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Abstract: The present article deals with a fault and delay tolerant multi-sensor control scheme.
In particular, we consider a process affected by additive disturbance which is monitored by
redundant sensors. The process is controlled by a digital controller which is connected with the
sensors via shared network. It is assumed that sensors are subject to abrupt faults while the
communication between the sensors and the controller is affected by time-varying delay. In order
to tackle network-induced delay, we design a prediction-based controller with compensation. A
fault and delay detection and identification mechanism is designed as well.
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1. INTRODUCTION

Using redundant sensors in control is unavoidable in
safety-critical applications (see e.g. Blanke [2003]). The
main objective of the redundant observation is to pro-
vide resilience of the controlled system with respect to
an eventual sensor malfunction. When a fault occurs in
one or several sensors, the controller has to decide which
received information, among the conflicting ones, is the
most relevant for computing the control action. Multi-
sensor realisation via shared communication network can
make fault-tolerant control (FTC) strategy even more
complicated due to the network-induced effects such as
time-delay and packet dropouts. The network-induced de-
lays are usually time-varying (except for some particular
network protocols) (see e.g. Zhang et al. [2001]). One of
the reasons for the delay variability is network congestion
(see e.g. Hespanha et al. [2007]). Taking into account the
redundant sensor architecture, i.e., an increased number of
nodes, one observes that delays could be even larger due
to an increased exploitation of the network resources (see
e.g. Nilsson [1998]).

While sensor fusion mitigates measurement noises and
some fault events, it also makes possible that an inappro-
priate choice at this critical stage can significantly affect
the performance of the plant. In this study, we consider an
active multi-sensor networked control system (NCS) which
provides fault and delay tolerance with respect to abrupt
sensor faults and time-varying delay. Namely, whenever
an information provided by a faulty sensor is detected, it
is discarded (see Seron et al. [2008]). On the other side,
if an information is provided with a delay, a prediction-
based control (see Montestruque and Antsaklis [2003]) is
employed. Fault detection and isolation (FDI) is set-based
and it is implemented through set-membership testings of
appropriate residual signals. In other words, the realisation
of the FDI is achieved through the separation of residual
sets which bound residual signals for healthy and faulty

data transmission. Separation is enforced by a reference
governor which is designed using the receding horizon op-
timisation framework. The origin for such a fault tolerant
control approach can be found in Stoican et al. [2012].
However, in this article we consider a control architecture
where communication between the sensors and the con-
troller is carried out via shared communication network.
Particularly, beside the abrupt faults, performance of the
closed-loop dynamics can also be degraded by a delayed
data transmission.

2. NOMINAL MULTI-SENSOR DYNAMICS

Let us consider a plant modelled by the following linear
differential equation:

ẋ(t) = Acx(t) +Bcuj(t) + Ecω(t), (1)

where x ∈ Rn is the state vector, uj ∈ Rm is the control
signal which is computed based on information provided
by the jth sensor, j ∈ Z[1,M ], while ω ∈ Rp is a bounded
process disturbance (see Fig. 1). The process disturbance
is bounded by a C−set W ⊂ Rp.

It is assumed that the output of the process is measured
periodically each Ts = tk+1 − tk ∈ R+. The measuring is
performed by M redundant sensors, with each sensor pro-
viding state vector perturbed by a different measurement
noise. All sensors are assumed to be static (or with very
fast dynamics relative to the plant dynamics) and to sat-
isfy, under nominal functioning, the observation equation:

yj [tk] = x[tk] + ηj [tk], (2)

where ηj ∈ Rn is a bounded measurement noise. For each
j ∈ Z[1,M ], the measurement noise is bounded by a C−set
Nj ⊂ Rn. In the case when the full state vector is not
measurable, one can employ M state observers which are
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Fig. 1. Multi-sensor control scheme

collocated with the sensors. Using such an estimated state-
feedback does not considerably differ from the analysis and
the control design which are provided further in this paper,
thus, it is omitted.

A multi-sensor system is in its nominal operational mode
whenever the control action is computed based on mea-
surements provided by a functional sensor without delays.
Let us assume that the qth sensor is functional and it
transmits data instantaneously to the controller. Then, the
discrete-time representation of (1) is given by:

x[tk+1] = Ax[tk] +Buq[tk] + Eω[tk], (3)

where A, B and E are the corresponding discrete-time
state, input and disturbance matrices, respectively. One
can notice that, in the nominal operational mode, the
control action uq[tk] is active and constant over the entire
sampling interval, i.e., ∀t ∈ R[tk,tk+1). It is also noticeable
that we assumed that the process disturbance signal in (3)
is constant between two consecutive samplings. However,
as long as ω is bounded, a continuously varying process
disturbance can be also tackled by the control strategy
which is proposed in this study.

The following hypothesis holds throughout this paper.

Hypothesis 1. The pair (A,B) is controllable.

In the nominal operational mode, digital controller, which
is collocated with the actuator, provides the following
control signal:

uq[tk] = uref [tk]−K (yq[tk]− xref [tk]) , (4)

where K is a stabilising control gain and uref = f(xref )
is a reference control signal.

The control objective is for the state of the plant (3) to
track the following reference dynamics:

xref [tk+1] = Axref [tk] +Buref [tk]. (5)

Performance of the controller is determined by the tracking
error z = x− xref . The dynamics of this error is obtained
from (3), (4) and (5) as:

z[tk+1] = (A−BK) z[tk]−BKηq[tk] + Eω[tk]. (6)

Notice that, for a Schur matrix A − BK, ω ∈ W and
ηq ∈ Nq, the tracking error dynamics (6) admits a robust
positively invariant set (RPI) (see e.g. Blanchini and Miani
[2008]).

3. MULTI-SENSOR NCS

Let us now consider the case where the communication be-
tween the sensors and the controller is affected by network-
induced delay. Namely, at t = tk, k ∈ Z+, redundant
sensors measure the relevant plant parameters. Instanta-
neously after, they require from the network permission in
order to transmit the acquired data to the controller. If
the network is idle, then one node obtains permission for
the transmission. If not, all transmissions are postponed
until the network is available. A time lag that is induced
in this way is often referred to as access-time delay and
it is identified as the main source of delays in networked
control systems (see Lin and Antsaklis [2005]). Delay can
also arise due to time it takes to transfer data through the
communication channel.

In the presence of a time-varying delay, using clock-
driven sensors and an event-driven controller leads to a
time-variant closed-loop representation (see Cloosterman
et al. [2009]). A simplified model, which considers delay
realisation on a finite grid, was proposed by Lin and
Antsaklis [2005]. According to this result, a receiving
buffer is associated to each sensor. Buffers are positioned
at the controller site. Such buffers are read periodically
at a frequency T , where Ts = NT and N is a sufficiently
large positive integer. For the inter-sampling period T , the
corresponding difference equation is given by:

x[tk + T ] = Ãx[tk] + B̃uq[tk] + Ẽω[tk], (7)

Let βj [tk + iT ], j ∈ Z[1,M ], denote a value of the jth

buffer at t = tk + iT , where i ∈ Z[0,N−1]. Regarding stored
information at each inter-sampling instant, the buffers can
be classified into one of the following groups:

• ID[tk + iT ] =
{
j ∈ Z[1,M ] : βj [tk + iT ] = yj [tk−1]

}
;

• IF [tk+iT ] =
{
j ∈ Z[1,M ] : βj [tk+iT ] = ηFj ∈ NF

j

}
;
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• IH [tk+iT ] =
{
j ∈ Z[1,M ] : βj [tk+iT ] = yj [tk] ∧ j /∈

IF [tk + sT ], ∀s ∈ Z[0,i)

}
;

• IR[tk+iT ] =
{
j ∈ Z[1,M ] : βj [tk+iT ] = yj [tk] ∧ j ∈

IF [tk + sT ], s ∈ Z[0,i)

}
,

where NF
j ⊂ Rn is a C-set. Sets of indices ID, IF

and IH denote buffers with outdated, faulty and healthy
information. On the other side, the set IR corresponds to
sensors which are under recovery.

Hypothesis 2. Let j ∈ IH [tk + sT ], s ∈ Z[0,N−1]. If the
switching mechanism selects βj at t = tk + sT , then the
same buffer is also used at t = tk + iT ∀i ∈ Z[s,N−1].

3.1 Fault scenario

Any sensor is prone to faults which can be either tempo-
rary (e.g. change in operating conditions) or permanent
(e.g. physical damage of the component). A fault can be
defined formally as an instantaneous transition between
the healthy mode of functioning (as given by (2)) and a
faulty mode of functioning. Depending on the sense of
the switch we have a failure or a recovery event (see e.g.
Stoican et al. [2012]). For the simplicity of this paper, we
consider only the following total outage of a sensor:

yj [tk] = x[tk] + ηj [tk]
FAULT−−−−−−−−−⇀↽−−−−−−−−−

RECOV ERY
yj [tk] = ηFj [tk]. (8)

Briefly, the fault scenario is outlined as follows:

• Sensors are prone to abrupt faults as in (8).
• Data transmission from sensors to the controller is

subject to random and time-varying delay which is
less than the sampling period.
• Sets ID[tk + iT ] 6= ∅ ∀i ∈ Z[0,N−µ) and IH [tk +

(N − µ)T ] 6= ∅, where µ ∈ Z+ is the controllability

index of the pair (Ã, B̃).

Remark 1. The abruptness hypothesis can be discarded
in favour of faults which describe a gradual output decay.
However, none of these elements are conceptually different
from the scenario described in (8). In the sense that, no
new insight in the treatment of the FTC mechanisms
can be gained by using the more complex cases. Also,
the outlined fault scenario can be relaxed with respect to
allowable delay range. The only requirement is that delay
would have to be bounded. This will, of course, impose a
more ”aggressive” control compensation (see the following
section).

3.2 Control design for multi-sensor NCS

Let us introduce the following hypothesis:

Hypothesis 3. The pair (Ã, B̃) is controllable.

Let τj [tk] ∈ [0, Ts). Because the receiving buffers are read
at the higher frequency, the delay parameter is restricted
on the grid of the interval [0, Ts) determined by T , i.e.,

τj [tk] = τ jis[tk]T, where τ jis =

⌈
τjN

Ts

⌉
. (9)

Assume that τ jis[tk] = mini
{
τ iis[tk] : i ∈ Z[1,M ]

}
.

Without having the up-to-date measurements available,
the switching mechanism selects one of the buffers with
outdated information. Let i1 ∈ Z[0,N−1] such that i1 <

τ jis[tk]. Assume that βs1 [tk + iT ], where s1 ∈ ID, is
selected during the inter-sampling intervals determined by
i ∈ Z[0,i1]. Since βs1 [tk + iT ] = ys1 [tk−1] ∀i ∈ Z[0,i1], the
following state prediction can be computed by using the
available mathematical model of the plant:

θ
(s1)
tk|tk−1

= Ays1 [tk−1] +Buref [tk−1]

−BK (ys1 [tk−1]− xref [tk−1]) .
(10)

By using (10) in control (4) one obtains:

x[tk + (i1 + 1)T ] = Ãi1+1x[tk] +

i1∑
i=0

ÃiẼω[tk]

+

i1∑
i=0

ÃiB̃
(
uref [tk]−K

(
θ
(s1)
tk|tk−1

− xref [tk]
))

.

(11)

Next, assume the sth1 buffer is updated at t = tk+(i1+1)T ,
but the transmitted measurements are provided by the
faulty sensor, i.e., βs1 [tk + (i1 + 1)T ] = ηFs1 [tk]. Conse-
quently, the switching mechanism selects another buffer,
say βs2 , where s2 ∈ ID[tk + iT ], ∀i ∈ Z[0,i2] and i2 <

τ jis[tk]. The corresponding discrete-time representation at
t = tk + (i2 + 1)T is:

x[tk + (i2 + 1)T ] = Ãi2+1x[tk] +

i2∑
i=0

ÃiẼω[tk]

+

i2∑
i=i2−i1

ÃiB̃
(
uref [tk]−K

(
θ
(s1)
tk|tk−1

− xref [tk]
))

+

i2−i1−1∑
i=0

ÃiB̃
(
uref [tk]−K

(
θ
(s2)
tk|tk−1

− xref [tk]
))

,

(12)

where θ(s2) is computed in the similar way as in (10).

Due to different measurement noises, switching among the
buffers with obsolete data introduces a switching error
which we denote by γ:

γ(s2←s1)[tk] = θ
(s2)
tk|tk−1

− θ(s1)tk|tk−1
. (13)

By using (13) in (12), one obtains:

x[tk + (i2+1)T ] = Ãi2+1x[tk] +

i2∑
i=i2−i1

ÃiB̃Kγ(s2←s1)[tk]

i2∑
i=0

ÃiB̃
(
uref [tk]−K

(
θ
(s2)
tk|tk−1

− xref [tk]
))

+

i2∑
i=0

ÃiẼω[tk].

(14)

In the similar way, the switching mechanism selects an-
other buffer with the outdated measurements when the
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Fig. 2. Model-based controller

previously used buffer is updated by a faulty information.
Assume that the sthr buffer is selected at t = tk + iT ,
∀i ∈ Z[ir−1+1,τj

is
]. Therefore, one can get:

x[tk + τ jis[tk]T ] = Ãτ
j
is
[tk]x[tk] +

τj
is
[tk]−1∑
i=0

ÃiẼω[tk]

+

τj
is
[tk]−1∑
i=0

ÃiB̃
(
uref [tk]−K

(
θ
(sr)
tk|tk−1

− xref [tk]
))

+

τj
is
[tk]−1∑

i=τj
is
[tk]−1−ir−1

ÃiB̃Kγ(sr←sr−1)[tk] + . . .

+

τj
is
[tk]−1∑

i=τj
is
[tk]−1−i1

ÃiB̃Kγ(s2←s1)[tk],

(15)

where γ(sr←sr−1), γ(sr−1←sr−2), . . ., γ(s2←s1) are the
switching errors computed according to (13).

Since j ∈ IH [tk + τ̄ jisT ], the switching mechanism selects

βj [tk + τ̄ jisT ] = yj [tk]. According to Hypothesis 2, once
the buffer with the healthy information is selected, it
is employed until the end of the sampling period. The
corresponding state vector is given as:

x[tk+1] = Ax[tk] + Eω[tk]

+

N−1∑
i=N−τj

is
[tk]

ÃiB̃
(
uref [tk]−K

(
θ
(sr)
tk|tk−1

− xref [tk]
))

+

N−1∑
i=N−1−ir−1

ÃiB̃Kγ(sr←sr−1)[tk] + . . .

+

N−1∑
i=N−1−i1

ÃiB̃Kγ(s2←s1)[tk] + σ[tk + (N − 1− i)T ]
)

+

N−τj
is
[tk]−1∑

i=0

ÃiB̃
(
uref [tk]−K

(
yj [tk]− xref [tk]

)
,

(16)

where σ is the compensation term which is introduced
when the healthy information is available to the controller.
The model-based controller scheme with compensation is
shown on Fig. 2.

Let εj ∈ Rn denote the prediction error with respect to
the jth buffer which is defined by the following difference:

εj [tk] = yj [tk]− θ(j)tk|tk−1
. (17)

This information becomes available immediately when the
up-to-date information is provided by one of the sensors.
By using (17) and

θ
(sr)
tk|tk−1

= θ
(j)
tk|tk−1

− γ(j←sr)[tk]

in (16), one obtains:

x[tk+1] = Ax[tk] +Buj [tk] + Eω[tk]︸ ︷︷ ︸
Nominal dynamics

+

N−1∑
i=N−τj

is
[tk]

ÃiB̃Kεj [tk] +

N−1∑
i=N−τj

is
[tk]

ÃiB̃Kγ(j←sr)[tk]

+

N−1∑
i=N−1−ir−1

ÃiB̃Kγ(sr←sr−1)[tk] + . . .

+

N−1∑
i=N−1−i1

ÃiB̃Kγ(s2←s1)[tk]

+

N−τj
is
[tk]−1∑

i=0

ÃiB̃
(
σ[tk + (N − 1− i)T ]

)
,

(18)

where σk =
[
σ[tk + τ jis[tk]T ]T . . . σ[tk + (N − 1)T ]T

]
is

the compensation vector.

Regarding the discrete-time system (18), one can notice
that γ(j←sr)[tk], . . . γ(s2←s1)[tk] and εj [tk] are known pa-
rameters when up-to-date information is provided to the
controller. In order to be able to compute the compen-
sation vector, one has to determine τ jis. This value can be
assessed by the controller either by using time-stamps (see
e.g. Nilsson [1998]) or by the FDDI mechanism which is
described in the subsequent section.

In order to compensate the tracking error caused by delay
in the sensor-to-controller loop, σk is determined such that:

N−τj
is
[tk]−1∑

i=0

ÃiB̃σ[tk + (N − 1− i)T ]

= −
N−1∑

i=N−τj
is
[tk]

ÃiB̃K
(
εj [tk] + γ(j←sr)[tk]

)

−
N−1∑

i=N−1−ir−1

ÃiB̃Kγ(sr←sr−1)[tk]− . . .

−
N−1∑

i=N−1−i1

ÃiB̃Kγ(s2←s1)[tk].

(19)

The existence of the compensation vector is characterised
by the following results.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6750



Theorem 2. Let µ ∈ Z+ denote the controllability index
of the pair (Ã, B̃). Then, the linear equations (19) is

consistent if τ jis[tk] ≤ N − µ.

Remark 3. Computation of σk is carried out on-line, i.e.,
the linear equation (19) needs to be solved each time
when up-to-date measurements are transmitted to the
controller. Nevertheless, numerical complexity of solving
such an equation is low. Also, by computing a compensa-
tion vector that drives the closed-loop system in a C−set
around the reference signal, instead to the reference itself,
better control performance can be achieved.

4. FAULT DETECTION AND ISOLATION IN THE
PRESENCE OF DELAY

In order to provide detection of an abrupt sensor fault
or an outdated information, one has to define a residual
signal and the corresponding thresholds that characterise
the nominal functioning and data transmission for that
sensor. In this paper, we use information from the buffers
in combination with the reference dynamics:

rj = βj − xref , j ∈ Z[1,M ]. (20)

In order to perform fault or delay detection, residual
signals are compared with their pre-defined thresholds at
each inter-sampling instant. Due to the process and the
measurement noises, thresholds are characterised by sets.
We differ the following residual signals.

Healthy residual: when stored data are up-to-date and
provided by the functional sensor;

Faulty residual: when stored data are provided by the
faulty sensor;

Delayed residual: when stored data are outdated and
provided by the functional sensor.

While delayed and faulty residuals determine buffers with
outdated and faulty measurements, it is important to no-
tice that the healthy residual signals may determine buffers
with healthy information but also they may correspond
to sensors that are under recovery. In order to discern
between these cases, one has to keep track of the recovery
process for each sensor that used to be faulty.

Depending on a network-induced delay for each sensor-
to-controller link, information that is stored in the cor-
responding buffer can be updated at any moment. How-
ever, such an update is noted only at the inter-sampling
instants. Let us assume that j ∈ IH [tk + iT ]. Then, the
corresponding healthy residual signal is determined by:

rHj [tk + iT ] = βj [tk + iT ]− xref [tk] = z[tk] + ηj [tk]. (21)

In the same manner, let j ∈ IF [tk+iT ]. The corresponding
faulty residual signal is obtained as:

rFj [tk+iT ] = βj [tk+iT ]−xref [tk] = ηFj [tk]−xref [tk]. (22)

The third case concerns functional sensors with data
transmission affected by time-varying delay, i.e., j ∈
ID[tk + iT ]. The corresponding delayed residual signal is
determined by:
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rDj [tk + iT ] = βj [tk + iT ]− xref [tk] =

= z[tk−1] + ηj [tk−1] + xref [tk−1]− xref [tk].
(23)

Let Z denote a RPI set for (6). For each z[tk] ∈ Z, the
nominal tracking error dynamics (6) stays within the same
set. Therefore, the bounding set for the healthy residual
signals is constructed as:

RHj = Z ⊕Nj . (24)

When measurements are provided by a faulty sensor i.e.,
βj [tk + iT ] = ηFj [tk] (or βj [tk + iT ] = ηFj [tk−1]), the
corresponding bounding set is determined as:

RFj (xref ) = {−xref [tk]} ⊕ NF
j . (25)

Finally, the bounding set for the delayed residual signals
is determined by:

RDj (xref ) = {xref [tk−1]− xref [tk]} ⊕ Z ⊕Nj . (26)

By verifying if rj [tk+iT ], i ∈ Z[0,N−1], resides in one of the

sets (24)-(26), one can affirm that the jth residual signal
is healthy, faulty or delayed at t = tk + iT . This provides
an unequivocal fault/delay detection and isolation as long
as the residual sets are piecewise-disjoint.

Taking into consideration (24), (25) and (26), the separa-
tion condition can be directly used in order to define the
admissible domain of reference state xref , which allows
exact fault detection and isolation:

Dxref
= {xref [tk], xref [tk−1] : RHj ∩RFj (xref ) = ∅,
RHj ∩RDj (xref ) = ∅, ∀j ∈ I}.

(27)

Notice that RHj ∩ RFj (xref ) = ∅ and RDj ∩ RFj (xref ) = ∅
are equivalent.

As long as the invariant set Z is defined offline, the
previous sets can also be described offline and the actual
FDDI is a fast online set membership evaluation which
differentiates between the healthy, faulty and outdated
measurements transmitted through each feedback channel.

The FDDI mechanism discussed here deals with acknowl-
edging the transition from healthy to faulty or healthy
to delayed residual signals. In other words, the inclu-
sion of the residual signal in one of the sets (24), (25)
or (26) makes sense only if the tracking error is in its
own bounding sets. Moreover, employing a sensor that is
faulty during one sampling interval and which becomes
healthy during the subsequent sampling period, introduces
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a tracking error that cannot be compensated by control
action. Therefore, we assume that if a sensor is faulty, it
cannot be used immediately after when it admit a healthy
residual signal. In other words, a recovery confirmation
is required in order to employ that sensor again. In the
case of the state feedback, the recovery of a faulty sensor
is rather simple. Namely, since residuals (21), (22) and
(23) do not have transient behaviour, a faulty sensor can
be employed again one sampling period after it admits a
healthy behaviour. The reason for this will be clarified in
the subsequent section.

Remark 4. Recovery process is far more complex when
controller’s input is provided by a state observer. In
particular, beside verifying the inclusion of the tracking
error, one also has to verify the inclusion of the estimation
tracking error.

5. REFERENCE GOVERNOR DESIGN AND DELAY
IDENTIFICATION

Design of the reference governor is carried out by us-
ing model-based receding horizon optimisation framework.
The objective of the optimisation problem is to design a
reference control input uref which provides minimal track-
ing mismatch between an ideal state reference trajectory
to be followed xr, and the real reference state xref , under
imposed constraints. The implementation of the reference
governor is carried out through the optimisation over a
finite horizon:

u∗[0,s−1] = arg min
uref

(

s∑
i=1

‖(xr[tk+i]− xref [tk+i])‖2Q

+

s−1∑
i=0

‖(ur[tk+i]− uref [tk+i])‖2P )

(28)

subject to:

xref [tk+i+1] = Axref [tk + i] +Buref [tk + i]

xref [tk + i] ∈ Dxref
, ∀k ∈ Z+, i ∈ Z[0,s−1],

(29)

In (28) s ∈ Z+ is a prediction horizon and Q � 0 and
P � 0 are weighting matrices. The reference control action
is set to uref [tk] = u∗[0] which is the first component in the

optimal sequence (28). Then, the optimisation is reiterated
by receding the reference window.

Remark 5. Since Dxref
is non-convex set, solving the op-

timisation problem (28)-(29) requires the mixed-integer
programming.

5.1 Delay identification

By delay identification we mean evaluation of the minimal
delay that is induced by the redundant feedback channels.
The main interest of applying the fastest transmitted mea-
surements is the fact that the resulting correction action
is distributed over a larger compensation horizon. One
can think of such a configuration as competition between
redundant sensors where the priority is given to the one
with the fastest transmission. Of course, at this stage
information provided by faulty or sensors under recovery

is discarded by the FDDI mechanism and not taken into
account since it is not relevant for the computing of the
control signal.

Delay parameter can be evaluated based on knowledge
of Ts, N and membership testing of residual signals.
Therefore, it is indirectly calculated when a buffer with
healthy information is detected by the controller.

6. CONCLUSION

A redundant sensors architecture subject to abrupt faults
and delays induced by the shared network has been con-
sidered for the control design. A unified fault detection
and isolation algorithm for substantially different fault
scenarios such as sensor outage and communication delays
has been presented by exploiting set membership testing.
We considered information provided by a dysfunctional
sensor as worthless for computing the control action, and,
consequently, we discarded them from the control loop. On
the other side, information that is provided with delay by
a functional sensor was considered still useful and handled
by a model-based controller with delay compensation.
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