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Abstract: In this study, a method for determining delay-independent stability zones of the
general LTI dynamics with multiple delays against parametric uncertainties is presented.
The method is utilized to design a delay-independent state-feedback controller and verified
experimentally for a two-tank liquid level control system. The method is based on extended
kronecker summation(EKS) to investigate controller parameter space for delay-independent
stability(DIS) of the system. The main aim of the paper is recalling a new sufficient condition
for determination of controller parameter space for DIS and presenting the application of
methodology for a physical experimental case study.
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1. INTRODUCTION

In many applications,time delay in feedback is inevitable
and effects the performance and the stability of the system
drastically. In the literature, there are numerous studies
which investigates controller design methods for time de-
layed systems (Gundes et al. [2007], Suva et al. [2002],
Mahmoodi Nia and Sipahi [2013]). Most of the studies
focused on the stable operation of the systems when there
is a predetermined delay in the feedback or the system
itself. In this study, we consider systems with undeter-
mined delays. Our main goal is to determine state feedback
controller parameters for stable operation of the system re-
gardless of the delay value. This class of controllers exhibit
particular importance with the systems where the delayed
feedback may cause critical and dangerous instabilities
such as motion control,tank level control, high tempera-
ture furnace control. In these applications, controller has
to drive the system to a stable operating point regardless
of the delay where delay may occur due to a malfunction
in the sensory system.

In our study, we consider linear time invariant, re-
tarded multiple time delayed state feedback systems (LTI-
MTDS). General state space form is given as,

ẋ(t) = Ax(t) +

p∑
j=1

BKj(q)x(t− τj) (1)

where x ∈ Rn, A ∈ Rn×n ,B ∈ Rn×1,Kj(q) ∈
R1×n, j = 1 . . . p , and the vector of time delays τ=
(τ1, τ2, . . . , τj , . . . , τp) ∈ Rp+ the elements of which are
rationally independent from each other. In the text, we use
boldface capital notation for vector and matrix quantities,
open unit disc, unit circle and outside of unit circle are

referred as D,T,S, respectively. Naturally, D
⋃
T
⋃
S = C

represents the entire complex plane.

Besides the mainstream of the research such as Hale and
Lunel [1993], Niculescu [2001] etc. focusing on the stability
analysis of LTI-MTDS, the robust stability against delay
and system parameter uncertainties is also investigated as
cited in Chapellat and Bhattacharyya [1989], Fu et al.
[1989], Kharitonov [1999], Richard [2003], Silva et al.
[2001], Gu et al. [2003]. In essence, these studies can be
classified in two major topic, delay-independent stability
(DIS) and delay-dependent stability (DDS).

In this paper, we focused on DIS systems where researchers
approach the problem two distinctive way. First one is Lya-
punov based approach depending usually on Krasovskii
and Razumikhin functionals (Ivanescu et al. [2000], Xu
[2001], Fridman [2001]). Second approach is mainly moti-
vated by the characteristic root crossings on the imaginary
axis. Several methods such as frequency (ω) sweeping or
matrix pencil approach are used to determine the DIS
criteria in many studies like Kamen [1982], Hertz et al.
[1984], Chen et al. [1995], Chen and Latchman [1995],
Niculescu [1998], Tuzcu and Ahmadian [2002], Michiels
and Niculescu [2007], Ergenc [2010], Delice and Sipahi
[2012]. As well as analysis of DIS, there are some studies
to improve controller design methods guaranteeing DIS
both in Lyapunov approach (Baser [2003], He et al. [2011])
and root crossing approach using algebraic tools such as
Descartes rule of signs and Sturm Sequences(Delice and
Sipahi [2010], Mahmoodi Nia and Sipahi [2013]).

In this study, the problem of dictating delay-independent
stability criteria is transformed into assigning a certain
number of the zeros in D of a polynomial derived from
the system equations. The key novelty introduced by this
method is that there are no restrictions on the number
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of the delays (p) and the number of the parametric
uncertainties (r). It is based on unique properties of
a self-inversive polynomial which represents the infinite
dimensional delayed system in terms of a finite dimensional
polynomial with interspersed zeros on the unit-circle.

The paper is organized as follows: In section 2 preliminary
definitions and statements of the study are given. Section
3 presents the controller design methodology for delay-
independent stability for LTI system with multiple delays.
Section 4 contains experimental example case studies. In
the last section, conclusive remarks about methodology is
given.

2. PRELIMINARIES

The characteristic equation of the system in (1) is derived
as follows

CE(s,k, τ1, . . . , τp) = det

sI−A−
p∑
j=1

BKj(q)e−τjs


=

n∑
l=0

al(q)sl +

p∑
j=1

(
n−1∑
l=0

al(q) sl

)
e−τjs = 0

(2)
The characteristic equation is an nth degree polynomial
in s, and retarded system has nj as the highest order of
commensuracy of delay τj in the dynamics (nj ≤ n).

Definition: The number of characteristic roots of (2) in the
complex open right half plane (C+) states the stability
of the system in (1). This number is a function of the
delays and the controller gains, which are the parameters
of (1). Non-existing roots on C+ assure that the system
is ”stable”. The stability of the system fails when a
characteristic root crosses C0 at a point.

The system is delay-independent stable when all the char-
acteristic roots lie on the complex open left half plane
(C−) regardless of the delay values. To achieve DIS op-
eration of the system we need to determine the full set
of state feedback controller gains which locates the char-
acteristic roots in C−. Examination of infinitely many
roots of the delayed system is very cumbersome and time
demanding process even with the best numerical methods
available(Breda et al. [2004], Vyhlidal and Zitek [2009],
Engelborghs et al. [2002]). Thus we transform the problem
of examining imaginary axis crossing of infinitely many
characteristic roots into determination of the root loca-
tions of the auxiliary equation of which represents the
system at the stability switching points. The Extended
Kronecker Summation method is used to convert the infi-
nite imaginary axis crossing problem into finite unit circle
(T) crossing (Ergenc et al. [2007], Ergenc [2010]).

Definition: Auxiliary Characteristic Equation (ACE) of
the system in (1), with zj = e−τjs is defined as a
determinant of a matrix derived from system equations
using EKS in (Ergenc et al. [2007]) as follows:

ACE(z,q) =

∣∣∣∣∣∣∣
A⊗ I + I⊗AT+

p∑
j=1

(
BKj(q))⊗ Izj + I⊗ (BKj(q))T z−1j

)
∣∣∣∣∣∣∣

= 0
(3)

Theorem 1. (Ergenc et al. [2007]) For the system given in
(1) if there exists at least one pair of imaginary character-
istic roots, ±ωi, of (2) with corresponding delay vector
τ={τj} ∈ Rp+ and a controller gain vector q ∈ Rr
then a vector of p-dimensional unitary complex numbers
z = {zj} ∈ TP , |zj | = 1,∀j = 1 . . . p satisfies ACE.

A sufficient condition to determine the pairs of vectors
〈τ ,q〉 that generates ωi ∈ C0 roots of (2) can be derived
using equation (3). Since this equation is completely free
of delay terms, and only a function of z and q, the method
is now considerably simplified to find z ∈ TP solutions of
(3) with respect to certain q. Following the procedure,
imaginary characteristic roots s = ±ωi of (2) can be
computed by evaluating z and q in (2). These crossing
frequencies we are interested in, form the set, i.e.,

Ω = {ω|CE(s = ωi, z,q) = 0, z ∈ Z, q ∈ Q} (4)

Time delay values corresponding each crossing frequency
are determined as follows:

τjk =
arg(zj)∓ 2kπ

ω
j = 1 . . . p, k = 0, 1, 2, . . . (5)

where τjk implies the jth delay value for various k values.

In the next section, we propose a new approach for the
determination of controller gains (q) in the controller
gain space (Q) where the system (1) is delay-independent
stable.

3. DELAY-INDEPENDENT CONTROLLER DESIGN

A LTI-MTDS is delay-independent stable (in other words,
robust to delays) when all the characteristic roots of (2) lie
on the C−,∀τ ∈ Rp+. It is well known that exhaustively
calculating characteristic roots for all τ is not computa-
tionally possible for determination controller gains for DIS
operation. In this work, we present a theorem which states
necessary and sufficient conditions for delay-independent
stability of (1). Similar theorems exist in an earlier stud-
ies (Delice and Sipahi [2010], Mahmoodi Nia and Sipahi
[2013]) which lead computationally heavier algorithms.

Theorem 2. (Delay-Independent Stability) A LTI system
given in (1) is delay-independent stable if following condi-
tions are satisfied simultaneously.

(1) Re
(
eig
[
A +

∑p
j=1 BKj(q)

])
< 0

(2) The roots of ACE, z = {zj} /∈ TP for q ∈ Q.

Proof. In the first condition, the stability of the non-
delayed system is guaranteed for the certain set of con-
troller gains q. In the second one, stating ACE has no
roots on Tp assures that characteristic equation (2) has no
iω roots on the imaginary axis. This condition is the result
of root continuity property.

These two conditions are the framework of the DIS. In
following part of the paper, we would like to mention about
distinctive properties of ACE which are utilized very
conveniently in the robustness analysis of the time delayed
systems against time delay variations. The outcome of the
analysis presented controller gain space which provides
control scheme for delay-independent stable operation.
ACE is a special multinomial of zj (j = 1 . . . p). We form
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ACE in another arrangement, where we embed zj j =
1 . . . k− 1, k+ 1 . . . p in bj(q, z1, z2, . . . , zk−1, zk+1, . . . , zp).
Here, bj ’s indicate the coefficients of a complex polynomial
in terms of zk. In a formal display:

ACE(z,q) =

m∑
j=0

bj (q, z1, z2, . . . , zk−1, zk+1, . . . , zp) z
j
k

(6)

where m < 2n2. At this point, it is beneficial to mention
about the properties of ACE which is a self-inversive poly-
nomial (Ergenc [2010]). Equation (6) which is generated
by determinant of Kronecker summation of two conjugate
matrices is inherently a self-inversive polynomial in terms
of zjk’s. The zeros of this type of polynomials lie either on
the unit circle T or occur in pairs conjugate to T (symmet-
ric pair of roots wrt unit circle). This is an instrumental
property of ACE which we utilize to determine crossing
points of (2). Meanwhile our ultimate aim is to design a
delay-independent stable state feedback controller for the
system, we desire that none of the roots of (6) even cross
the unit circle T. At this point, we should indicate that
investigation of q space which generates non-unitary zeros
for (6) is a very cumbersome problem. Here, we employ
the remarkable relationship of the critical points of the
self-inversive polynomial (zeros of the derivative wrt z)
and the zeros of the polynomial itself. It is stated as in the
theorem below (Sheil-Small [2002]).

Theorem 3. Let P is a self-inversive polynomial of degree
p. Suppose that P has exactly β zeros on the unit circle T
(multiplicity included) and exactly µ critical points on the
closed unit disc D

⋃
T (counted according to multiplicity).

Then
β = 2(µ+ 1)− p. (7)

This theorem is the novel point for establishing the crite-
rion for delay-independent stability. It is stated before that
a system as described in (1) is delay-independent stable if
its ACE has no zeros on T and it is cumbersome to check
if zeros are unitary. Notice that the number of the unitary
roots of ACE is related to the number of critical points in
U. In the literature, there are several methods to establish
relations between the number of the roots in a certain
region and the coefficients of the polynomials (Marden
[1949]), which are extensions to the Pellet’s Theorem. In
essence, theorem 3 is combined with a theorem presented
in (Rajan and Reddy [1985]) and (Mori [1984]), then con-
verted into the main instrument for controller synthesis.
The second theorem is as follows;

Theorem 4. Let P(z) a polynomial equation,

P (z) =

p∑
j=0

bjz
j (8)

where bj ∈ C and bp 6= 0
If

|bk| >
p∑
j 6=k

|bj | (9)

then P(z) has exactly k zeros in the unit circle and noting
that P(z) , under the above condition has no unitary zeros
(i.e. z ∈ T).

Proof. Proof of this theorem is easily achieved by substi-
tuting r = R = 1 in Pellet’s Theorem in Marden [1949].

After stating the theorems, we present delay-independent
stability conditions for the controller design. The system
given in (1) is delay-independent stable if its ACE has
certain number of critical roots(i.e. roots of the derivative
of ACE on the D). According to theorem(4) the condition
of delay-independent stability is the following corollary.

Corollary 5. A linear time invariant system with multiple
time delays described in (1) is delay-independent stable if

(1) Re
(
eig
[
A(q) +

∑p
j=1(Bj(q)

])
< 0

(2) Critical equation of ACE satisfies

| bµ (q, z1, z2, . . . , zk−1, zk+1, . . . , zp) | >
p∑

j 6=µ

|bj (q, z1, z2, . . . , zk−1, zk+1, . . . , zp)| (10)

where µ ≤ (p/2)− 1 and µ is an integer number.

In the corollary, a sufficient condition is given for a self
inversive polynomial has no unitary roots. Since ACE is
inherently self-inversive polynomial, the controller gain set
q ∈ Q that satisfies the inequality above offers delay-
independent stability of the system (1). In other words,
if the inequality is satisfied, ACE has roots z /∈ TP and
τ is an empty set. Thus, the system (1) is stable for all
τ ∈ Rp+.

For the practicality of the controller design we would like
to express the method as a procedure:

Procedure:

(1) Compute ACE of the system using Extended Kro-
necker Summation Method as described in (3)

(2) Find an initial point for q that satisfies ∀z ∈ D roots
of (2)

(3) Find the number of the roots of the critical equation
of ACE that should lie in the D using theorem 3

(4) Evaluate the inequality (10) and investigate the pa-
rameter space that the inequality is satisfied.

The procedure above is a tool to analyze the controller
gain space q ∈ Q that provides DIS of the state-feedback
system. In the corollary (10), it is stated that if the con-
dition is satisfied, ACE of the system has no unimodular
roots. It is the crucial condition for our aim considering
that we desire to find delay-robust controller gains for the
system.

In the following section we give some example cases with
the experimental results to emphasize our claims.

4. EXPERIMENTAL CASE STUDY

In industry, tanks are intensively used either for keeping
the liquids or housing the reaction for the processes. In
many processes, coupled tanks are used and the levels
of the tanks are important to maintain the health of the
process. In our experimental study, we installed a two tank
liquid level control process with an industrial controller
made by Allen-Bradley R©. The experimental- setup shown
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Fig. 1. The picture of the experimental-setup

in Figure 1 consists of two identical tanks coupled with a
transition pipe enabling flow between the tanks. Figure 2
is depicted to explain the principle of the operation of the
system. A water pump feeds Tank 1 and the flow rate of
the water is controlled using an electro-pneumatic pressure
regulator driven proportional valve. Water is drained from
the bottom of Tank 1. The feedback mechanism of the
liquid levels of Tank 1 and Tank 2 utilizes pressure/current
and weight/current transducers, respectively.

The main objective in this process is to control the level
of Tank 2. The level readings are transmitted to the
industrial controller as the feedback and state-feedback
controller generates the control signal which is applied
to the regulator to drive the proportional valve. In the
mathematical model, h1, h2 represents the liquid levels of
the Tank 1 and the Tank 2 respectively. qi is the flow rate
of the liquid input to Tank 1 and q1, q2 are the flow rates
of the liquid in the drain pipe of Tank 1 and transition
pipe between the tanks. At is the area of each cylindrical
tank. Note that R1, R2 are the flow resistances of the drain
pipe and the transition pipe, respectively. The linearized
relationships are given below:

q1 =
1

R1
h1, q2 =

1

R2
(h2 − h1) (11)

for small variations of qi and hj . Considering the conser-
vation of the liquid volume and the basic relations given
in (11), the state space representation of the linearized
system is as follows:

ẋ(t) = Ax(t) + B qi(t) (12)

where

Fig. 2. An illustration of two tank liquid level process

Fig. 3. Open loop response of the system

A =

−
1

At
(

1

R1
+

1

R2
)

1

AtR2

1

AtR2
− 1

AtR2

 , B =

[ 1

At
0

]
(13)

and the state vector is x(t) = [ h1(t) h2(t) ]
T

. The param-
eters of the system are as follows:

• At = πr2 = 25π cm2

• R1 and R2 are experimentally derived as 0.14 s/cm2

and 0.4 s/cm2, while the operating levels of the tanks
are h1 = h2 = 15 cm .

The step response of the open loop real system and the
obtained model is given in Figure. 3 to indicate validation.

The objective of the study is to control the input flow rate
of the system using proportional valve under the drainage
disturbance effects and attain a stable operating point
for h2(t). Here, full state feedback controller is used to
achieve the stability regardless of the time delays caused
by unavoidable actuator delay and the transducer delay.
First, delay-independent stabilizing full state feedback
controller gains are investigated analytically and then they
are validated experimentally.

The state space model of the process controlled with full
state feedback having multiple delays is given as follows:

ẋ(t) = Ax(t) + BK1x(t− τ1) + BK2x(t− τ2) (14)

where

A =

[
−0.122 0.0318

0.0318 −0.0318

]
,B =

[
0.0127

0

]
(15)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6077



and K1 = [ k1 0 ] ,K2 = [ 0 k2 ]. In order to design
delay-independent stable controller we utilize our proce-
dure. The corresponding auxiliary characteristic equation:

ACE(z1, z2, k1, k2) =

(0.0000014233k1
2z2

2 − 0.000000065696k1
2z2k2)z1

4+

(−0.000041667k1z2
2 + 0.0000020528z2k2k1+

0.0000011223z2
3k2k1 − 0.00000013139k1

3z2
2)z1

3+

(0.00000016424z2
4k2

2 + 0.00000016424k2
2+

0.0000053647k1
2z2

2 − 0.00001918z2k2 − 0.00001918z2
3k2−

0.000000065695k1
2z2

3k2 − 0.00000032848z2
2k2

2+

0.00027166z2
2 − 0.000000065696k1

2z2k2)z1
2+

(0.0000011222z2k2k1 − 0.00000013139k1
3z2

2−
0.000041667k1z2

2 + 0.0000020528z2
3k2k1)z1−

0.000000065695k1
2z2

3k2 + 0.0000014233k1
2z2

2

(16)

Using the procedure inequality which provides the DIS
region is derived as:

Ineq(k1, k2, z2) = | − 0.00054332 z2
2 + 0.000038362 z2

3k2−
0.00000032848 k2

2 − 0.000010729 k1
2z2

2−
0.00000032848 z2

4k2
2 + 0.00000065696 z2

2k2
2+

0.00000013139 k1
2z2

3k2 + 0.000038362 z2k2+

0.00000013139 k1
2z2k2| − | − 0.0000011222 z2k2k1+

0.00000013139 k1
3z2

2 − 0.0000020528 z2
3k2k1+

0.000041667 k1z2
2| − |0.00012500 k1z2

2−
0.0000033669 z2

3k2k1 − 0.0000061584 z2k2k1+

0.00000039417 k1
3z2

2| − | − 0.0000056932 k1
2z2

2+

0.00000026278 k1
2z2k2| > 0

(17)

Keeping in mind that ACE is fourth order polynomial,
the number of roots of D(z, α) that should lie in unit
circle is equal to 1. Using the constructed inequality (17)
the delay-independent stability map is generated w.r.t. the
controller gains k1 and k2 and depicted as in Figure 4. The
rhombus region which is generated by direct calculation of
roots of characteristic equation of the system equations
(14) using the numerical method presented in Breda et al.
[2004] which is a rough illustration of DIS region. The
green shaded region inside the rhombus is the guaran-
teed delay-independent stabilizing pairs of controller gains
where inequality (17) is satisfied. To validate the results
experimentally, two pairs of gain parameters are selected
and the closed loop responses of the full state feedback con-
trolled system are given in Figures 5 and 6 for various time
delays. In Figure 5, it is seen that the closed loop system is
stable for large multiple delays when k1 = 4, k2 = 2 which
is a delay-independent stabilizing gain pair. On the other
hand, the closed loop response of the system is unstable
when k1 = k2 = 4 for the same delay values as shown in
Figure 6.

5. CONCLUSION

This paper is on the delay-independent stable state feed-
back controller design for LTI systems with multiple de-
lays. In the center of the design, distinctive properties of

Fig. 4. The region of delay-independent stabilizing con-
troller parameters k1 and k2

Fig. 5. Closed loop response for k1 = 4, k2 = 2

Fig. 6. Closed loop response for k1 = k2 = 4

ACE, which is an inherently self-inversive polynomial, are
utilized. The problem of delay-independent stability of LTI
systems with time delays is converted to root distribution
of a self-inversive polynomial relative to the unit-circle.
The stability analysis technique then employed as con-
troller synthesis. It is also presented that critical equation
of the self-inversive polynomial is a very handy tool to
assign the roots characteristic equation of the system. An
inequality condition is presented, which is the main result
of the study to design the controller for delay-independent
stability of LTI Systems with multiple delays. The concept
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is explained and tested by using an experimental example
case study.
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