
Compensators via H2-based Model
Reduction and Proper Orthogonal

Decomposition ?

Jeff Borggaard ∗ Serkan Gugercin ∗ Lizette Zietsman ∗

∗Virginia Tech, Blacksburg, VA 24061 USA (Tel: 540-231-7667;
e-mails: jborggaard@vt.edu, gugercin@vt.edu, lzietsma@vt.edu).

Abstract:
Low order controllers are essential for the design of real time feedback controllers for systems
described by partial differential equations (PDEs). We consider a MinMax control design that
does not require full state information by using a state estimate in the feedback law. In this study
we compare two reduced order modeling approaches to obtain low order state estimators for a
system described by a nonlinear PDE. In the first case we investigate an H2-model reduction
technique for linear systems. In particular, we implement the iterative rational Krylov algorithm
(IRKA) to construct a low dimensional linear state estimator. This method maintains stability
properties of the original system and is numerically efficient in that it requires only matrix-
vector multiplications and sparse linear solvers. In the second case we construct a nonlinear
compensator by including nonlinear terms of the state equation in the differential equation for
the compensator. Proper orthogonal decomposition (POD) is then used to determine a reduced
order model for the resulting nonlinear equation. We apply these approaches to Burgers equation
with periodic boundary conditions.

1. INTRODUCTION

The primary goal of this paper is to compare and test two
reduced order modeling strategies in practical controller
design for systems described by nonlinear partial differ-
ential equations (PDEs). Full state information is seldom
available for complex physical systems. As an alternative,
compensator design uses state measurements for a state
estimate and uses this estimate in the feedback control law.
For this study we use LQG and MinMax control designs
to stabilize the system and attenuate the disturbance to
the controlled output map. Distributed parameter control
theory is used to design the feedback law after which ap-
proximation theory is used to construct finite dimensional
controllers for implementation. These controllers are then
used to construct low order (linear and nonlinear) state
estimators via IRKA (Gugercin et al. [2008]) and POD
(Berkooz et al. [1993]).

2. FEEDBACK CONTROL DESIGN

2.1 Abstract Problem Statement

Implementation of distributed parameter control theory
requires the abstract form of the PDE:

Mẇ(t) = Aw(t) + G(w(t)) + Bu(t) +Dη(t), (1)

with w(0) = w0 and with state measurements

y(t) = Cw(t) + Eη(t). (2)

? This work was supported in part by the Air Force Office of
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Here w denote the state of the system in a state space
X (typically a Hilbert space), A is a linear operator, G
denotes the nonlinear term, B is the control input operator,
and the disturbance takes the form Dη(t).

For this discussion we consider LQG and MinMax ap-
proaches. MinMax control design is typically applied to
linear systems and results in a linear controller that is
determined via the solution of two algebraic Riccati equa-
tions. However, this strategy can be applied to nonlinear
systems by first linearizing the state equation and design-
ing the standard feedback control law.

We therefore start by linearizing the abstract Cauchy
problem (1) about a given a nominal solution, wnom, such
as a steady-state solution or a time-averaged solution.
For this discussion assume that wnom is the steady state
solution,

0 = Awnom + G(wnom) + Bunom +Dηnom,

and ynom = Cwnom + Eηnom. Define z(t) = w(t) − wnom,
uz(t) = u(t)−unom, ηz(t) = η(t)−ηnom, and yz(t) = y(t)−
ynom. Then z satisfies the abstract Cauchy problem

Mż(t) = Ãz(t) + G̃(z(t)) + Buz(t) +Dηz(t), (3)

with z(0) = w0 − wnom, where

Ãz ≡ Az +∇wG(wnom)z

and

G̃(z(t)) ≡ G(z(t) + wnom)− G(wnom)−∇wG(wnom)z.

Using this form of the equations ensures that the nonlinear
term in (3) satisfies

G̃(z(t)) = zT (t)∇wwG(γz(t) + (1− γ)wnom)z(t)
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for some γ ∈ (0, 1). Thus, G̃ is properly nonlinear in z.

State measurements of z are produced from (2) by

yz(t) = Cz(t) + Eηz(t). (4)

A control that stabilizes (1)–(2) to wnom, equivalently,
stabilizes the solution z of (3)–(4) to zero.

Any linear or nonlinear feedback control of the form

uz(t) = −Kz(t) or uz(t) = −K(z(t)) (5)

requires full state information. In real systems the the
full state z is not available due to absence of initial
conditions, uncertainties in the model, uncertainties in the
parameters/boundary conditions, etc. Therefore, the state
z must be estimated using state measurements that may
contain their own uncertainties (4). This state estimator
must be fast enough to be implemented in real time,
and accurate enough to provide a stabilizing feedback
control, and hopefully, also maintain some of the optimal
performance designed into the control.

2.2 Control and State Estimator

We present only the items essential to the construction
of the MinMax controller. For more on the infinite di-
mensional theory see for example McMillan and Trig-
giani [1993], McMillan and Triggiani [1994], and Marrekchi
[1993]. The finite dimensional theory is presented in Rhee
and Speyer [1989] and Başar and Bernard [1991].

Consider the linearized system, ignoring G̃ in (3),

Mż(t) = Ãz(t) + Buz(t) +Dηz(t) (6)

yz(t) = Cz(t) + Eηz(t). (7)

A MinMax approach requires the design of a state estima-
tor zc that satisfies the linear system

Mżc(t) = Aczc(t) + Fyz(t), (8)

and zc(0) = zc0 is the best available guess to the initial
state. The linear feedback law takes the form uz(t) =
−Kzc(t) where, denoting the operator adjoint with (∗),

K=R−1B∗Π,
F = (I − θ2PΠ)−1PC∗H−1,

Ac = Ã − BK − FC + θ2DD∗Π
and Π and P are solutions to algebraic Riccati equations:

Ã∗Π + ΠÃ −Π(BR−1B∗ − θ2DD∗)Π +Q = 0, (9)

ÃP + P Ã∗ − P (C∗H−1C − θ2Q)P +DD∗ = 0. (10)

The parameter θ ∈ [0, θmax] is chosen to balance per-
formance (for LQG, θ = 0) and robustness (θ = θmax).
The parameter θmax is the largest value of θ where (9)
and (10) each have a nonnegative solution and the matrix
I − θ2PΠ is positive definite. Here Q is a nonnegative
definite, self-adjoint state weighting operator and R is a
positive definite, self-adjoint control weighting operator
and H = EE∗.
Once the solutions to (9) and (10) are known, the stabiliz-
ing control for the linear system can also be applied to the

nonlinear system, see Burns and King [1998] and Atwell
et al. [2001]. The resulting nonlinear observer becomes

Mżc(t) = Aczc(t) + Fyz(t) + G̃(zc(t)), zc(0) = zc0 (11)

and the (nonlinear) feedback law is of the form

uz(t) = −Kzc(t). (12)

The nonlinear closed loop system of the perturbed state z
and the estimated state zc from (11) is defined by[

Mż(t)
Mżc(t)

]
=

[
Ã −BK
FC Ac

] [
z(t)
zc(t)

]
+

[
G̃(z(t))

G̃(zc(t))

]
+

[
D 0
0 FE

] [
ηz(t)
ηz(t)

]
[
z(0)
zc(0)

]
=

[
z0

zc0

]
.

In the original variables, the system has the form

Mẇ(t) =Aw(t) + G(w(t)) + Bu(t) +Dη(t)

y(t) = Cw(t) + Eη(t)

u(t) =−K (wnom + zc(t))

since unom = −Kwnom and zc satisfies (8) or (11).

2.3 Approximation and Reduced Order Compensator

For the implementation of the control we apply standard
finite element techniques. This results in a semi-discrete
finite dimensional approximation of (3) and (4)

MN żN (t) = ÃNzN (t) + G̃N (zN (t)) +BNuNz (t)

+DNηNz (t), (13)

with zN (0) = zN0 and state measurements

yNz (t) = CNzN (t) + ENηNz (t). (14)

of order N . In a full order compensator design, these order
N approximations are used to compute KN , FN and AN

c
and the finite dimensional approximations to the linear
compensator equation (8) takes the form

MN żNc (t) = AN
c z

N
c (t) + FNyNz (t), (15)

and the nonlinear equation (11) the form

MN żNc (t) = AN
c z

N
c (t) + FNyNz (t) + G̃N (zNc (t)). (16)

The control law is given by

uNz (t) = −KNzNc (t). (17)

The approximation to the nonlinear closed loop system,
which we will refer to as the full order closed loop system,
is given by[
MN żN (t)
MN żNc (t)

]
=

[
ÃN −BNKN

FNCN AN
c

] [
zN (t)
zNc (t)

]
+[

G̃N (zN (t))

G̃N (zNc (t))

]
+

[
DN 0

0 FNEN

] [
ηNz (t)
ηNz (t)

]
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(18)[
zN (0)
zrc (0)

]
=

[
zN0
zNc0

]
.

See Marrekchi [1993] for more about the convergence of the
finite dimensional approximations to the initial distributed
parameter system.

These approximations are used to compute the matrices
in the observer equation (16) as well as the control law
(17) via solutions to finite dimensional approximations to
the algebraic Riccati equations (9) and (10). These finite
dimensional discretizations of the PDE system results in
very large systems which provides numerous numerical
challenges such as solving the approximate algebraic Ric-
cati equations. Furthermore, to enable practical implemen-
tation, one must be able to integrate equation (16) in real
time.

One approach to address this problem is to implement
model reduction techniques. Here we use model reduction
techniques to the compensator equation (both linear and
nonlinear) where the goal is the design of a robust, low
order controller with r � N . Note that the superscript r
refers to the reduced order approximations. The reduced
order compensator and control takes the form

Mr żrc (t) =Ar
cz

r
c (t) + F ryNz (t) + G̃r(zrc (t)),

urz(t) =−Krzrc (t).

For simulation one then considers the coupled system with
the full order state and the reduced order state estimate[
MN żN (t)
Mr żrc (t)

]
=

[
ÃN −BNKr

F rCN Ar
c

] [
zN (t)
zrc (t)

]
+[

G̃N (zN (t))

G̃r(zrc (t))

]
+

[
DN 0

0 F rEN

] [
ηNz (t)
ηNz (t)

]
[
zN (0)
zrc (0)

]
=

[
zN0
zrc0

]
.

It is important to point out that, when implemented, the
control will be coupled with a physical system rather than
the discretized differential equation. Thus our goal is not
a low order model but rather a low order controller.

Note that G̃N (·) and G̃r(·) are properly nonlinear. There-
fore, if we can reduce the problem such that stability prop-
erties ofMr, ÃN−BNKr, and Ãr−F rCN match their full-
order counterparts, the reduced-order compensator should
maintain a stable system.

3. MODEL REDUCTION OF THE COMPENSATOR

In this section we present the IRKA algorithm as applied
to the linear compensator (8) and the POD algorithm as
applied to the nonlinear compensator (11).

3.1 Iterative Rational Krylov Algorithm (IRKA)

We only present the essential background for thisH2-based
model reduction technique. For details, see Gugercin et al.
[2008]. Consider a linear system

E ẋ(t) = A x(t) + Bu(t), y(t) = Cx(t)

with transfer function H(s) = C (sE − A )−1B, where
x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
vector, and y(t) ∈ Rp is the output vector.

The objective is to design a high-fidelity reduced system
with the same number of inputs and outputs as in the
original linear system but with the state dimension r � n.

The iterative rational Krylov algorithm (IRKA) proposed
in Gugercin et al. [2008] constructs a reduced system
that satisfies the interpolation-based first order necessary
conditions for the optimal H2 approximation:

‖H −Hr‖H2
= min

dim H̃r=r
‖H − H̃r‖H2

, H̃r stable,

where Hr denotes the reduced order transfer function.
IRKA is iterative in nature and computationally effective
in that it requires only matrix-vector multiplications and
sparse linear solvers. The reduced model in IRKA is
obtained by a Petrov-Galerkin projection, taking the form

Erẋr(t) = Arxr(t) + Bru(t), yr(t) = Crxr(t)

with

Er = WT
r E Vr, Ar = WT

r A Vr, Br = WT
r B, Cr = CVr

where Wr ∈ Rn×r and Vr ∈ Rn×r are chosen to enforce
the interpolation-based necessary conditions for H2 opti-
mality. For details, see Gugercin et al. [2008]. Also, see
Wilson [1970], Meier III and Luenberger [1967], Dooren
et al. [2008] and the references therein for other works on
H2 model reduction.

We apply this approach to the linear state estimate equa-
tion (15)

MN żNc (t) =AN
c z

N
c (t) + FN yNz (t)︸ ︷︷ ︸

input

, zNc (0) = zNc0, (19)

uout(t)︸ ︷︷ ︸
output

= C zNc (t). (20)

In this application the input vector is yNz (t) and there are a
number of options for the output vector uout. If we choose
C = −KN , the output is uout(t) = −KNzNc (t) which is
the control. If we choose C = −BNKN , the output is
uout(t) = BNuN (t) and if we choose C = I, the output is
uout(t) = zNc (t).

Even though the two approximate algebraic Riccati equa-
tions have to be solved, no full order simulations are
needed to construct this linear reduced order model. Only
the state measurements yNz (t) and finite element matrices
AN

c , FN and the matrices needed for C are required. These
calculations are completed off-line after which the reduced
order model for the state estimate can be implemented for
real time control.

3.2 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) is an empir-
ical method for model reduction of nonlinear systems. It is
based on finding one or a set of representative simulations
of the nonlinear system, then computing a low dimensional
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MN -orthogonal basis that is optimal for representing the
simulation data. This simulation data is referred to as the
snapshot set in the literature Sirovich [1987]. The foun-
dation of this process is the singular value decomposition
(SVD) or Hilbert-Schmidt decomposition in the abstract
setting.

One natural strategy is to perform simulations of the cou-
pled state/compensator equations (18) to build the solu-
tion data. See for example Atwell et al. [2001]. Thus, given
a set of solutions W ≡ {zNc ( · ; zN0 , ηN )} parametrized
by different initial conditions and different realizations
of the disturbance, we compute a low dimensional basis
{φ1, . . . , φr} that is MN -orthogonal and is optimal for
representingW. Note that we may naturally include other
problem parameters that arise, and perhaps modify this
basis as other parameters change, see Hay et al. [2008,
2009, 2010].

To determine the POD reduced order model, let z̄c be the
mean, or other centering trajectory of zNc and write the
POD model of the compensator, zrc , as

zrc (x, t) = z̄c(x, t) +

r∑
i=1

φi(x)ai(t)

where {φi} are the orthonormal basis functions that “best”
represent the data: zNc − z̄c.
Substituting zrc into the weak form of the compensator
equations leads to the reduced order system

ȧi = bi + [Ar
ca]i + aTBr

i a︸ ︷︷ ︸
Gr(a)

+
[
F rCNzN

]
i
,

ai(0) =

∫
Ω

φi(x)(zNc0(x)− z̄c(x))dx = φTi M
N (zNc0 − z̄c)

where

Ar
c = ΦTAN

c Φ, F r = ΦTFN

and

[Br
i ]jk =

∫
Ω

φjφk,xφidx.

[
żN (t)
ȧr(t)

]
=

[
ÃN −BNKM

F rCN Ar

] [
zN (t)
ar(t)

]
+

[
GN (zN (t))
Gr(ar(t))

]
+

[
DN 0

0 F rEN

] [
ηNz (t)
ηNz (t)

]
[
zN (0)
ar(0)

]
=

[
zN0

ΦTMN (zNc0 − z̄c)

]
.

4. NUMERICAL RESULTS

4.1 Burgers Equation

Note that the form of the abstract Cauchy problem in
(1) would apply to control problems of several relevant
distributed parameters systems such as the Navier-Stokes
equations and the Boussinesq equations. However, in this
paper, we will restrict our attention to Burgers equation,

which has a similar nonlinear term, but avoids complica-
tions with high index descriptor systems.

Therefore, we consider

ẇ = −wa · ∇w +∇ · (µ∇w) + b(x)u(t) + d(x)η(t)

from which we have the form (1) with the identifications

Aw = ∇ · (µ∇w) and Gw = −wa · ∇w

along with Bu(t) = b(·)u(t) and Dη(t) = d(·)η(t). In the
one dimensional case, a = 1 and in higher spatial dimen-
sions, ‖a‖ = 1 is the advection direction. We linearize

about wnom = 0, so we have w = z, A = Ã, and G = G̃.

We consider the 1D Burgers equation with parameters
and boundary conditions similar to those used by Atwell
et al. [2001]. Specifically, we consider periodic boundary
conditions:

w(t, 0) = w(t, 1), wx(t, 0) = wx(t, 1),

initial conditon

w(0, x) =

{
0.5 sin(2πx), 0 < x ≤ 0.5
0, 0.5 < x < 1

and the viscosity parameter µ = 5× 10−4.

The state measurement y consists of five measurements
averaging w over the intervals [0, 0.1], [0.2, 0.3], [0.4, 0.5],
[0.6, 0.7], and [0.8, 0.9]. The disturbance takes the form
Dη(t) = 0.75 cos(10t)1(x). The design parameters are
chosen as follows: R = 0.1I and H = 1 × 10−5I and

Q = q(x)I where q(x) =

{
10, 0.7 ≤ x ≤ 0.9
1, elsewhere.

We present a collection of results that are representative of
the cases that we considered. The MinMax controller with
θ = θmax differed very little from the LQG controller where
θ = 0 and we only present the LQG case here. We use
linear finite elements with N = 80 for all high dimensional
approximations.

We consider two control input operators and present the
two cases in the next sections.

4.2 Low Rank Control Input

Let Bu(t) = [χ[0.3,0.5] χ[0.8,1]]

[
u1(t)
u2(t)

]
.

The open loop and closed loop, full state, LQR, simula-
tions are presented in Figures (a) and (b). The effective-
ness of the control is clear and we will compare the results
using state estimators and reduced order models to this
case.

In Figures (c) and (d), we present the resulting state of
the coupled full order, closed loop system in (18) for the
linear and nonlinear state estimators described in (8) and
(11). In this case the results from the linear state estimator
compares well to the results from nonlinear compensator.
A measure for comparison of the two approaches is the
LQG cost and in this case the cost for the linear case is
0.2982 and for the nonlinear case 0.2976.

Since the linear compensator performed well in this case,
we consider reduced order models of the linear state
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(a) Open Loop (b) Closed loop, LQR

(c) LQG with linear, full order,
compensator.

(d) LQG with nonlinear, full or-
der, compensator.

estimator using IRKA. We present the results for the
case where r = 4 and C = −BNKN . Similar results are
obtained for the other choices of C .

(e) LQG with linear, full order,
compensator.

(f) Reduced order linear com-
pensator, IRKA with r = 4.

The reduced order model with only r = 4 compares well
to the full order case as can be seen in Figures (e) and (f).
The LQG costs are respectively 0.3253 and 0.3173 for the
reduced order compensator using IRKA with r = 4 and
r = 8 respectively. Compare that to the full order LQG
cost which is 0.2982.

We also compare the full order, nonlinear compensator
LQG model to the POD-based nonlinear reduced order
model. As is expected, Figures (g) and (h) compare well
to the full order case presented in Figure (d). The LQG
cost for the full order nonlinear compensator case is 0.2976,
while the cost using IRKA with r = 8 is 0.3173 and using
POD with r = 8 is 0.2974.

It is important to note that the linear reduced order model
performed very well in this case. The computational cost
implementing IRKA is lower than the cost associated with
POD since one does not need full order simulations of
the coupled system as required for POD. This example
suggests that IRKA could be successfully implemented in
the construction of reduced order linear compensators.

(g) POD with nonlinear com-
pensator, r = 4.

(h) POD with nonlinear com-
pensator, r = 8.

4.3 High Rank Control Input

In this example we consider a high rank control input
namely Bu(t) = u(x, t). We first of all compare the perfor-
mance of the linear and nonlinear full order compensators.
Following this, the effectiveness of a reduced order linear
compensator via IRKA and the effectiveness of a reduced
order nonlinear compensator via POD are compared.

(1) LQG with linear, full order,
compensator.

(2) LQG with nonlinear, full or-
der, compensator.

Unlike the previous example, the states associated with a
linear and nonlinear compensator differ significantly. We
compare the linear reduced order state estimator using
IRKA to the full state estimators in Figures (1) and (2).
For this example we choose C = K.

(3) Reduced order linear com-
pensator, IRKA r = 4.

(4) Reduced order linear com-
pensator, IRKA r = 8.

As we can see from comparing Figures (1), (3), and (4),
the linear reduced model performs reasonably well at
approximating the linear full order LQG system but does
not capture the dynamics of the nonlinear full order system
in Figure (2). The LQG cost for the linear, full order case is
0.1897 while the LQG cost for IRKA with r = 4 is 0.2094.

As is expected, the nonlinear reduced order compensator
models via POD in Figures (5) and (6), approximate the
nonlinear, full order model in Figure (2), better than the
IRKA approach. However, there are concerns about the
POD model near x = 1 as t increases.
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(5) POD with nonlinear com-
pensator, r = 4.

(6) POD with nonlinear com-
pensator, r = 8.

These two examples demonstrate that the full-order non-
linear compensator offers better efficiency for both choices
of B. Furthermore, POD of the nonlinear compensator is
effective for some systems but there are no guarantees
that it works for others, for example, it is important to
capture the linear portion of the compensator correctly in
the reduced order model.

These observations suggest the need for a hybrid reduced
order modeling approach to get the best features of both
reduction methods, for example, the computational cost
can be significantly reduced by replacing the linear term
in the POD model with an IRKA system.

This can be achieved by decomposing the state estimate zc
into two parts, a linear model that is reduced using IRKA
and a nonlinear correction that is reduced using POD. For
this approach set

zc(t) = `c(t) + nc(t)

where `c(·) is chosen as the solution to the linear problem

M ˙̀
c(t) = Ac`c(t) + Fyz(t) (21)

and,

Mṅc(t) = Acnc(t) + G̃ (`c(t) + nc(t)) . (22)

The advantage of this approach is that (by adjusting the
linear term in nc) we are guaranteed to produce a com-
bined model that maintains the linear stability properties
of the high order model. This does not always happen
using POD directly on nonlinear problems, see Aubry et al.
[1988], Willcox and Megretski [2005], Borggaard et al.
[2008], Wang et al. [2012].

The detail of this approach will appear in a future paper.
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