) and a master filter (MF) as shown in Fig.1. The outputs of LFs are judged and combined by a MF to provide reliable and precise estimation. FKF has been proven to be an effective way for multi-sensor data fusion applications.

Then, we apply FKF to coordinate sensors and actuators, where LFs and MF are performed by the actuator nearest POI.

3.1 Local Filter Design

We assume sensor set $V_s = \{s_j, j = 1, \ldots, h\}$ is responsible for $x_i \in X_s$, i.e., x_i is within the sensing range of $s_j, j = 1, \ldots, h$. Then sensors in V_s perform sensing and periodical send their measurements to the nearest actuator to achieve estimation and fusion. This is because the closer the actuator to the event is, the shorter time is required to transmit the packets, and thus the quicker the actuator reacts on the event. When h sensors are scheduled, then accordingly h LFs are needed to be implemented in parallel.

Consider actuators’ outputs will influence sensor measurements, in order to estimate system state more precisely, at step k, based on node deployment, s_j’s measurement can be calibrated as follow:

$$z_j^k = z_j^k - \sum_{l=1}^m b_{ji} f_l(k-1)$$

(6)

where b_{ji} denotes the influence of a_i exerts on s_j. Then, according to Carlson (1996), the measurement update can be calibrated as follow:

$$p_i^k(k|k) = (p_i^k(k|k-1))^{-1} + c_j r_j^{-1}(k)c_j$$

(7)

$$p_i^k(k|k) - x_i^k(k|k-1) + c_j r_j^{-1}(k)z_j^k(k)$$

(8)

After that, LF will transmit $\{x_i^k(k|k), p_i^k(k|k)\}$ to the fusion center MF.

3.2 Master Filter Design

Once MF collects the local estimations from LFs, the global estimation and the associated error covariance are given by:

$$p_i^f(k|k) = [p_i^f(k|k)]^{-1} + \beta_i^k q_i(k)$$

$$x_i^f(k|k) = p_i^f(k|k)(p_i^f(k|k))^{-1}x_i^k(k) + \ldots + \beta_i^k q_i(k)$$

(9)

(10)

where $p_i^f(k|k)$ is the information matrix. (10) shows that the fused result is a linear weighted combination of each LF’s estimation result.

However, the estimations of different LFs are correlated since $\{x_1^k(k|k), \ldots, x_h^k(k|k)\}$ come from the same x_k. In order to eliminate this correlation, according to Edelmayer and Miranda (2007), the fused results are reset as follows:

$$x_i^f(k|k) = x_i^k(k)$$

$$p_i^f(k|k) = (\beta_i^k)^{-1} p_i^k(k)$$

$$\mathcal{Q}_i(k) = (\beta_i^k)^{-1} q_i(k)$$

(11)

where $q_i(k)$ is the (i, i)th element of $Q(k)$, and $\beta_i^k(k)$ is the information-sharing factor and must satisfy the following constraints:

$$\sum_{j=1}^h \beta_j^k(k) = 1$$

(12)

$$0 \leq \beta_j^k(k) \leq 1$$

Since the trace of $p_i^f(k|k)$ represents each LF’s estimation accuracy, then we choose $\beta_i^k(k)$ based on the following equation:

$$\beta_i^k = \frac{tr^{-1}(p_i^f(k|k))}{\sum_{j=1}^h tr^{-1}(p_j^f(k|k))}$$

(13)

In order to organize actuators in subsystem GSD effectively, we group these actuators into a cluster and randomly or sequentially choose one actuator to serve as cluster head. After receiving the fusion results transmitted from its numbers, the cluster head accesses GSD’s system states $X_s^f(k|k) = [x_1^f(k|k), \ldots, x_h^f(k|k)]^T$ and performs the following task allocation mechanism: (1) calculates actuator control law $U_d(k) = [u_1(k), \ldots, u_q(k)]^T$ based on a SUMT algorithm (details will be presented in Section 4.2), and (2) sends commands $[u_1(k), \ldots, u_q(k)]$ to the corresponding actuators $[a_1, \ldots, a_q]$. Then, the state and the error covariance estimated by LF in the next step are:

$$x_i^f(k+1|k) = a_i x_i^f(k|k) + \sum_{s=1}^q b_{is} f_s(k)$$

(14)

$$p_i^f(k+1|k) = a_i p_i^f(k|k) a_i + \mathcal{Q}_i(k)$$

(15)

From the above statement, we can see that the proposed S-A coordination decomposes the estimation process into several sub-processes and allocates proper tasks to each node. Note that (1) control inputs are not known at the sensors, and (2) the actuators are more powerful than the sensors. In order to reduce the messages exchange among the nodes and make an optimum usage of node’s resource, the major tasks such as estimation, fusion and fault
detection are performed by the resource-rich actuators rather than the resource-constrained sensors.

4. A-A COORDINATION

In the A-A coordination phase, we aim to find, for each occurring event, the optimal control law meets user requirements while minimizing the energy required to complete the action associated with the occurring event, under the constraint of meeting the time bound required by the application.

4.1 Actuator Task Allocation

Let \(t_{ij}^l(k) \) denote time required for \(a_j \) to act alone and independently to deal with \(e_{x_i} \) (if \(e_{x_i} \) is within \(a_j \)'s action range \(r_a \)). The value of \(t_{ij}^l(k) \) is related to (1) the power that \(a_j \) uses to perform the action, (2) the distance between \(a_j \) and \(e_{x_i} \), and (3) the magnitude of \(e_{x_i} \). Without loss of generality, we assume:

\[
\begin{align*}
t_{ij}^l(k) &= H(P_j(k), d_{ij}, e_{x_i}(k)) \\
&= h(P_j(k), d_{ij}, e_{x_i}(k)) + k_p f_j(k) + d_{ij} + e_{x_i}(k) = x_i^T(k) - x_i^*.
\end{align*}
\]

When event \(e_{x_i} \) occurs, at least one actuator that covers \(x_i \) will be scheduled to perform the action. Since some off-diagonal elements of \(B_d \) are not equal to zero, the action of this actuator may change the other system states. Therefore, we consider all the actuators in the scheduling problem. In order to facilitate task allocation, based on matrix \(B_d \), we define a binary matrix \(B_d' \) whose element \(b_{ij}' \) satisfies the following equation:

\[
b_{ij}' = \begin{cases} 1, & b_{ij}
eq 0 \\ 0, & b_{ij} = 0 \end{cases}
\]

If \(b_{ij}
eq 0, j \in \{l, \ldots, q\} \), system state \(x_i \) is influenced by actuators \(a_j, j \in \{l, \ldots, q\} \), then the time required to deal with \(e_{x_i} \) is:

\[
T_i(k) = G(b_{i1}', \ldots, b_{iq}', t_{1i}^0(k), \ldots, t_{qi}^0(k))
\]

where \(G(\cdot) \) can be defined according to the particular application.

If \(b_{ij}
eq 0, i \in \{r, \ldots, t\} \), actuator \(a_j \) is responsible for system states \(x_{x_i}, i \in \{r, \ldots, t\} \), then the energy required for \(a_j \) to deal with events occurs within its action range is:

\[
E_i(k) = P_j(k) \Delta k
\]

(20) minimizes the energy consumption of entire actuators. (21a) imposes that all system states should satisfy the desired control requirements, where \(X_d(k + 1) = X_d^* \)

(21b) defines actuator has adequate energy at step \(k \), (21c) limits the action completion time is smaller than the threshold \(T_{th} \), (21d) bounds the control signal. The actuator task allocation problem in other subsystems can be handled in the same way.

4.2 Control Algorithm

From the above statement, it is noted that in order to solve the actuator task allocation problem, the states of the whole sub-system should be accessed at the controller. As we mentioned before, after data fusion complete, actuator will relay its fusion result to the cluster head, then, a simple method is to assign this cluster cluster responsible for task allocation. In the following, we will explain how to search the desired solution.

To deal with the nonlinear optimal problem which inequality constraints and equality constraints, the most commonly used method is the sequential unconstrained minimization technique (SUMT) (Dussault, 2011). The basic idea of SUMT is to transfer (20) and (21) into the following equation:

\[
\phi(U_d, M^{(p)}) = \sum_{j=1}^{q} E_j(k) + M^{(p)} \sum_{i,j} \sum_{k} \{\max[g_i(U_d), 0]\}^2
\]

with

\[
M^{(p)} \sum_{m} \sum_{n} [h^m_n(U_d)]^2 = q \sum_{i=1}^{q} E_i(k) + M_1 + M_2
\]

where

\[
\begin{align*}
g_i^p(U_d) &= E_i(k) - E_i^{res}(k) \\
&\leq 0, j \in \{l, \ldots, q\} \\
g_i^2(U_d) &= T_i(k) + T_d(k) - T_{th} \leq 0, i \in \{r, \ldots, t\} \\
g_i^3(U_d) &= u_j(k) - u_j \leq 0, j \in \{l, \ldots, q\} \\
g_i^4(U_d) &= u_i - u_i(k) \leq 0, j \in \{l, \ldots, q\} \\
\end{align*}
\]

(21d) bounds the control signal. The actuator task allocation problem in other subsystems can be handled in the same way.
(22), problem solution U_d will change under different $M^{(p)}$, then $U_d(M^{(p)})$ can be considered as a trace with parameter $M^{(p)}$, if $0 < M^{(0)} < M^{(1)} < \ldots < M^{(p)} < M^{(p+1)} < \ldots \rightarrow \infty$, the point range $\{U_d(M^{(p)})\}$ will follow this trace to gradually converge to the optimal states of primal problem. The implementation details of SUMT is given below:

1. Initialization step: Select a growth parameter $C > 1$, a stopping parameters $\varepsilon_s > 0$, an initial value of the penalty parameter $M^{(0)}$ and a starting point U_d^0, let $p = 1$.

2. Iterative step: Using unconstrained search technique to find the point that minimizes $\phi(U_d, M^{(p-1)})$, call it $U_d(p)$ and determine which constraints are violated at this point.

3. Stopping rule: If the distance between $U_d(p)$ and $U_d(p-1)$ is smaller than ε_s (i.e., $\|U_d(p) - U_d(p-1)\| \leq \varepsilon_s$) or the difference between two successive objective functions is smaller than ε_s (i.e., $|\sum_{j=1}^m E_j[U_d(p)] - \sum_{j=1}^m E_j[U_d(p-1)]| \leq \varepsilon_s$), stop with $U_d(p)$ as an estimation of the optimal solution. Otherwise, set $M^{(p)} = CM^{(p-1)}$, formulate the new $\phi(U_d, M^p)$ based on which constraints are violated at $U_d(p)$, let $p = p + 1$ and return to the Step (2).

4.3 Complexity Discussion

A key issue about node coordination mechanisms is the communication and computation complexity in terms of the number of message exchanges and calculations required by the algorithm. The analysis is as follows. For the S-A coordination, at each iteration, information exchange among sensors and actuators are the measurements $z'_i(k)$ transmitted from sensors to their nearest actuator, where indexes i and j depend on the number of POIs in this subsystem and the number of sensors cover this POI, respectively. If h LFs run parallel, then the FKF costs $O(h)$ operations. For the A-A coordination, after receiving the sensing data relayed from its cluster numbers, the cluster head performs FKF and SUMT to calculate actuator control law and transmits the control commands to the corresponding actuators. For the cluster head, SUMT can be carried out with a complexity of $O(d^3)$ operations, where d represents the total number of constraints, and this method typically requires a few tens of iterations. Since $p \ll n$, $m \ll n$, at each iteration, each node only has to exchange a (small) constant amount of information with each other, and the implementations of FKF and SUMT are not complicated.

5. SIMULATION

We consider a WSNs based temperature control system as an illustrative example. The scenario consists of four actuators deployed in the ROI to control four POIs, i.e., $p = 4$, $m = 4$. The system model is:

$$A = \begin{bmatrix} 0.9 & 0 & 0 & 0 \\ 0 & 0.9 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \\ 0 & 0 & 0 & 0.9 \end{bmatrix}, B = \begin{bmatrix} 0.3 & 0.4 & 0 & 0 \\ 0 & 0.5 & 0.3 & 0 \\ 0.4 & 0 & 0.3 & 0 \\ 0 & 0 & 0 & 0.6 \end{bmatrix}$$

According to the system partition, the entire system can be divided into the following two subsystems G_{S_1} and G_{S_2}:

![Fig. 2. Dynamic system response under the proposed node coordination.](image)

![Fig. 3. The corresponding control law of actuators.](image)

After the initial nodes deployment, x_1, x_2, x_3, x_4 are covered by 3, 2, 2, 2 sensors. We assume the control signal of actuator, such as current or voltage, directly corresponds to the actuator’s output, such as temperature. Then, we select $\alpha = 0$, $\beta = 1$, $\gamma = 1$, $k_p = 2$, $U \in [-50, 50]$, and the initial energy of actuator is $E_0 = 1000$. $H(\cdot)$ and $G(\cdot)$ are assumed to be $(k_d \lambda e_d(k))/(\eta d \lambda p_d(k))$ and $(\sum_{j=1}^q b_{ij}/\lambda p_d(k))^{-1}$, where $k_1 = 3$, $\eta_1 = 2$, $\lambda = 1$. T_d, T_{ch} and Δk are set to 2 s, 10 s and 20 s. The process noise $w(k)$ and measurement noise $v(k)$ have the amplitude: $q_0(k) = 0.1$ and $r_0(k) = 0.5$. The initial system states are $X(0) = [0, 0, 0, 0]^T(\degree C)$, and our aim is to meet the set points $X^* = [23, 25, 26, 28]^T(\degree C)$. Fig.2 illustrates the dynamic system response under the proposed S-A and A-A coordinations. The corresponding actuator control law is shown in Fig.3. In this context, we can see that the control system is bounded-input-bounded-output (BIBO) stable. As the introduction of error-based feedback control, system states will converge to their set points.
6. CONCLUSION

We have proposed a collaborative estimation and actuation scheme which effectively handles the S-A and A-A coordinations in WSANs. A multi-source data fusion algorithm based on FKF has been designed to coordinate sensors and actuators for event estimation. The A-A coordination has been formulated as an nonlinear optimization problem taking all of the user requirements, response time and energy consumption into account, and a SUMT based algorithm has been proposed to solve the optimization iteratively. The proposed scheme has been validated by simulations based on a temperature control system.

REFERENCES

