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Abstract: Over the past decade, a number of approaches have been put forth to improve
the accuracy of projection-based reduced order models over parameter ranges. These can be
classified as either i.) building a global basis that is suitable for a large parameter set by
applying sampling strategies, ii.) identifying parameter dependent coefficient functions in the
reduced order model, or iii.) changing the basis as parameters change. We propose a strategy that
combines sampling with basis interpolation. We apply sampling strategies that identify suitable
parameter values from which associated basis functions are interpolated at any parameter value
in a region. While our approach has practical limits to roughly a handful of parameters, it has
the advantage of achieving a desired level of accuracy in parametric reduced-order models of
relatively small size. We present this method using a proper orthogonal decomposition model
of a nonlinear partial differential equation with variable coefficients and initial conditions.

1. INTRODUCTION

Reduced order models (ROMs) are essential tools to over-
come computational hurdles in a number of application
areas. These models promise either fast simulation or re-
duced problem sizes for applications such as weather fore-
casting, Cao et al. [2006], Daescu and Navon [2008], Fang
et al. [2009], control of distributed parameter systems,
Burns and King [1998], Ito and Ravindran [1998], Kunisch
and Volkwein [1999], Tröltzsch and Volkwein [2009], PDE-
constrained optimization, Arian et al. [2002], Bui-Thanh
et al. [2004], Sachs and Volkwein [2010], and simulations of
random and stochastic systems, Burkardt et al. [2007], van
Wyk [2012]. In each of these examples, models are created
from one or more simulations of a full-order system, at one
or more parameter values, then used to represent systems
at different values of these parameters. In most cases, the
use of the reduced order model off-design (at parameter
values not used to build the original model) leads to poor
predictions and potential failure of the algorithm. In a few
of the examples above, adaptivity is applied to guarantee
model accuracy at new parameter values (e.g., Arian et al.
[2002]) but these require iterating between on-line and off-
line calculations.

To eliminate this shortcoming of reduced order models, a
number of recent works have proposed strategies for cre-
ating models that are robust to parameter changes. These
include applying sampling methods to build a basis from
a sufficiently diverse collection of simulations, Grepl and
Patera [2005], Burkardt et al. [2006], replacing coefficients
in the reduced order models with functions fitted from
data, Peterson [1989], Feng and Benner [2007], Benner
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et al. [2013], or adjusting the model basis by extrapolation,
Hay et al. [2008, 2009, 2010] or interpolation, Amsallem
and Farhat [2008], Haasdonk et al. [2008], Lassila et al.
[2013]. In this study, we consider the combination of
adaptive sampling and Lagrangian interpolation (with a
strategy that generalizes to Hermite interpolation) of bases
across the parameter region. This leads to low dimensional,
parameter dependent models where only the Galerkin pro-
jection step needs to be performed on-line (though could
be avoided by interpolating the models themselves).

The heart of this combined interpolation and sampling
methodology is based on adaptively subdividing the d-
dimensional parameter region into d-simplices based on an
error indicator (see Pond [2010]). We note that a similar
approach was studied in Haasdonk et al. [2011], however
the present methodology requires no on-line simulations at
the cost of significantly more off-line computational effort.
This approach also has practical limits to the dimension
of the parameter space where it can be applied, typically
up to about seven through nine dimensions depending on
the complexity of the underlying model.

In the remainder of this paper we test our combined
interpolation and sampling strategy on a model problem.
The next section presents the one dimensional Burgers
equation with parameter dependent solutions along with
a short description of the proper orthogonal decompo-
sition/Galerkin projection approach to building reduced
order models. This is followed by short sections that de-
scribe a basis interpolation strategy allowing for parameter
dependent rank changes of basis functions as well as our
sampling algorithm. The paper concludes with results of
our numerical study and directions for further research.
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2. PROBLEM DESCRIPTION

Here we describe a parametrized solution to Burgers
equation motivated by the study in Kunisch and Volkwein
[1999]. The piecewise initial function is modified to allow
for a parametrized description and along with varying
the viscosity, we use this for testing our interpolation
and sampling framework. Consider the p = (p1, p2, p3)-
dependent, spatially periodic solution u(x, t; p) to Burgers
equation solving

ut(x, t; p) + u(x, t; p)ux(x, t; p) = p1uxx(x, t; p), (1)

where x lies in the domain Ω = [0, 1], the time t ∈ (0, T )
with T = 10, and the coefficient p1 represents the viscosity
parameter. For initial conditions in Ω, we consider

u(x, 0; p) =

{
p2 sin(2πx) + p3 sin(4πx), 0 ≤ x ≤ 0.5,
0, otherwise.

As we show in the numerical results, we obtain significantly
different solutions as parameter values p1 ∈ [0.001, 0.01],
p2 ∈ [0.2, 0.8], and p3 ∈ [0.2, 0.8] are changed. Parameter
vectors will, later on, be indexed (e.g. p1, p2, etc.) to
indicate the value of parameters at different vertices.

For a fixed parameter p, a reduced order model is
constructed using the proper orthogonal decomposition
(POD), see e.g. Sirovich [1987], Aubry et al. [1988]. There-
fore, assuming u ∈ L2(0, T ;L2(Ω)), a reduced order repre-
sentation of the solution u(x, t; p) is given by

ur(x, t; p) =

r∑
j=1

φj(x; p)aj(t; p) (2)

where the basis functions {φj} are solutions to the Fred-
holm equation∫

Ω

Rs(x, x̄; p)φ(x̄; p) dx̄ = λ(p)φ(x; p), (3)

with Rs(x, x̄; p) ≡ 1
T

∫ T

0
u(x, t; p)u(x̄, t; p)dt known as the

spatial autocorrelation kernel. Under this construction, if
aj(t; p) satisfies

∫
Ω
u(x, t; p)φj(x; p)dx, the representation

(2) is the optimal r-dimensional approximation to the
solution u(x, t; p). If we write aj(t; p) as σj(p)ψj(t; p),

where ψj is scaled so that 1
T

∫ T

0
ψ2
j (t; p)dt = 1, then

λj(p) = σ2
j (p) and (2) can be interpreted as a truncated

singular value decomposition.

Note that in practice, the solution u(x, t; p) is not known
and we use the representation (2) and the basis functions
{φj} to perform the Galerkin projection of (1) onto the
POD basis functions. In this case, the vector of coefficients
in (2), a(t; p) satisfy the nonlinear system of equations
(Kunisch and Volkwein [1999])

[ȧ(t; p)]i = [A(p)a(t; p)]i + aT (t; p)Bi(p)a(t; p), (4)

i = 1, . . . , r, where for a given POD basis at parameter p,
the matrix A and indexed matrices (tensor) {Bi}ri=1 can
be efficiently precomputed from the POD basis functions
and the notation [w]i represents the ith component of the
vector w. The initial conditions for the system above can
be found by projection ai(0; p) =

∫
Ω
φi(x; p)u(x, 0; p)dx.

At a given sample point p, the error between the finite
element simulation to (1) and the POD model (2) with
coefficients obtained by integrating equation (4) is easily
controlled by increasing the size of the basis. The projec-
tion error is directly related to the truncated eigenvalues
{λi}∞i=r+1 of (3). For our study, we keep the size of the
reduced order models fixed (r = 6) and control the error
by determining a set of sample points that are vertices of
d-simplices (here, tetrahedra since d = 3), computing a
POD basis at each vertex, then interpolating these bases
to other parameter values.

We are interested in controlling the error when we generate
bases at the new points by interpolating stored bases that
were generated at adaptively computed sample points. At
any parameter p and using any rth order basis {φj}rj=1,
the error is defined as

e({φj}rj=1; p) ≡

 T∫
0

∫
Ω

|u(x, t; p)− ur(x, t; p)|2dxdt


1
2

(5)

where the coefficients of ur are determined by solving
(4) with matrices A and {Bi}ri=1 calculated using the
interpolated POD basis. Note that for estimating the error
in our on-line calculations, we will be calling the function
(5) with p and an r-dimensional basis that is computed
by interpolating from the four vertices of the tetrahedron
that contains p. The details of the basis interpolation are
provided below.

3. BASIS INTERPOLATION

As the following experiments show, one must exercise care
when interpolating bases (eigenvectors) across parameters.
In Fig. 1, we present the values of {λi}20

i=1 for p2 = 0.5,
p3 = 0.2, and p1 ranging between values of 0.001 and
0.01. Likewise Fig. 2 presents the first 20 eigenvalues for
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Fig. 1. Eigenvalues vs p1 for (p2 = 0.5, p3 = 0.2)

p1 = 0.001 and p3 = 0.2. In Fig. 1 the observed larger
magnitudes of eigenvalues for smaller values of p1 indicates
that the models are less accurate when the equation has a
stronger convection term. The adaptive sampling strategy
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Fig. 2. Eigenvalues vs p2 for (p1 = 0.001, p3 = 0.2)

described in Section 4 below naturally requires more points
in this region since interpolated bases also happen to be
less accurate for smaller values of p1.

It can also be observed that higher order eigenvalues of
(3) cross as the value of p1 is increased from 10−3. This
crossing is also observed in Fig. 2 for fixed values of p1

and p3, but as p2 is varied. Therefore the first step in the
interpolation of basis elements is to ensure that the correct
basis elements are identified at the different vertices of the
tetrahedron containing p. There are numerous approaches
and many can be found in the survey paper, Benner
et al. [2013]. For example, this may be handled using a
congruence transformation, Lieu et al. [2005], Amsallem
and Farhat [2011]. As an alternative, we simply compute
a (signed) permutation matrix that accommodates the
switching. Note that we also have access to more basis
vectors at each vertex than we use to build the reduced-
order model. The storage of these extra basis vectors
allows us to attempt to accommodate switches in the
eigenvector rank outside the set of the first r eigenpairs,
{(λ1(p), φ1(p)), . . . , (λr(p), φr(p))}, such as when λr(p)
continuously changes to λr+1(p̃) as p continuously changes
to p̃. Note that this approach would be challenging to
study for d = 1 (comparing rank switches, touches, and
repeated roots) and is only presented here for this d = 3
experiment as our first attempt at this heuristic.

Essentially, for any d-simplex, we identify p1 as the vertex
closest to the desired parameter value. We then com-
pute the representation of the POD bases at vertices
(p2,p3, . . . ,pd+1) in the POD basis at vertex p1 and use
these representations to produce appropriate permutation
matrices to match up eigenpairs if rank switching occurs.
We consider the basis interpolation between two param-
eter values. Here we present a strategy that preserves
orthogonality at intermediate parameter values. To sim-
plify the discussion, we consider the discretized version
of the Fredholm problem (3). Thus columns of Φ contain
finite element coefficients corresponding to discretized ba-
sis functions where the jth column of Φ, written as φj ,
satisfies

Rφj = λjMφj

as well as the discrete orthogonality conditions φTi Mφj =
δij . The matrix R is the discretized autocorrelation kernel
and the matrix M is the finite element mass matrix. We
index the bases represented by Φ by their vertex numbers.
Therefore, there is a basis Φk defined for each pk. The
interpolation of the basis to parameter p is performed by
creating (signed) permutation matrices P1k that represent
sign changes in eigenvectors and the reranking of eigen-
values as p changes from p1 to pk. Essentially, we look
to define P1k as the solution to an orthogonal Procrustes
problem

min
P
‖Φ1 −ΦkP‖2,M.

A straight-forward linear interpolation is defined as

Φ̃ = rΦ1 + sΦ2P12 + tΦ3P13 + (1− r − s− t)Φ4P14.

For our experiments, the discretization level was such that
Φ̃ nearly solved the Fredholm equation and the discrete
orthogonality conditions. We applied the modified Gram-
Schmidt algorithm with M weighted inner-products to find
the M-orthogonal interpolant Φ.

4. SAMPLING METHODOLOGY

The adaptive interpolation-based strategy known as the
multidimensional adaptive quadrature routine over sim-
plices (MAQS), Pond [2010], takes a given function 1 and
provides a linear approximation over a given hypercube.
This is accomplished by first subdividing the hypercube
into simplices and then obtaining a linear approximation
of the function, along with an estimate of the error 2

of the approximation, over each simplex. The algorithm
creates a priority queue of the simplices, based on the
size and estimated error associated with each simplex. The
algorithm then proceeds to process (subdivide) the simplex
associated with the highest priority. In this manner, we
decrease the estimated error in each iteration (based on
a predetermined heuristic). The algorithm subdivides a
simplex by splitting it into 2d sub-simplices and calcu-
lates new function estimates and error estimates for each
simplex. This process is repeated until the required error
tolerance or other stopping criteria (e.g. maximum number
of function evaluations) is met.

The function estimate is based on a multivariate Lagrange
interpolation rule in the spirit of Sauer and Xu [1994].
This allows function evaluations to be reused until the
algorithm terminates. This stems from the fact that all one
needs is a poised set of points and not a predetermined
set of points, as required by Chebyshev methods, for
our interpolation to exist. Additionally, each simplex can
be processed independently, which allows for the parallel
processing of multiple high priority simplices. Since we
use interpolatory methods, restarting the calculation at a
later time for greater precision requires no more additional
function evaluations than if the desired tolerance were
initially required. Changing the desired tolerance does not
change how the algorithm adapts to the given function.
1 These functions need to be well approximated by piecewise poly-
nomial interpolants for MAQS to be useful.
2 The error estimate is the absolute value of the difference between
a linear and quadratic approximation of the function over a given
simplex.
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Also, using simplices allows for the algorithm to handle
parameters that can range over arbitrary polyhedral do-
mains, hence, approximated by tessellating the region. For
more information on the methods used to derive the error
estimation and proofs of convergence, please see Chapters
3 and 4 in Pond [2010]. The algorithm itself, is provided
in the Appendix.

NUMERICAL RESULTS

For this study, we investigate the one dimensional viscous
Burgers equation with three parameters. One parameter
is the diffusion coefficient and the remaining parameters
describe a range of initial conditions. Their values are
allowed to vary in the three-dimensional cube defined by:
[0.001, 0.01]×[0.2, 0.8]×[0.2, 0.8]. We run the algorithm un-
til a total of 1,500 function evaluations are reached. Along
the way to 1,500 we calculate the expected error and actual
error given the current set of vertices in our scheme for the
next set of vertices (the points needed in the next level
of refinement.) This allows us to observe the relationship
between what the algorithm expects (forecasts) the error
to be and what the error actually is.

The ratio of the actual error to the expected error is
shown in Fig. 3. This ratio fluctuates about one when the
algorithm produces its first 1,000 vertices. The variations
in this ratio beyond 1,000 vertices are due to the design
of the algorithm. Essentially, the algorithm interrogates
the function in places where it forecasts the error to be
the greatest. However, for convergence to take place as
the number of vertices increases, all simplices must be re-
interrogated and further divided to make sure no hidden
information remains. This is why the solid line is closer to
one and sometimes above one. As the algorithm proceeds,
the larger remaining simplices must be processed even
if the expected error is small. However, this subdivision
occasionally identifies some points not well represented
by the existing polynomial, and is also required for the
convergence theory. However the dotted line, being the
average ratio of all simplices processed on a given iteration,
shows that the number of cases that cause the ratio to be
above one are relatively few.
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Upon completion, the algorithm produced a set of ver-
tices, error estimates at those vertices, as well as a POD
basis that can be used to compute an associated ROM
for that given vertex (parameter value pk). To test the
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accuracy of the resulting mesh (vertices and simplices) and
to investigate the effectiveness of the approximation, we
compared the expected errors to the actual errors (calcu-
lated by performing a simulation, computing a ROM, and
measuring the actual ROM error) at the centroids of each
simplex. Theoretically, this should be the place with the
largest error based on our linear interpolation scheme. As
observed in Fig. 4, the vast majority of the ratios of actual
error to the expected error are right around one. This
demonstrates again that the method under investigation
produces a feasible error estimate.

5. ONGOING WORK

A number of natural extensions of this work are being
carried out. First of all, we are considering modifications
to the basis interpolation algorithm that promote better
approximations to (3) and the orthogonality condition.
We attempted to apply the Stiefel manifold interpolation
strategy presented in Amsallem and Farhat [2008], Benner
et al. [2013] and summarized here. The strategy is pre-
sented for interpolation of the POD bases at parameter p̂
from the POD bases computed at vertices of a tetrahedron
in parameter space, {pi}4i=1. We denote these POD bases
as {Φi}4i=1, respectively. Note that each POD basis is M-
orthogonal, i.e. ΦT

i MΦi = I, and the interpolation strat-
egy preserves this fact. Since M is a symmetric, positive
definite matrix, we factor it as M = RTR. We set vertex
p1 as a reference point and T1 = 0. For each i = 2, . . . , 4,
we compute

Ni = R
(
I−Φ1Φ

T
1 M

)
Φi

(
ΦT

1 MΦi

)−1
,

it’s singular value decomposition Ni = UiΣiV
T
i , and

compute the projection to the tangent space

Ti = Ui arctan (Σi) VT
i .

We now apply our Lagrangian interpolation to the matri-
ces {Ti}4i=1,

T(p̂) =

4∑
i=1

`i(p̂)Ti,
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where `i is the Lagrange polynomial that is 1 at pi and 0 at
the remaining vertices. The singular value decomposition
of T(p̂) is computed as ÛΣ̂V̂T , then the interpolated
POD basis at p̂ is computed as

Φ(p̂) = Φ1V̂ cos(Σ̂) + R−1Û sin(Σ̂).

While the resulting basis Φ(p̂) satisfied the M-orthogonality
condition, the basis interpolation procedure outlined in
Section 3 was consistently more accurate. This was true
even if we applied our transformation to incorporate the
correct r basis functions first. We intent to continue look-
ing into this issue.

While not an issue for this numerical study, we have
encountered problems when interpolating over large val-
ues of Reynolds numbers in complex fluid flows (again,
convection dominated). An approach that modifies the
interpolation formula with an additional positive definite
matrix, solving a Riccati equation, has shown promise
in improving the orthogonality condition, but does not
provide the same small residual of (3) as direct Lagrange
interpolation.

This basis interpolation, and the interpolation-based sam-
pling approach studied here, can be naturally extended to
Hermite interpolation using the POD sensitivity analysis
approaches developed in Hay et al. [2008, 2009, 2010].
Furthermore, the availability of derivatives of the eigenval-
ues with respect to parameters can also be used to assist
in ranking the eigenvalues, especially when we are close
to a crossing. The derivatives may provide information
that helps determine the local parametric behavior of the
problem.

Finally, since we do store additional basis vectors, the
application of an hp strategy, such as described in Eftang
et al. [2011], would be feasible. A suitable heuristic, to
decide whether or not to use additional samples or more
basis vectors would be based on the POD eigenvalues
and the adaptive sampling error estimates we have in the
MAQS algorithm.
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Appendix A. THE MAQS ALGORITHM

Given a function f ∈ C([0, 1]d), an error tolerance ε, and a
maximum number of allowable function evaluations Fmax,
MAQS proceeds as follows.

(1) The domain, Ω = [0, 1]d is divided into d! simplices
by using only the corners of Ω as the vertices. (Ω can
also be an arbitrary d-dimensional cube)

(2) The values (QΩ, EΩ, H∆) are initialized to (0,∞,∞).
(Integral estimate, error estimate, and priority)

(3) The main while loop is initiated with the following
criteria

while (EΩ = Σ∆∈TnE∆ > ε and Fevals < Fmax) .

(a) For the current iteration, n, the simplices at the
top of the priority queue or the simplices with the
largest H∆ value are processed.
• Here the midpoints of each edge of the

simplex are evaluated to get a quadratic
approximation to f over the simplex.

• This sampling also allows for a linear ap-
proximation to f over the 2d sub-simplices.

• From the linear approximation, a linear
quadrature estimate for each new simplex is
returned as the Q∆ value.

• From the integral of the absolute value of
the difference of the linear interpolation over
each new simplex with that of the quadratic
interpolation over the parent simplex, the
error estimate E∆ is obtained for each new
simplex.

• After the Q∆ and E∆ values are computed
we assign each new simplex a priority value
H∆ based on the size and estimated error.

• These three values are stored for each sim-
plex.

(b) After processing is complete, we calculate the
new integral and error estimates over Ω and
repeat the loop.

Several other input and output options appear in the liter-
ature. For a more complete list, see Lyness and Kaganove
[1976].
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