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Abstract: Gradient descent parameter identification methods are typically effective for objective surfaces 

that are well conditioned, but can result in excessive computational cost or failed convergence when this 

is not the case. This research presents a novel Regional Conjugate Optimisation (RCO) approach, for 

parameter identification in three dimensions. The method characterises the objective surface prior to the 

iterative process, which improves the ability of the method to correctly determine key features of the 

objective surface and exploit these characteristics during iteration. The RCO method is validated using a 

Monte-Carlo methodology on a series of contrived objective surfaces, and compared to the Levenberg-

Marquardt (LMQ) gradient descent method. The RCO method demonstrated faster convergence in 96% 

of the tested cases, demonstrating the potential of this method to result in faster convergence, higher 

accuracy, and lower computational cost for certain classes of problems. 

 

1. INTRODUCTION 

Gradient descent parameter identification methods, such as 

Levenberg-Marquardt (LMQ), rely on being able to 

consistently determine the direction of objective surface 

gradient descent in order to converge to a solution 

(Marquardt, 1963, Levenberg, 1944). Such methods are 

typically effective for objective surfaces that are well 

conditioned, but can result in excessive computational cost or 

failed convergence when this is not the case. In particular, 

use of gradient descent methods for models with significant 

parameter tradeoff effects can lead to premature termination 

(Docherty et al., 2013, Docherty et al., 2012c, Docherty et al., 

2012a). It has been shown that in such models, the premature 

termination most often occurs on the major axes of the 

objective surface contours (that are often elliptical). On such 

objective surfaces, gradients approach zero far from the true 

minima, which can result in premature declarations of 

convergence distant from the optimal parameter values. 

Gradient descent methods typically determine the direction of 

descent via evaluation of the local sensitivity of the objective 

surface to infinitesimal changes in the parameter set through 

use of a Jacobian (Levenberg, 1944, Marquardt, 1963, Bard, 

Davidon, Steihaug). This Jacobian is most often determined 

via numerical construction by evaluating the objective 

surface at a number of locations in the proximity of the 

current estimated solution. As such, where sharp contours in 

the objective surface exist, it is possible for numerically 

derived Jacobians to fail to sample the surface near the 

contour and thus fail to detect the optimal direction of 

descent. This ultimately results in excessive computational 

cost or convergence to parameters values that are not optimal 

solutions. The latter is often referred to as a local minima. 

However, it is more often a failure of the parameter 

identification gradient descent. 

This research presents a novel method, the Regional 

Conjugate Optimisation (RCO) approach, for parameter 

identification in three dimensions. The method characterises 

the objective surface prior to the iterative process such that 

iterations are in the direction of major and minor error 

reduction. This is somewhat similar to the conjugate gradient 

method (Shewchuk, 1994). However, the proposed method 

utilizes a regional rather than local approach. The 

characterisation of the objective surface in a regional context 

allows the RCO method to orient itself along the axes of the 

objective surface, ensuring that it is aligned with the contours 

of the surface regardless of how sharp these contours may be. 

This improves the ability of the method to correctly 

determine key features of the objective field as it iterates 

when compared to a gradient descent method. As such, the 

RCO method has the potential to result in faster convergence, 

higher accuracy, and lower computational cost for certain 

classes of problems. 

The method is compared to the LMQ in derived objective 

surfaces. The comparison is made in terms of robustness, and 

the number of forward simulations required for convergence. 

2. METHOD  

2.1  Regional Conjugate Optimisation (RCO) Parameter 

Identification Methodology 

Broadly, the RCO is a two-stage process. The first stage 

characterises the objective field via characterising the 

objective values about the perimeter of the likely parameter 

set. The second stage iterates to a solution via a second order 

Conjugate convergence approach. This article presents the 

method specifically for parameter identification of models 

with three parameters, but there is potential to generalise the 

approach to n dimensions. 
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Fig. 1 exhibits several key features of the first stage of the 

RCO approach. The objective function value is in 3D space, 

and is visualised in Fig.1 by a colourmap on the surface of a 

sphere that encompasses the likely parameter space. The 

RCO approach first determines error profiles along 3 

orthogonal rings (denoted here in red, green and blue) and 

uses these profiles to approximate the major axis of the 

objective function in 3-space. The error profile on a ring 

perpendicular to this major axis (as this is the plane where the 

second major and minor axes lie) is then defined (denoted in 

yellow), and this profile used to determine the direction of 

these last two axes.  

 

Fig. 1. Rings and Objective Surface Axes 

The steps required for the RCO method to identify the 

optimal parameter set (𝐱 =  [𝑥1, 𝑥2, 𝑥3]
𝑇) are as follows: 

1. Define an expected parameter space xiE. Scale 

parameters such that this space is a spherical, centred 

on a point xiC with radius xiR. 

ℝ(𝑥𝑖𝐸) = [𝑥𝑖,𝑀𝑖𝑛  , 𝑥𝑖,𝑀𝑎𝑥]  (1) 

𝑥𝑖𝐶 =
1

2
(𝑥𝑖,𝑀𝑖𝑛 + 𝑥𝑖,𝑀𝑎𝑥)  (2) 

𝑥𝑖𝑅 =
1

2
(𝑥𝑖,𝑀𝑎𝑥 − 𝑥𝑖,𝑀𝑖𝑛)  (3) 

where i = 1, 2, 3. 

 

2. Define five points in the parameter space on each of 

three orthogonal rings Cij, centred on 𝑥𝑖𝐶 , on the 1-2, 

2-3 and 1-3 planes of the parameter space of radius 

2xiR. Since many points occur on the intersection of 

two rings, this gives a total of nine points. 

𝐶12 = [2𝑥1𝑅cos(𝜔1) + 𝑥1𝐶 2𝑥2𝑅sin(𝜔1) + 𝑥2𝐶 0] (4a) 

𝐶13 = [2𝑥1𝑅cos(𝜔1) + 𝑥1𝐶 0 2𝑥3𝑅sin(𝜔1) + 𝑥3𝐶]  (4b) 

𝐶23 = [0 2𝑥2𝑅cos(𝜔1) + 𝑥2𝐶 2𝑉3𝑅sin(𝜔1) + 𝑥3𝐶] (4c) 

where: 𝜔1 = [0,
𝜋

4
,
𝜋

2
, 𝜋,

3𝜋

2
]  

3. The value of the objective function at these points is 

determined 𝜓(𝐶𝑖,𝑗,𝜔) 

 

4. A double sinusoid is used to approximate the 

objective values about the three rings (Equation 5, 

Fig. 2). Linear least squares and the 𝐶𝑖,𝑗,𝜔 values were 

used to find the value of a1-5. 

𝜓(𝜔) = 𝑎1𝑠𝑖𝑛(2𝜔) + 𝑎2𝑐𝑜𝑠(2𝜔) + 𝑎3𝑠𝑖𝑛(𝜔) +  

𝑎4𝑐𝑜𝑠(𝜔) + 𝑎5 
(5) 

where: ω=[0, 2π] 

and 

[
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5. Determine the global and local objective maxima of 

on each ring: 𝜔𝑀,𝑖,𝑗 = argmax
𝜔

𝜓(𝜔𝑖,𝑗) 

 

Fig. 2. Error profiles for the three orthogonal rings 
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6. Using Equation 6, determine the angle of the 

maxima-maxima line through 𝜔𝑀,𝑖,𝑗  for each ring 

(𝜃𝑖,𝑗).  

𝜃𝑖,𝑗 = [
cos(𝜓𝑀,1,𝑖,𝑗) − cos(𝜓𝑀,2,𝑖,𝑗)

sin(𝜓𝑀,1,𝑖,𝑗) − sin(𝜓𝑀,2,𝑖,𝑗)
] (6) 

Note that at certain orientations there may only be 

one maxima in a profile. If there are not at least 2 

profiles with both a local and global maxima (which 

are required to generate a maxima-maxima line) 

present, then one of two steps is taken. If the ratio of 

the sum of all maxima error values to the sum of all 

minima error values is greater than 5, the objective 

surface is deemed to be sufficiently sensitive to axis 

orientation. This means the objective surface is likely 

to have sufficiently sharp contours that it will benefit 

from use of the RCO approach, and that the RCO 

should be able to determine axis direction easily. In 

this case, the axes of the rings were reoriented by 

redefinition of the parameter axes, followed by a 

return to step 2. If the ratio is below 5, the surface 

was deemed relatively insensitive to axis orientation. 

This means the objective surface likely lacks sharp 

contours and as such convergence should be 

relatively independent of alignment of iterations with 

the axes of the objective surface, thus the code was 

advanced to step 10 with major, second major and 

minor axes assigned as [1 0 0], [0 1 0] and [0 0 1].  

 

7. The maxima-maxima lines Mij behave similarly to 

projections onto a plane of the major axis (Fig. 3). 

Any two can be combined, using the normals of the 

planes these lines sit on, Nij, to produce an 

approximate 3D ‘major axis’ line as shown in 

Equation 7. Take the average direction of these 3D 

lines; this corresponds to the major axis direction 

(Fig. 2-4). 

𝐴1 = (𝑀𝑖𝑗 × 𝑁𝑖𝑗) × (𝑀𝑘𝑙 × 𝑁𝑘𝑙) (7) 

Fig. 3 shows the maxima-maxima lines generated by 

step 6 and the major axis line (M1) of the objective 

surface. 

 

 

 
Fig. 3. Maxima-maxima and minima-minima lines for the 

three orthogonal rings compared to the major axis direction. 

The maxima-maxima (*) lines on these planes run roughly 

parallel to the major axis projection on these planes. 
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8. Determine the intersection locations of a plane that is 

perpendicular to this major axis and located on the 

centre of parameter range and the orthogonal rings. 

The second major and minor axes will lie on this 

plane. Determine the value of the objective functions 

derived by Equation 5 at the intersections. This 

should yield 6 points on a ring. Repeat steps 4-5 for 

this new ring (Fig. 4) 

 
Fig. 4. Ring Error Profile Perpendicular to Major Axis 

9. Take maxima-maxima and minima-minima lines 

from this ring. The maxima-maxima line corresponds 

to the second-major axis (A2), while the minima-

minima line corresponds to the minor axis (A3). 

The second stage of the RCO approach involves iteration 

along the three defined axis directions. This is 

accomplished through sampling 3 points along a 

particular axis, generating a second order polynomial to 

approximate the error profile along the axis, and locating 

to the minima of this polynomial. This minima in 3d—

space is used as the centre-point of another 2nd order 

approximation on one of the orthogonal axis. This process 

is repeated for each axis in turn until convergence. 

  

10. Evaluate the objective function at the parameter 

space centre xC and the two points located on the 

major axis A1 a distance of xiR from xC. Generate a 

second order polynomial using these three points 

(xA1,1, xA1,C, xA1,3) and determine the location of its 

minima. 

[
0 0 1

. 25 . 5 1
1 1 1

] [

𝑏1

𝑏2

𝑏3

] =  [

𝜓(𝐱𝐴1,1)

𝜓(𝐱𝐴1,𝐶)

𝜓(𝐱𝐴1,3)

] (8) 

𝐱𝐴1,𝑚𝑖𝑛 = 𝐱𝐴1,1 −
𝑏2

2𝑏1

(𝐱𝐴1,1 − 𝐱𝐴1,3) (9) 

Repeat the above process for the second-major A2  

11. Repeat the above process for the second-major A2 

and minor A3 axes using the minima of the previous 

iteration (𝐱𝐴1,𝑚𝑖𝑛, 𝐱𝐴2,𝑚𝑖𝑛) as the new centre point for 

sampling of the polynomial. 

 

12. For each axis, reduce the distance xiR to twice the 

distance between the centre of the polynomial (Ai,C) 

and the minima of that polynomial (Ai,Min) for the 

previous iteration on that axis. 

 

13. Repeat steps 10-13 until two successive iterations are 

within 0.01% and convergence is declared. 

2.2  Analysis of Results 

A Monte-Carlo methodology was used to compare the 

convergence speed of the RCO method and the LMQ 

algorithm. The RCO method was developed specifically for 

models with high levels of parameter tradeoff. Hence, it was 

tested in-silico with contrived objective surfaces. Deviation 

from the parameter optima in the direction of the major axis 

contributed to the objective surface was 130%, 300%, or 

1000% greater than an equivalent contribution due to 

deviation in the direction of the second axis, which in turn 

was 130%, 300% or 1000% of the minor axis contribution. 

Hence, nine ratios were possible. For each combination of 

axis lengths, the axes were randomly reoriented and the 

minima randomly located a total of 100 times. Each time both 

the RCO and LMQ methods were used to attain a solution. 

Hence, a total of 900 parameter ID cases were tested with 

both methods. 

2.3 In-Silico Objective Generation 

The objective surface employed was an analytically 

generated elliptical iso-objective surface. Similar surfaces are 

commonly produced by physiological models (Docherty et 

al.). Both the LMQ and RCO method used the same initial 

solution estimate, and both were considered to have failed to 

converge if 4000 iterations were reached. The analysis was 

conducted using MATLAB (R2012b 64-bit). The objective 

surface was determined via equations 10 and 11: 

𝐀 = [𝐌𝟏 𝐌𝟐 𝐌𝟑]𝐃[𝐌𝟏 𝐌𝟐 𝐌𝟑]
T (10) 

𝜓 = (𝐱 − 𝐱𝐨𝐩𝐭)
T
 𝐀−1(𝐱 − 𝐱𝐨𝐩𝐭)  (11) 

where Mi is one of the axes of the objective surface (column 

vector), D is a diagonal matrix of eigenvalues that correspond 

to the square of the relative axis lengths of the objective 

surface, A is a 3 x 3 matrix which characterises the shape of 
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the objective function, x is the point at which the objective 

surface is being sampled and xopt is the global minima point. 

It is important to note that RCO methodology requires 𝜓(x), 

but does not have direct access to xopt. This ensures 

applicability to real-world applications. 

3. RESULTS 

The RCO method successfully converged in all of the cases 

tested, whereas the LMQ algorithm failed to converge for 

32% of the cases tested. A summary of results is presented in 

Table 1 below, including the median and IQR iterations to 

convergence for each set of axes, and the percentage of the 

time each method converged faster. 

It is worth noting that the LMQ method had a high rate of 

failure in cases when large relative axis ratio lengths (1000%) 

were induced. This was most likely due to the LMQ being 

unable to correctly detect the contours of the objective 

surface. The vast majority of the cases in which LMQ failed 

to converge were in cases using dependence ratios of 1-10-

100, 1-10-30 and 1-3-30. The RCO ceased to consistently 

outperform the LMQ method when the major axis-second 

major axis length ratio was 130% (the smallest ratio tested). 

The RCO method encountered specific difficulty in cases 

where the major dependence-second major dependence axis 

length ratios were low, but the second major-minor axis 

length ratio was high (1-1.3-13). 

 

Objective 

Function Axes 

Incidence of RCO Converging 

Faster than LMQ (%) 

RCO Iterations 

Med (IQR) 

LMQ Iterations 

Med (IQR) 

1-10-100 100 36 (27-45) DNC (DNC-DNC) 

1-10-30 100 27 (24-27) DNC (DNC-DNC) 

1-10-13 100 24 (21-24) 1250 (914-1504) 

1-3-30 100 45 (36-81) DNC (DNC-DNC) 

1-3-9 100 27 (27-29) 597 (526-666) 

1-3-3.9 100 24 (21-27) 102 (92 -111) 

1-1.3-13 93 158 (63-369) 1424 (1090-1635) 

1-1.3-3.9 90 36 (29-54) 106 (98-114) 

1-1.3-1.69 81 30 (27-39) 44 (40-44) 

Table 1: Summary of Results of the Monte Carlo Analysis 

4. DISCUSSION 

Overall the RCO method demonstrated faster convergence in 

96% of the cases tested, and converged in all cases (as 

opposed to LMQ which failed to converge in 32% of cases). 

The Monte Carlo analysis was designed to ensure equivalent 

conditions for both methodologies, thus the difference in 

convergence speed was the result solely of the distinct 

approaches used. This improvement was due to the ability of 

the RCO method to characterise the three-dimensional 

objective surface during the initial nine forward simulations it 

performs, and subsequently iterate along the axes of the 

objective surface. This allows the method to converge rapidly 

and stably for the class of problem being assessed. Gradient 

descent methods, in contrast, repeatedly analyse the objective 

surface local to the current parameter estimate. As such, the 

RCO method has a higher initial computational cost as it 

characterises the regional objective surface, but this rapidly 

pays off due to it not needing to continually reassess the 

surface.  

The improvement in convergence produced by the RCO 

method becomes more pronounced the larger the relative 

length ratios between axes become (in particular the ratio 

between the major and second-major axes). This is due to the 

method relying on the maxima–maxima lines on two-

dimensional orthogonal rings. These lines correspond more 

accurately to projections of the major axis onto these planes 

when the relative axis length ratio is larger. A low ratio can 

lead to ‘interference’ and thus a less accurate approximation 

of the direction of this axis and slower convergence relative 

to LMQ, as observed in the cases where the major-second 

major axis length ratio was 130%. However, in extremely 

well-conditioned objective fields with axis ratios as low as 

1:1.3:1.69, the RCO method still outperformed the LMQ 

method in 81% of cases tested. 

It is worth noting that the RCO method is typically able to 

provide an early indication as to how effective its 

performance will be via the degree of scatter in the three 

major axis approximations derived in step 7. If these 

approximations agree well, the approximate major axis is 

likely accurate, while if there is a large degree of scatter it is 

likely that the major axis orientation will be poorly estimated. 

This provides an opportunity after only nine forward 

simulations to re-orient axes or modify the expected 

parameter space size to increase accuracy and address this 

issue, reducing computational load.  

It is also worth noting that in determining the major axis first, 

the RCO method results in compounded error when 

determining the minor axis. As the minor axis is the axis 

upon which gradients are extremely shallow, accuracy in 

determining this axis direction is more important than 
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accuracy in determining the direction of other axes. This can 

be observed in the 1-1.3-13 axis length ratio case, where the 

low major-second major axis length ratio leads to 

interference, which decreases the accuracy of the major axis 

approximation. This is then compounded by extremely 

shallow gradients along the minor axis due to the high second 

major-minor axis length ratio, leading to slower convergence 

of the RCO. As such determination of the major axis first is 

not ideal. However, the alignment between maxima-maxima 

lines and the major axis in Fig. 2, is considerably more 

robust, and is thus appropriate.  

The analytical approximation of parameter surfaces 

employed are representative only of a subset of the potential 

error surfaces that exist. Further, the RCO method employed 

approximates a second order surface with a second order 

function, thus the method was expected to perform well. 

Some further work remains to generalize the RCO method so 

that it is applicable to a wider variety of objective surfaces. 

Additionally some objective surfaces contain multiple 

minima or minima at locations that are difficult to estimate 

prior to analysis. In these cases, it is likely the RCO method 

would lose applicability. Thus, the RCO is not currently 

recommended for broad application in parameter 

identification. However, it should be considered for cases 

wherein parameter trade-off is a significant factor that causes 

premature convergence in gradient descent approaches and 

thus sub-optimal parameter estimates. 

The analysis has shown the RCO method is applicable and 

results in rapid convergence for a certain class of problem. 

This demonstrates the potential of the method to produce 

faster convergence by characterising the objective surface of 

a problem. However, future work remains to generalise and 

validate the method so that it is applicable to a wider variety 

of problems. This work would likely be centred on the 

polynomial approximation employed in step 10 of the 

method, and the determination of the major axis employed in 

step 7. There is also longer term potential to further 

generalise the RCO methodology to be applicable in n-

dimensions. 

5.  CONCLUSION 

A novel regional conjugate optimisation approach, for 

parameter identification on three dimensions was developed. 

This method was designed to characterise the objective 

surface prior to it beginning to iterate, allowing alignment 

with the axes of the surface. This characterisation improves 

the ability of the method to correctly determine key features 

of the objective surface, even when the surface contained 

sharp contours that a gradient descent method may miss.  

The RCO method was validated using a Monte-Carlo 

methodology on a series of contrived objective surfaces, and 

compared to the Levenberg-Marquardt (LMQ) gradient 

descent method. The RCO method converged in all 900 cases 

tested within 4000 iterations, whereas LMQ failed to 

converge in 32% of cases within 4000 iterations. The RCO 

method demonstrated faster convergence in 96% of the tested 

cases. The novel methods advantages over the LMQ were 

more pronounced in cases where the major-second major axis 

length ratio of the objective surface was large. 
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