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Abstract: Human eye movement can be looked at, as a rotational dynamics on the space SO(3) with
constraints that have to do with the axis of rotation. A typical eye movement can be decomposed into two
components, that go by the name ‘version’ and ‘vergence’. The version component produces identical
eye movement in both the eyes, and is used to follow a target located far away by taking the general
direction of the target. In order to focus on a closer target, the eyes rotate in opposite directions, using the
vergence component. A typical eye movement can be regarded as a concatenation of version followed by
vergence. These two eye movements are modeled in this paper assuming that the eyes are perfect spheres
with their mass distributed uniformly and that the eyes rotate about their own centers. An optimal control
problem is considered where the goal is to rotate an eye pair from an initial ‘parallel gaze direction’ to
a final ‘gaze focusing on a target’. The eye pairs are to be actuated optimally using an external torque
vector of minimum energy.

Keywords: Eye Movement, Binocular Vision, Listing’s Plane, Mid-Sagittal Plane, Euler Lagrange’s
Equation, Optimal Control.

1. INTRODUCTION

Neurologists, physiologists and engineers have been interested
in modeling and control of a single human eye (monocular
control) since 1845 with notable studies conducted by Listing
(1845), Donders (1848. Press, 1996) and von Helmholtz
(1866). Specifically, it has been observed that the oculomotor
system chooses just one angle of ocular torsion for any one gaze
direction (see Donders (1848. Press, 1996)). Several studies
have focused on three dimensional eye movements Crawford
et al. (2003), Haslwanter (1995), including rigorous treatment
of the topic from the point of view of modern control theory
and geometric mechanics Murray (1997). Assuming the human
eye to be a rigid sphere, the oculomotor system can be viewed
as a mechanical control system and one can apply geometric
theory with Lagrangian and Hamiltonian viewpoints Bullo and
Lewis (2004), Murray et al. (1994). This paper extends our
earlier studies Polpitiya et al. (2007), Ghosh and Wijayasinghe
(2012), Wijayasinghe et al. (2014) from monocular control
to controlling a pair of eyes (see binocular control paper by
Wijayasinghe and Ghosh (2013)).

Any eye orientation can be reached, starting from one specific
orientation called the primary orientation, by rotation about a
single axis. Listing’s law states that, starting from a frontal
gaze, any other gaze direction is obtained by a rotation matrix
whose axis of rotation is constrained to lie on a plane, called
the Listing’s plane. Consequently, the set of all orientations
the eye can assume is a submanifold Boothby (1986) of SO(3)
called LIST. Listing had shown and subsequently verified by
others Tweed and Vilis (1987), Tweed and Vilis (1990), that
while gazing targets located at optical infinity and keeping the
head fixed, eye orientations are restricted to this submanifold
LIST Polpitiya et al. (2007). In binocular vision, Listing’s law
is not valid for fixation of nearby targets, which is the main
point of this paper.
? Corresponding author is Bijoy K. Ghosh.

It has been observed Rijn and Berg (1993) (see also Nakayama
(1983)), that when a pair of human eyes fixate on a nearby
point target, the axes of rotations of the two eyes are not located
on the Listing’s plane. The eye rotations are not independently
controlled (as proposed by von Helmholtz (1866)), but can be
viewed as a concatenation of version followed by vergence (in
the spirit of what was originally proposed by Hering (1868)).
The versional component of the eye movement is identical for
both the eyes and satisfies Listing’s law. This is equivalent
to saying that the versional part of the eye rotation belongs
to LIST. On the other hand, the vergence component of the
eye movement rotates the two eyes in opposite directions, in
order to fixate nearby point targets. Following Rijn and Berg
(1993), we would assume that for the vergence part, the rotation
vector is restricted to the mid-sagittal plane with respect to
the fixed head coordinate system 1 . Starting from the primary
orientation, the set of all orientations that are achievable using
rotations with axes in the mid-sagittal plane is a submanifold
MS of SO(3). Identical to what was done earlier for LIST,
we introduce a Riemannian metric for MS and write down the
associated Euler Lagrange equation that describes the vergence
eye dynamics 2 . The paper combines version and vergence
dynamics as a proposal for binocular control.

2. QUATERNIONIC REPRESENTATIONS

Representation of ‘eye orientation’ using quaternion has al-
ready been described in Polpitiya et al. (2007). For the sake
of clarity, we revisit some of the main ideas in this section. A
quaternion is a four tuple of real numbers denoted by Q. We
write each element a ∈ Q as

a = a0 1 + a1 i + a2 j + a3 k.

1 The point midway between the center of the two eyes is called the ego-center. The mid-sagittal plane
is the plane perpendicular to the segment joining the center of the two eyes and passing through the
ego-center.
2 The versional part of the eye dynamics was studied earlier in Polpitiya et al. (2007).
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The space of unit quaternion is identified with the unit sphere
in IR4 and denoted by S3. Each q ∈ S3 can be written as

q = cos
φ

2
1 + sin

φ

2
n1 i + sin

φ

2
n2 j + sin

φ

2
n3 k, (1)

where φ ∈ [0,2π], and n = (n1,n2,n3)
T is a unit vector in IR3.

If q is an unit quaternion represented as in (1), one can show
Altmann (2005), Kuipers (2002) the following, using simple
properties of quaternion multiplication (denoted by •):

“The vector component of [q • (v1 i + v2 j + v3 k) • q−1]
is rotation of the vector (v1,v2,v3) around the axis n by a
counterclockwise angle φ .”

If S3 is the space of unit quaternions, we define a map between
S3 and SO(3) described as follows

rot : S3 → SO(3) (2)
where

q =


q0

q1

q2

q3

 7−→
 q2

0 +q2
1−q2

2−q2
3 2(q1q2−q0q3) 2(q1q3 +q0q2)

2(q1q2 +q0q3) q2
0 +q2

2−q2
1−q2

3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3 +q0q1) q2
0 +q2

3−q2
1−q2

2

 . (3)

Recall that SO(3) is the space of all 3× 3 matrices W such
that WW T = I, the identity matrix and det W = 1. It can be
verified that for any nonzero vector v in IR3 we have

rot(q) v = vec[q• v•q−1].

Note that the map ‘rot’ in (2) is surjective but not 1−1. This is
because both q and−q in S3 has the same image. We now write
down a parametrization of the unit vector ‘n’ in (1) using polar
coordinates as

n =

( cosθ cosα

sinθ cosα

sinα

)
. (4)

Combining (1) and (4), we have the following parametrization
of unit quaternions

q =



cos
φ

2
sin

φ

2
cosθ cosα

sin
φ

2
sinθ cosα

sin
φ

2
sinα


, (5)

called the axis-angle parametrization. Using the coordinates
(θ ,φ ,α) we construct the following sequence of maps

[0,π] × [0,2π] × [−π

2
,

π

2
]

ρ−→ S3 rot−→ SO(3)
pro j−→ S2, (6)

where
ρ((θ ,φ ,α)) = q (in (5)),

rot(q) = W
and

pro j(W ) =


sinθ sinφ cosα + cosθ sin2 φ

2
sin2α

−cosθ sinφ cosα + sinθ sin2 φ

2
sin2α

cos2 φ

2
− sin2 φ

2
cos2α

 .

(7)

Note that the matrix W in SO(3) can be easily written from (3)
and the details are omitted. The points in S2 described by (7)
provide a description of the gaze directions as a function of the

coordinate angles θ ,φ ,α with respect to an initial gaze direc-
tion of (0,0,1)T , i.e. obtained by rotating the vector (0,0,1)T

using the rotation matrix W . The sub-manifolds LIST and MS
can be easily parameterized by restricting α = 0 and θ = π

2
respectively in (5). This is done in the next section.

3. THE SUBMANIFOLD LIST

The law of rotation for the version eye movement, the Listing’s
law, asserts that the axis of rotation ‘n’ in (4) is restricted to the
plane

α = 0, (8)
and one obtains the axis of rotation as

n = (cosθ , sinθ , 0)T .

The corresponding unit quaternion vector is given by

qL = (cos
φ

2
, sin

φ

2
cosθ , sin

φ

2
sinθ , 0)T .

The rotation matrix W is given by

W =


cos2 φ

2
+ cos2θ sin2 φ

2
sin2θ sin2 φ

2
sinθ sinφ

sin2θ sin2 φ

2
cos2 φ

2
− cos2θ sin2 φ

2
−cosθ sinφ

−sinθ sinφ cosθ sinφ cosφ

 . (9)

Under the Listing’s constraint, we define LIST to be the as-
sociated submanifold of S3 and SOL(3) to be the associated
submanifold of SO(3). They are both two dimensional subman-
ifolds parameterizing the versional eye rotation in S3 and SO(3)
respectively. The gaze direction (0, 0, 1)T is transformed to the
direction

(sinθ sinφ , −cosθ sinφ , cosφ)T

by the rotation matrix (9). Thus we have the following sequence
of maps

[0,π] × [0,2π]
ρ−→ LIST rot−→ SOL(3)

pro j−→ S2, (10)
obtained by restricting (6) under the constraint α = 0.

4. THE SUBMANIFOLD MS

The law of rotation for the vergence eye movement (proposed
in Rijn and Berg (1993)), asserts that the axis of rotation ‘n’ in
(4) is restricted to the plane 3

θ =
π

2
, (11)

and obtain the axis of rotation as
n = (0, cosα, sinα)T .

The corresponding unit quaternion vector is given by

qM = (cos
φ

2
, 0, sin

φ

2
cosα, sin

φ

2
sinα)T . (12)

The rotation matrix W is computed to be

W =


cosφ −sinφ sinα sinφ cosα

sinφ sinα cos2 φ

2
+ sin2 φ

2
cos(2α) sin2 φ

2
sin(2α)

−sinφ cosα sin2 φ

2
sin(2α) cos2 φ

2
− sin2 φ

2
cos(2α)

 . (13)

Under this new constraint (11), we define MS to be the as-
sociated submanifold of S3 and SOM(3) to be the associated
submanifold of SO(3). They are both two dimensional subman-
ifolds parameterizing vergence eye rotation in S3 and SO(3)
respectively. The gaze direction (0, 0, 1)T is transformed to the
direction

(sinφ cosα, sin2 φ

2
sin(2α), cos2 φ

2
− sin2 φ

2
cos(2α))T

3 We shall call the constraint (11), the extended Listing’s constraint. The plane (11) is precisely the
mid-sagittal plane, justifying the acronym MS for the submanifold.
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by the rotation matrix (13). Thus we have the following se-
quence of maps

[0,2π] × [−π

2
,

π

2
]

ρ−→ MS rot−→ SOM(3)
pro j−→ S2, (14)

obtained by restricting (6) under the constraint θ = π

2 .

The following two results are easy consequences of the List-
ing’s Theorem already sketched in Ghosh and Wijayasinghe
(2012).

Theorem (Listing): Under the Listing’s constraint (8), the map

SOL(3) −


 cos2θ sin2θ 0

sin2θ −cos2θ 0
0 0 −1

 proj−→ S2 −


 0

0
−1


described by (10) is one to one and onto. �

Theorem (Extended Listing): Under the Extended Listing’s
constraint (11), the map

SOM(3) −


 cosφ −sinφ 0

sinφ cosφ 0
0 0 1

 proj−→ S2 −


 0

0
1

 (15)

described by (14) is one to one and onto. �

Proof of Extended Listing’s Theorem: There are two parts
of the proof. The first part is to show that the mapping ‘proj’
in (15) is 1− 1. In the second part we show that the mapping
‘proj’ in (15) is onto.

Part I (Proof of 1− 1): Consider χ = pro j ◦ rot as a mapping
from S3 to S2 in (6). It is known from an unpublished result of
Helmke, that if p and q are points in S3 and S2 respectively such
that

χ(p) = q.
then the set of all p1 ∈ S3 that satisfies

χ(p1) = q
has the property that

p1 = p• (a,0,0,b) (16)
where a2+b2 = 1 and the symbol •, as before, denotes multipli-
cation as a quaternion. Writing p as in (12), it follows that if p∈
MS, then every p1 satisfying (16) belongs to MS if sin φ

2 cosα =
0 or b = 0. If b = 0, it would follow that p1 = p and χ is 1−1.
If φ = 0, it would follow that p = (1,0,0,0)T and q = (0,0,1)T

which is excluded from the range of ‘proj’ in (15). Finally
if α = ±π

2 , it follows that p = (cos φ

2 ,0,0,±sin φ

2 )
T and q =

(0,0,1)T which is excluded from the range of ‘proj’ in (15).

Part II (Proof of onto): For details we would like to refer to
Wijayasinghe and Ghosh (2013), where this proof has already
been sketched. �

It is easily inferred from the above two theorems that for
both, versional and vergence eye movements, the gaze direction
uniquely specifies the orientation of the eye, except perhaps
when the gaze is backwards for the versional eye movement
and axis of rotation is ‘pure torsional’ for the vergence eye
movement 4 .

To end this section, we make the following remark:

Remark: Under vergence eye movement, the left and the right
eyes rotate in opposite directions. This can be implemented by
considering the unit quaternion (12) for the left eye and defining
4 Human eye does not rotate with pure torsion.

qM = (cos
φ

2
, 0, −sin

φ

2
cosα, −sin

φ

2
sinα)T , (17)

for the right eye. This would be equivalent to reversing the sign
of the axis of rotation going from left to the right eye. �

5. EYE MOVEMENTS UNDER BINOCULAR CONTROL

In this section, we describe the binocular control of human
eyes, by combining the version system on LIST and vergence
system on MS. Figs. 1a, 1b, and 1c illustrate how the eye pair
moves to see a bird in the sky starting from an initial parallel
gaze to a final focused gaze on the bird. Between Figs. 1a,
1b, the version control system rotates the eye-pair maintaining
parallel gaze, in the general direction of the bird. We assume
that this rotation satisfies the Listing’s constraint (8). Between
Figs. 1b, 1c, the vergence control system focuses the eye-pair
on the bird. The focusing movement assumes that the rotation
satisfies the Extended Listing’s constraint (11). Although in
Figs. 1a, 1b, and 1c, the vergence has been shown following
the version, in practice, the vergence and version control can
act simultaneously and independently. Typically, however, the
versional movements are rapid compared to the vergence eye
movements.

The combined effect of the version and vergence movements
can be described by the product

qc = qvs • qvg, (18)

where qvs is the quaternion from the version part of the dynam-
ics, qvg is the quaternion from the vergence part of the dynamics
and • denotes quaternion multiplication. Note that the quater-
nions qvs and qvg are both defined with respect to the inertial
frame (i.e. frame fixed to the earth). If vergence movements are
to be viewed with respect to coordinate frame rotating with the
versional movement, the quaternion qvg is to be replaced by
q̄vg = qvs •qvg •q−1

vs . The combined effect of version followed
by vergence rotation is given by q̄vg • qvs = qvs • qvg, which
is precisely described in (18). The quaternions qvs and qvg are
assumed to satisfy Listing’s and Extended Listing’s constraints,
respectively.

6. VERSION AND VERGENCE AS DYNAMICAL
SYSTEMS

6.1 Dynamical systems in alpha-parametrization

Following Polpitiya et al. (2007), one can compute a Rieman-
nian Metric, see Weyl (1964; Dover Publications (Paperback),
on LIST given by

g = sin2 (φL/2)dθ
2
L +

1
4

dφ
2
L . (19)

The associated geodesic equation on LIST reduces to the
following pair of equations, already described in Polpitiya et al.
(2007), given by

θ̈L + θ̇Lφ̇L cot(φL/2) = 0,

φ̈L−
(
θ̇L
)2 sin(φL) = 0.

(20)

The above calculation can be easily repeated, and one can
compute a Riemannian Metric on MS given by

g = sin2 (φM/2)dα
2
M +

1
4

dφ
2
M. (21)
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(a) Initially, the two eyes are gazing in parallel
along the primary direction.

(b) The version eye movement rotates the eyes
satisfying Listing’s Law. The two eyes stay
parallel.

(c) The vergence eye movement rotates the
eyes in opposite direction satisfying extended
Listing’s Law. The two eyes focus on a target.

Fig. 1. Movement of two eyes focusing on a target.

The associated geodesic equation on MS reduces to the pair of
equations given by

α̈M + α̇M φ̇M cot(φM/2) = 0,

φ̈M− (α̇M)2 sin(φM) = 0.
(22)

Note that in the equations (19) - (22) the subscripts L and M
describe variables in LIST and MS respectively. Combining the
version and the vergence systems, we define a control system
given by

θ̈L = −θ̇Lφ̇L cot(φL/2) + csc2(φL/2)τθL ,

φ̈L =
(
θ̇L
)2 sin(φL) + 4τφL ,

α̈M = −α̇M φ̇M cot(φM/2) + csc2(φM/2)ταM ,

φ̈M = (α̇M)2 sin(φM) + 4τφM ,

(23)

where the τ-s in the right hand side are the generalized torques
(see Polpitiya et al. (2007)). If we assume that (23) is the
dynamics of the left eye, then the corresponding dynamics of
the right eye is given by the set of equations

θ̈L = −θ̇Lφ̇L cot(φL/2) + csc2(φL/2)τθL ,

φ̈L =
(
θ̇L
)2 sin(φL) + 4τφL ,

α̈M = −α̇M φ̇M cot(φM/2) + csc2(φM/2)ταM ,

φ̈M = (α̇M)2 sin(φM) − 4τφM .

(24)

Note that the dynamics (23) and (24) differ by one sign in
the fourth equation and as a result the variables αM and φM
are different between the left and the right eyes (although the
variables θL and φL are identical between the two eyes).

6.2 Dynamical system in q-parametrization

Using the axis angle parametrization that we have been using
so far, the dynamical systems (23), (24) have singularities at
φL = 0 and φM = 0, which correspond to the frontal gaze direc-
tion, (0 0 1)T for both, the vergence as well as the version.
In this section, we write down the version and the vergence
dynamics using q-parametrization introduced recently by Ka-
hagalage et al. (2014). The details are described as follows.

Let q = (q0 q1 q2 q3)
T be a unit quaternion in S3 and ω =

(ω1 ω2 ω3)
T be the angular velocity vector of the eye ball. The

rotational dynamics of the eye can be described by

ω̇ = τ(t), (25)

where we assume that the eye is a perfect and homogeneous
sphere, and where τ(t) = (τ1 τ2 τ3)

T is the external torque
vector (which is not the same as the generalized torques in
23, 24). In the inertial coordinate system, the angular velocity
vector is related to the unit quaternion (1), describing the
orientation of the rigid body as follows:

d
dt

 q0
q1
q2
q3

=
1
2

 0
ω1
ω2
ω3

•
 q0

q1
q2
q3

 , (26)

where • is the quaternion product. By considering the coordi-
nates q̄ ∈ IR3 in the space of unit quaternions, we define

q̄i =
qi

q0
(27)

for i = 1,2,3, and combine (25) and (26) to obtain
˙̄q1
˙̄q2
˙̄q3

ω̇1

ω̇2

ω̇3

=
1
2


−
(
ω1 + q̄3ω2− q̄2ω3 +ω1q̄2

1 +ω2q̄2q̄1 +ω3q̄1q̄3
)

−
(
ω2 + q̄1ω3− q̄3ω1 +ω1q̄2q̄1 +ω2q̄2

2 +ω3q̄2q̄3
)

−
(
ω3 + q̄2ω1− q̄1ω2 +ω1q̄3q̄1 +ω2q̄2q̄3 +ω3q̄2

3
)

2τ1

2τ2

2τ3

 . (28)

The Listing’s constraint in q-parametrization corresponds to
q̄3 = 0, and the version-dynamics on LIST is given by


˙̄q1
˙̄q2

ω̇1
ω̇2

=
1
2


ω1
(
1+ q̄2

1 + q̄2
2
)

ω2
(
1+ q̄2

1 + q̄2
2
)

2τ1
2τ2

 . (29)

The extended Listing’s constraint in q-parametrization corre-
sponds to q̄1 = 0, and the vergence-dynamics on MS for left
eye is given by


˙̄q2L
˙̄q3L

ω̇2L
ω̇3L

=
1
2


ω2L

(
1+ q̄2

2L + q̄2
3L
)

ω3L
(
1+ q̄2

2L + q̄2
3L
)

2τ2L
2τ3L

 . (30)

The vergence dynamics for right eye can be obtained by revers-
ing the axis of rotation of left eye since the eye pair rotates in
opposite directions for the vergence system, and is given by
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
˙̄q2R
˙̄q3R

ω̇2R
ω̇3R

=
1
2


−ω2R

(
1+ q̄2

2R + q̄2
3R
)

−ω3R
(
1+ q̄2

2R + q̄2
3R
)

2τ2R
2τ3R

 . (31)

Finally, we describe the the dynamics of the binocular vision
by combining (29), (30), and (31).

7. OPTIMALLY CONTROLLING BINOCULAR EYE
MOVEMENT

Hering (1868) has stated that the two human eyes share a com-
mon innervation and thus cannot be controlled independently 5 .
Hering proposed that the primary control for the eyes are iden-
tical, resulting in identical movement pattern (version control),
except perhaps when the eyes have to focus at a target (vergence
control). In this section, we model the two eyes with the same
version control system (given by (29)), and the version control
to the two eyes are assumed to be identical. In order to focus
at a target, the vergence control system is assumed to be (30)
and (31) for the left and the right eyes respectively. Note that
the two vergence dynamics differ only in sign. The vergence
control input to the two dynamical systems are also assumed to
be identical, and is imposed as a constraint in the cost function
described below.

We would consider a dynamical system with 12 state variables
given by (29), (30) and (31). Let us consider the quadratic cost
function∫ T

0

[
1
2

τ
T

τ + p(t)T (F − ẋ)+λ
T (τL− τR)+

1
2

ελ̇
T

λ̇

]
dt (32)

where the state vector x is described as
x = [q̄1 q̄2 ω1 ω2 q̄2L q̄3L ω2L ω3L q̄2R q̄3R ω2R ω3R]

T .

The first four elements of the state vector are the states of
version system, the next four with subscript ‘L’ are the states of
vergence system for the left eye and the last four with subscript
‘R’ are states of vergence system for right eye. The vector F is
a 12-vector containing right hand sides of (29)− (31), and

p(t) = [p1 p2 p3 p4 p1L p2L p3L p4L p1R p2R p3R p4R]
T

is a 12-vector of Lagrange multipliers. The vector

τ = [τ1 τ2 τ2L τ3L τ2R τ3R]
T

is the externally applied torque vector to the version and ver-
gence systems of the two eyes. The first two elements of τ are
for the version system, the next two with subscript ‘L’ are for
the vergence in the left eye and the last two with subscript ‘R’
are for the vergence in the right eye. In order to satisfy Hering’s
law, we impose the constraint that τL and τR must be equal. This
constraint is imposed in the cost function by multiplying with a
Lagrange multiplier vector λ . The last term in the cost function
is a penalty term which makes λ smooth.

In order to obtain a necessary condition for optimality, we
define a Hamiltonian given by

H(x, p,λ ) =
1
2

τ
T

τ + p(t)T F+λ
T (τL−τR)+

1
2

ελ̇
T

λ̇ , (33)

and write down Hamilton’s equations given by

ẋ =
∂H
∂ p

, ṗ = −∂H
∂x

. (34)

5 It is conceivably harder to synchronize two eyes that are controlled independently.

The constraint equations are given by
∂H
∂λ

= 0, (35)

which reduces to

λ̈ =
1
ε
(τL − τR).

The optimal values of the control are obtained by setting
∂H
∂τ

= 0.

The optimal controls are obtained as follows

τ = [(−p3, −p4, −p3L−λ1, −p4L−λ2, −p3R +λ1, −p4R +λ2)]
T .(36)

In order to compute the optimal control, we would require to
solve (34) and (35) . Since only the initial and final conditions
on x(t) are known and we do not have any boundary condition
on p(t) and λ (t), the optimal control problem we need to solve
is a ‘two point boundary value problem’.

8. SIMULATION RESULT AND DISCUSSION

For the dynamical system described by (34), (35), the optimal
control (36) is computed using COMSOL (see Zimmerman
(2006)). The initial and the final condition for the left and the
right eye for the versional system is given by (1,0,0,0)T and
(0.9492,−0.3126,−0.1563,0)T respectively. The initial and
the final condition for the left eye, vergence system is given
by (0.9732,0,0.2426,0.0001)T and (0.9982,0,0.0607,0)T re-
spectively. The initial and the final condition for the right eye,
vergence system is given by (0.9732,0,−0.2426,−0.0001)T

and (0.9982,0,−0.0607,0)T respectively. The time interval is
chosen as [0 ,1]. The moment of inertia matrix of the eye is
assumed to be the identity matrix.

Fig. 2 displays the behavior of the states and the external
torques for the version system. Figs. 3 and 4 display the
behavior of the states and the external torques in vergence
system for left eye and right eye respectively. The boundary
values for each of the angular velocities are set to zero. Note
that the torque profiles in Figs. 3 and 4 are identical because
they were constrained to be so. The angular velocities ωL and
ωR are identical because they are initialized at the same values.

The version control system typically moves the eye faster than
the vergence system. This feature has not been incorporated in
our simulations so far. We alter the speed of the eye movement
by adding an extra term to the cost function. This is derived
as follows: let us define the gaze direction associated with the
version state vector to be

ϑ(t) =
[
2q̄2, −2q̄1, 1 − q̄2

1 − q̄2
2
]T

.

We normalize this vector by writing ϑ̄ = ϑ

‖ϑ‖ . Let ϑ̄ ∗ be the fi-
nal gaze direction of the version control system, corresponding
to the target position. We define

C(t) = 1 − ϑ̄
∗T

ϑ̄(t).
The cost function (32) is modified as∫ T

0

[
1
2

τ
T

τ +
β

2
CTC + p(t)T (F − ẋ)+λ

T (τL− τR)+
1
2

ελ̇
T

λ̇

]
dt.

(37)
By choosing higher values of β in (37), the version system can
be speeded up.

In Fig. 5a, the gaze directions of the left and the right eyes
are shown. In this simulation, β is assumed to be zero, i.e. the
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Fig. 2. States for q̄ and ω , and τ in version system.
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Fig. 3. States for q̄L and ωL, and τL for left eye in vergence system.
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Fig. 4. States for q̄R and ωR, and τR for right eye in vergence system.

speed of version and vergence were chosen to be comparable. In
Fig. 5b, a large value of β speeds up (by approximately 4 times)
the version compared to vergence. The gaze trajectories, shown
in the figure, sharply turns when the influence of version control
gives way to the influence of vergence control. Note from the
simulation that the effect of vergence control is to move the two
eyes in opposite directions.

9. CONCLUSION

Binocular control problem has been modeled using two sepa-
rate control systems, consistent with the framework originally
proposed by Hering. Each of the two systems evolve in ap-
propriate sub-manifolds of S3 and we have described them as
Lagrangian systems. We have also described these systems us-
ing a recently proposed q-parametrization. An optimal control
problem has been formulated and simulation results from the

associated two point boundary value problem has been dis-
played, using the q-parametrization.

The optimal control, we derive, follows Hering’s principle of
equal innervation to both the eyes, except that the effect of
vergence control is such that the eyes move in opposite direc-
tions. The control, we derive, are not necessarily asymptotically
stabilizing. In other words, deviated away from LIST and MS,
the states are not necessarily able to recapture the associated
sub-manifolds.

As a final remark, two different parametrizations have been in-
troduced to describe binocular control. Axis Angle parameters,
enable us to describe the control systems as a Lagrangian sys-
tem. Using the q-parametrization, on the other hand, the dynam-
ical systems are written using the Newton-Euler method (see
Junkins and Turner (1986)). For a Lagrangian system, one can
easily construct potential controllers (see Wijayasinghe et al.
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Fig. 5. The gaze trajectories of eye pair under the influence of version and vergence. North pole is the front gaze.

(2014)), and asymptotically stabilizing controllers (see Ghosh
et al. (2014)), topics that have not been covered in this paper.
Unfortunately, using the axis angle parameters, the dynamical
systems (23), (24), have singularities along the frontal gaze
direction. Using the q-parametrization, the systems (29) - (31)
do not have singularities 6 , but one cannot avail the potential
controller synthesis methods available for Lagrangian systems.
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