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Abstract: Direct load control can be achieved by varying the hysteresis band of switchable
loads, thereby changing their on/off durations. Such hysteresis-based control methods may,
however, display complex dynamics that must be thoroughly understood in order to design safe
control mechanisms. This paper explores the dynamical behavior of a group of hysteresis-based
PEV chargers. Of interest is the change in the total power demand of the group as the hysteresis-
band limits are varied. A detailed state-space model is used to capture the dynamics of the load
aggregation. This model suggests that for certain control inputs, e.g. periodic ramp signals,
the system may display rich dynamical behavior. It is observed that structural stability of the
system may be disrupted as certain characteristics of the input signal are varied. The paper
explores these phenomena through a bifurcation analysis of the load population dynamics. The
results identify performance limitations that govern the responsiveness of fast-acting demand
control.
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1. INTRODUCTION

Electrical loads, when considered in aggregation, have the
potential to provide useful demand-side control. However,
because of their diversity and incoherent operations, it is
challenging to derive models that can truly capture the
population response. While a simplistic linearized response
model can often be used for closed-loop demand control,
it is nevertheless important to understand the complex
population dynamics.

Loads that operate according to a hysteresis band,
e.g. thermostatic loads, provide significant opportuni-
ties for non-disruptive control strategies. Load control is
achieved by adjusting the hysteresis band of each partici-
pating load to effect a change in aggregate power demand.
In Callaway (2009), such a control mechanism was pro-
posed for thermostatically controlled loads, e.g. air con-
ditioners and water heaters, based on a model developed
using system identification techniques. Later in Callaway
and Hiskens (2011), the authors showed that it is possible
to devise a hysteresis-based charging protocol for plug-
in electric vehicle (PEV) chargers. Several studies have
considered the modeling and control of hysteresis-based
loads, including Callaway and Hiskens (2011); Callaway
(2009); Bashash and Fathy (2011); Koch et al. (2011);
Mathieu and Callaway (2012); Perfumo et al. (2012);
Kundu et al. (2011); Kundu and Hiskens (2012). Generally
these models can predict the system output for certain
restrictive control input signals. A more detailed state-
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space model developed in Kundu and Hiskens (2013) offers
the possibility of capturing the aggregate response under
a wider range of control inputs.

This paper presents results from a study of the non-
linear dynamical properties of a collection of hysteresis-
based loads. Bifurcation diagram analysis is used to record
the change in system behavior as a control parameter
is varied, while time-domain waveforms from the model
developed in Kundu and Hiskens (2013) are used to explore
the response at some of the interesting parameter values.
Section 2 briefly discusses a hysteresis-based charging
mechanism for PEVs and presents a state-space model
for aggregate demand response. Section 3 shows how this
control can initiate nonlinear dynamic demand response.
This behavior is investigated in Section 4, and conclusions
are presented in Section 5.

2. SYSTEM MODEL

A large homogeneous group of PEV chargers (of popula-
tion size Nv) is considered. The hysteresis-based charging
mechanism used here was first proposed in Callaway and
Hiskens (2011), and later studied for modeling and control
purposes in Kundu and Hiskens (2012, 2013). While the
focus here is on a group of PEV chargers, the concepts can
be applied equally as well to any collection of loads that
operate on a hysteresis band, e.g. thermostatic loads.

2.1 Hysteresis-based charging of PEVs

Hysteresis-based charging of PEVs follows an ON-OFF
sequence, such that the state-of-charge of the PEV bat-
tery SoC(t) always remains within a hysteresis band con-
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(a) Full charging period.
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(b) Expanded view of the first few hours of charging.

Fig. 1. A typical hysteresis-based PEV charging profile.

Table 1. Key Symbols.

Nv number of PEVs
N number of bins across the hysteresis band
SoC state-of-charge (SOC) (kWh)
SoCnom nominal SOC (kWh)

S̃oC normalized SOC
Pmax maximum charging rate (kW)
Pnom nominal charging rate (kW)
Ptot total demand of the PEV population (MW)
Emax battery charge capacity (kWh)
∆ normalized hysteresis-band width
αon rate of increase of normalized SOC (min−1)
αoff rate of decrease of normalized SOC (min−1)
xi(t) probability density of chargers in i-th bin
δbin width of each bin in the hysteresis band
u(t) shift in normalized SOC profile over time
v(t) rate of change v(t) = du(t)/dt (min−1)
Tu time period of the control input (min)

structed evenly around a “nominal” state-of-charge profile
SoCnom(t), as shown in Fig. 1. The nominal state-of-
charge profile could be a simple linearly increasing profile
from zero to the maximum charge requirement Emax,
which is the case in Fig. 1, or one that is beneficial
for the grid, e.g. overnight “valley” filling, see Kundu
and Hiskens (2012). Based on the nominal state-of-charge
SoCnom(t), the “nominal” charging rate can be defined as
Pnom (t) := d

dtSoCnom (t). In the sequel, it will be assumed
for convenience that the nominal state-of-charge is linearly
increasing, and hence the nominal charge rate is constant
over time, i.e. Pnom (t) = Pnom. This is not a restrictive
assumption though.

Defining the normalized state-of-charge by,

S̃oC(t) :=
SoC(t)− SoCnom(t)

Emax
, (1)

the resulting charging dynamics can be expressed as,

˙̃
SoC(t) =

s(t)Pmax − Pnom

Emax
(2a)

where ṡ = 0 except at reset events,

s(t+) =

{
s(t) + 1 when s(t) = 0 ∧ S̃oC = −∆/2

s(t)− 1 when s(t) = 1 ∧ S̃oC = ∆/2,
(2b)

with t+ denoting the time instant immediately following
the switching event. The width of the normalized hystere-
sis band is ∆.

The remainder of the paper considers the normalized hys-
teresis band and normalized state-of-charge, so the term
“normalized” will be dropped for simplicity. Moreover,
define:

αon :=
Pmax − Pnom

Emax
(3a)

αoff := −Pnom

Emax
, (3b)

as the rate of increase and decrease, respectively, of nor-
malized state-of-charge. These quantities will be referred
to henceforth as the “natural rates”.

2.2 Control action

The aggregate power demand of a collection of hysteresis-
based devices can be controlled by adjusting the lim-
its of the hysteresis band, while maintaining a constant
hysteresis-band width ∆. Moving the hysteresis band in
the direction of the limit associated with ON-to-OFF
switching increases the overall demand by delaying ON-
to-OFF switching and inducing premature OFF-to-ON
switching. Likewise, a decrease in the overall demand can
be achieved by moving the hysteresis band in the oppo-
site direction. A more complete discussion is provided by
Callaway (2009).

Let the rate at which control action shifts the hysteresis-
band limits be given by v(t) ∈ R. Consequently, variation
in the position of the hysteresis-band limits is given by,

u(t) =

∫ t

0

v(τ)dτ. (4)

Under this control action, the dynamic behavior of (2)
becomes,

˙̃
SoC(t) =

{
αon, s(t) = 1

αoff , s(t) = 0
(5a)

where ṡ = 0 except at reset events

s(t+) =

{
s(t) + 1 when s(t) = 0 ∧ S̃oC = −∆/2 + u(t)

s(t)− 1 when s(t) = 1 ∧ S̃oC = ∆/2 + u(t).

(5b)
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(a) Chargers lie to the left of the lower
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(b) Chargers lie to the right of the upper
hysteresis-band limit.

Fig. 2. Inter-bin migration when the hysteresis band moves with rate v(t) under control action. (In both figures, the
upper half of the bins correspond to the ON-state chargers, while the lower half correspond to the OFF state.)

2.3 State-space model

The desired state-space model must be able to capture
the changes in the aggregate power demand of the PEV
population in response to the control action v(t). One
modeling approach, previously used in the context of
thermostatic loads, is to divide the probability distribution
of the population’s state-of-charge into several bins. The
probability density associated with each of those bins is
then evaluated as the state-of-charge of individual PEVs
evolves according to (5). Further details can be found in
Koch et al. (2011); Bashash and Fathy (2011); Mathieu
and Callaway (2012).

Accordingly, the width of the hysteresis band ∆ is divided
into N bins, each having equal width δbin = ∆/N . A state-
space of size 2N is constructed, [x1(t), x2(t), . . . , x2N (t)],
where the first N states represent the probability densities
of the ON-state bins, while the last N represent the OFF-
state bins. The total power demand is given by,

Ptot(t) = NvPmaxδbin

N∑
i=1

xi(t). (6)

To keep track of the position of the bins with respect to
the moving hysteresis band, Kundu and Hiskens (2013)
introduced a variable urel∆ (t) that describes the distance
between the hysteresis band and the population bins, as
illustrated in Fig. 2. The behavior of urel∆ (t) is given by,

durel∆ (t)

dt
= y(t) (7a)

where,

y(t) =
v(t)− αon,

(
urel∆ (t) = 0 ∧ v(t) ≥ αon

)
∨ urel∆ (t) > 0

v(t)− αoff ,
(
urel∆ (t) = 0 ∧ v(t) ≤ αoff

)
∨ urel∆ (t) < 0

0, otherwise.

(7b)

When all the chargers lie within the hysteresis-band limits,
urel∆ (t) = 0. With urel∆ (t) > 0, some or all chargers lie to the
left of the lower band limit, as shown in Fig. 2(a). When
urel∆ (t) < 0, chargers lie to the right of the upper band
limit, as shown in Fig. 2(b). The number of bins nt lying
outside the hysteresis band, at time t, can be expressed as,

nt = min

(⌈∣∣urel∆ (t)
∣∣

δbin

⌉
, N

)
(8)

where the ‘ceiling’ function is used to convert the fraction
into an integer.

In the case when all the chargers lie inside the hysteresis
band, urel∆ (t) = 0, and the band moves more slowly than
the ‘natural’ rates, αoff < v(t) < αon, the equations
governing state dynamic behavior can be written,

ẋi(t)δbin =
−x2N (αoff − v)− x1(αon − v), i = 1

(xi−1 − xi)(αon − v), i = 2, ..., N

xN (αon − v) + xN+1(αoff − v), i = N + 1

−(xi−1 − xi)(αoff − v), i = N + 2, ..., 2N.

(9)

If the control input varies faster than the natural rates,
some or all of the chargers will fall outside the hysteresis
band. This situation corresponds to urel∆ (t) 6= 0. When
urel∆ (t) > 0, the state-space equations governing behavior
become,

ẋi(t)δbin =

x2N−nt
max

(
0, v − αoff

)
, i = nt + 1

xi(αoff − αon), i = N + 1

−
(
xi−1 − xi

)
(αoff − αon), i = N + 2, .., 2N − nt − 1

−xi max
(
0, v − αoff

)
− xi−1(αoff − αon)

, i = 2N − nt
0, all other i

(10)

while the state equations applicable when urel∆ (t) < 0 are,
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ẋi(t)δbin =

−xi(αon − αoff ), i = 1(
xi−1 − xi

)
(αon − αoff ), i = 2, . . . , N − nt − 1

−xi max
(
0, αon − v

)
+ xi−1(αon − αoff )

, i = N − nt
xN−nt

max
(
0, αon − v

)
, i = N + nt + 1

0, all other i.

(11)

In subsequent investigations 1 , the response of this model
is compared with a Monte-Carlo simulation where 2000
PEVs were simulated using the dynamic model (5).

3. NONLINEAR DYNAMIC BEHAVIOR

The switching behavior inherent in hysteresis-based loads,
when aggregated over a large population, can result in
nonlinear synchronizing effects. Consider a control input
u(t), i.e. the shift from the nominal hysteresis band,
which ramps up and down periodically. Such an input
signal is shown in Fig. 3(a). In this initial case, the
input varies more slowly than the “natural” rates, as
shown in Fig. 3(b), so the chargers always stay within
their hysteresis band. Accordingly, urel∆ (t) remains zero
throughout. Each ramp-up and ramp-down sequence has
the same duration of 15.4 min. The resulting demand
response is a period-1 waveform which oscillates between
the maximum demand of Nv × Pmax = 8 MW and zero,
see Fig. 3(c).

Interesting behavior can be observed, however, as the
control-input period is gradually decreased. Fig. 4 shows
one such scenario where the total period of the input is
reduced to 24.4 min, while keeping the ramp rates un-
changed. Aggregate demand, shown in Fig. 4(c), exhibits
a period-2 orbit, i.e. has a period twice that of the input,
and experiences a reduction in amplitude.

To ensure this nonlinear behavior was not an artifact of the
state-space model, Monte-Carlo simulation results were
compared with the state-space model. Figs. 3(c) and 4(c)
show that both forms of modeling produce almost exactly
the same response.

This behavior was further investigated by plotting a bifur-
cation diagram using Monte-Carlo simulation. The period
of the input Tu was varied over a wide range while keeping
other parameters fixed. The intersections of the output
(aggregate PEV charging demand Ptot) with a Poincaré
plane given by

Pn := Ptot (nTu) , n ∈ N, (12)

were plotted. To remove the effects of transients, only the
intersection points for n > 5 were used. The resulting
bifurcation diagram is shown in Fig. 5. For values of
the period Tu > 30 min, the demand follows a period-
1 orbit. Periodicity collapses as Tu is reduced though,
until a period-2 orbit appears at about 26 min. That
periodicity again collapses as Tu is reduced to around
23 min. Continuing this process of decreasing Tu produces

1 The system parameters are: Nv = 2000, ∆ = 0.05, Pmax = 4 kW,
Pnom = 2.4 kW, Emax = 16 kWh. The continuous dynamics in (5)
was discretized using a time step of 0.2 min.
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Fig. 5. Bifurcation diagram when the input is a peri-
odic ramp, with ramp-up and ramp-down rates of
0.0013 min−1 and 0.0017 min−1, respectively.

a period-adding cascade, with successive periodic regions
interspersed by regions of aperiodicity.

4. CRITICAL OBSERVATIONS

4.1 Variations in behavior

It is interesting to consider the emergence of other nonlin-
ear behavior as the input period is varied over a wider
range. Figs. 6(a) and 6(b) show the existence of other
period orbits. These two scenarios correspond to Tu values
of 15.6 min and 12.4 min, and display period-3 and period-
4 orbits, respectively. Note that the ramp rates remain
unchanged from their previous values.

Figs. 6(a) and 6(b) indicate that the state-space model of
Section 2.3 is able to capture the higher periodic behavior
with good accuracy. However, model accuracy reduces
dramatically when the period is chosen from within one of
the aperiodic regions. Referring to Fig. 5, the period Tu =
28.8 min lies in such a region. Fig. 6(c) shows behavior
in this case. The state-space model and the Monte-Carlo
simulation are initially quite close, but deviate from each
other after about one input cycle. This suggests chaotic
behavior, where a small error in the initial conditions
can quickly grow. Further analysis is required to fully
understand this breakdown in periodicity.

4.2 Faster ramp rates

To investigate the bifurcations induced for other ramp
rates, the nonlinear behavior of the aggregate demand was
studied for ramp rates that were faster than the natural
rates. A comparison between Monte-Carlo simulation and
the state-space model, under these more onerous condi-
tions, was also undertaken.

Fig. 7 shows a bifurcation diagram when the ramp rates
were chosen from beyond the natural rates, αon and αoff .
It can be seen that the stable range for the period-1 orbit
extends down to Tu ≈ 24 min. Moreover the period-2 orbit
observed in Fig. 5 has disappeared. As Tu decreases, a
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Fig. 3. Period-1 response to an input of equal-width ramp-up and ramp-down sequences with rates of 0.0013 min−1 and
0.0017 min−1, respectively, and a period of Tu = 30.8 min.
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Fig. 4. Period-2 response to an input of equal-width ramp-up and ramp-down sequences with rates of 0.0013 min−1 and
0.0017 min−1, respectively, and a period of Tu = 24.4 min.
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(a) Period Tu = 15.6 min.
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(b) Period Tu = 12.4 min.
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(c) Period Tu = 28.8 min.

Fig. 6. Demand response at different values of period Tu, with the ramp-up and ramp-down rates fixed at 0.0013 min−1

and 0.0017 min−1, respectively.

period-3 orbit closely follows the period-1 orbit, after a
narrow band of aperiodicity. Subsequently period-5 orbits
exist, followed by another band of aperiodicity, with no
discernible existence of period-4 orbits. Fig. 8 confirms the
existence of a period-1 orbit at Tu = 24.4 min. Because
the ramp rates are higher (in magnitude) than the natural
rates, as shown in Fig. 8(b), some chargers fall outside the
hysteresis band, giving rise to non-zero values of urel∆ (t),
as shown in Fig. 8(a).

Although Fig. 7 suggests that very narrow bands of period-
2 and period-4 orbits are present at Tu values around
13 min and 9.5 min, respectively, the time-domain wave-
forms in Figs. 9(a) and 9(c) indicate otherwise. Fig. 9(b)

shows the presence of an aperiodic region between the
stable period-3 and period-5 regions.

It can be observed from the bifurcation analysis of Fig. 7
that for faster ramp rates, the period-1 orbit is stable
for a larger parameter region, and period-2 and period-
4 orbits appear to be absent (or almost indiscernible).
In preliminary analysis, these two findings seem to be
quite general for input ramp rates that are faster than
the natural rates. Fig. 10 provides a bifurcation diagram
for ramp-up and ramp-down rates of 0.003 min−1 and
0.004 min−1, respectively. The period-1 orbit now extends
down to Tu = 20 min, followed by a narrow band of
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Fig. 8. Period-1 response for input period, Tu = 24.4 min, and ramp-up and ramp-down rates of 0.002 min−1 and
0.0028 min−1, respectively.
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Fig. 9. Demand response at different values of period Tu, with the ramp-up and ramp-down rates fixed at 0.002 min−1

and 0.0028 min−1, respectively.
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Fig. 7. Bifurcation diagram when the input is a peri-
odic ramp, with ramp-up and ramp-down rates of
0.002 min−1 and 0.0028 min−1, respectively.

aperiodicity and then a region of period-3 orbits. The
period-2 and period-4 orbits have disappeared.

5. CONCLUSIONS

The work presented here shows that hysteresis-based con-
trol of electrical loads may exhibit rich dynamical behav-
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Fig. 10. Bifurcation diagram when the input is a peri-
odic ramp, with ramp-up and ramp-down rates of
0.003 min−1 and 0.004 min−1, respectively.

ior. It has been observed that structural stability of the
system can be disrupted by changing crucial parameters.
Bifurcation diagrams have been obtained by varying the
period of a periodic ramp input. A period adding cascade
was observed with ramp rates slower than the natural
rates. Robustness of the period-1 orbit was found to in-
crease when the ramp rates were faster than the natu-
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ral rates. Furthermore, it was shown that such complex
nonlinear behavior can be reproduced using a state-space
model. This model appears promising for future investi-
gations into the dynamics of hysteresis-based load control
schemes. This will be vital for designing effective demand
control algorithms.
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