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Abstract: A nonlinear vision-based guidance law is presented in this paper for a missile-target
scenario in the presence of model uncertainty and unknown target evasive maneuvers. To this
end, projective geometric relationships are utilized to combine the image kinematics with the
missile dynamics in an integrated visual dynamic system. The guidance law is designed using an
image-based visual servo control method in conjunction with a sliding-mode control strategy,
which is shown to achieve asymptotic target interception in the presence of the aforementioned
uncertainties. A Lyapunov-based stability analysis is presented to prove the theoretical result,
and numerical simulation results are provided to demonstrate the performance of the proposed
robust controller for both stationary and non-stationary targets.
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1. INTRODUCTION

The uncertainties and complex nonlinearities inherent in
vision-based systems necessitate the development of ad-
vanced nonlinear control methods. Challenges in visual
servo control design include dynamic model uncertainty,
camera calibration errors, and pixel noise. Visual servo
control (VSC) is the process of using vision-based feed-
back measurements to control a dynamic system. The
information-rich nature of vision-based data has made
VSC an attractive option in various industrial, medical,
military, and robotic applications [Slotine et al. 1991,
Yanushevsky 2007, Mackunis et al. 2007, Mebarki et al.
2010, Mehta et al. 2012b,a]. Although theoretical VSC de-
sign has been widely investigated in literature [Hutchinson
et al. 1996, Chaumette and Hutchinson 2006, Chaumette
et al. 2007], implementation of VSC systems was limited
until recent decades due to limitations on available com-
putational power and electronic equipment. With modern
electronic capabilities, active/passive vision systems have
become a more viable option [Seetharaman et al. 2006,
Langelaan 2007].

Accurate representation of a missile dynamic model is a
challenging task since it involves quantities that might
be difficult to obtain (e.g., inertia, aerodynamic friction,
external disturbances). Intelligent and adaptive control
methods are popularly utilized to compensate for system
uncertainty. Neural-network (NN)-based controllers ex-
ploit the universal approximation property of NNs to com-
pensate for system uncertainty through an offline learning
(training) process. Miljković et al. [2012], present a switch-
ing NN controller to support the vision-based control of a

robotic manipulator using a reinforcement learning tech-
nique. They showed that the NN controller was capable
of choosing the optimal course of action despite camera
calibration errors, modelling errors, and image noise ex-
isting in the system. While NNs learn about the dynamic
system through offline training, adaptive controllers can
compensate for parametric uncertainty in real time using
online adaptive parameter update laws. Unlike NN con-
trollers, adaptive methods handle uncertainties without
the necessity to train offline, making them a more practical
control method for some applications [Zak 2003, Dixon
2007, MacKunis et al. 2010, Mehta et al. 2012a]. Mehta
et al. [2012a,b] have developed an adaptive guidance law
for a vision-based missile that achieves near zero miss dis-
tance interception of a target undergoing unknown evasive
maneuvers.

While adaptive and NN-based control methods can com-
pensate for system uncertainty, both methods can bur-
den the system with a heavy computational load. Robust
control methods, on the other hand, can compensate for
unknown disturbances, model uncertainties and nonlin-
earities without the need for online adaptation or offline
training.

A nonlinear vision-based guidance law is presented in this
paper for a missile-target scenario in the presence of model
uncertainty and unknown target evasive maneuvers. To
this end, projective geometric relationships are utilized to
combine the image kinematics with the missile dynamics in
an integrated visual dynamic system. The guidance law is
designed using an image-based visual servo control method
in conjunction with a sliding-mode control strategy, which
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is shown to achieve asymptotic target interception in the
presence of the aforementioned uncertainties. A Lyapunov-
based stability analysis is presented to prove the theoreti-
cal result, and numerical simulation results are provided to
demonstrate the performance of the proposed robust mis-
sile guidance law for both stationary and non-stationary
targets.

2. MISSILE DYNAMICS

The dynamic system being modeled consists of multiple
components: The 3D space where the Euclidean motion
takes place, the missile-target dynamics, and the camera
system used for tracking the target. In order to relate
subcomponents of the system, the following coordinate
frames are defined.

An orthogonal frame Fm(t) is defined at the center of
gravity (CoG) of the missile. An Earth-fixed reference
frame Fe is defined on the surface of the Earth which is
used to track the motion of the missile and target in 3D
space.A body-fixed reference frame Fr is defined, located
at the CoG of the missile. Frame Fr is fixed to a North-
East-Down (NED) navigation frame, and is assumed to
coincide with frame Fe (assuming the Earth’s curvature is
negligible). The body-carried reference frame Fr is used
to define the angular orientation of the aircraft, while
the Earth-fixed reference frame Fe is used to define its
translation. For model simplification and without loss of
generality, the camera frame Fc(t) is defined at the center
of gravity of the missile, coinciding with the frames Fm(t)
and Fr.

The dynamic model for a bank-to-turn missile (BTT) is
used. The orientation of frame Fm with respect to frame
Fr is defined by angles of rotation φ(t), σ(t), and ψ(t)
about the body-fixed x, y, and z-axes, respectively.

The linear and angular velocities of the missile measured
in Fm with respect to Fe are denoted by

vm = [vx vy vz]
T ∈ R

3 ωm = [ωx ωy ωz]
T ∈ R

3

(1)
The linear acceleration of the missile measure in the body
frame Fm(t) is expressed as

v̇x = ωzvy − ωyvz +
Fx

m

v̇y = ωxvz − ωzvx +
Fy

m

v̇z = ωyvx − ωxvy +
Fz

m

(2)

In the equations above, m ∈ R represents the constant
mass of the missile, and Fx(t), Fy(t), Fz(t) ∈ R are the
forces acting along the body axes defined as

Fx = Gx(q) + kF ρairV
2
MCx(α, β,Mm) + τx

Fy = Gy(q) + kF ρairV
2
MCy(α, β,Mm) + τy

Fz = Gz(q) + kF ρairV
2
MCz(α, β,Mm) + τz

(3)

where kF ∈ R is a constant parameter determined by
the missile geometry, ρair ∈ R is the air density, and
VM (t) ∈ R is the magnitude of the missile velocity
measured with respect to Fe. Cx(α, β,Mm), Cy(α, β,Mm),
Cz(α, β,Mm) ∈ R are the unknown friction coefficients
corresponding to the aerodynamic forces, where α(t), β(t),
and Mm(t) represent the angle of attack, sideslip angle,
and Mach number, respectively. τx (t) , τy (t) , τz (t) ∈ R

are the control force inputs. The x, y, and z components of
the gravitational force acting on the missile, Gx(t), Gy(t),
Gz(t) ∈ R are expressed as

Gx(t) = −mg sin(σ)
Gy(t) = −mg cos(σ) sin(φ)
Gz(t) = −mg cos(σ) cos(φ)

(4)

where g ∈ R is the gravitational acceleration constant.

The angular acceleration of the missile measured in Fm

with respect to Fe is denoted by

ω̇x =
Iy − Iz

Ix
ωyωz +

L

Ix

ω̇y =
Iz − Ix

Iy
ωxωz +

M

Iy

ω̇z =
Ix − Iy

Iz
ωxωy +

N

Iz

(5)

where Ix, Iy, Iz ∈ R denote the constant unknown
moments of inertia about the x, y, and z-axes, respectively.
L(t), M(t), N(t) ∈ R are the rolling, pitching and yawing
moments, respectively, given by

L = kMρairV
2
MCl(α, β,Mm) + τl

M = kMρairV
2
MCm(α, β,Mm) + τm

N = kMρairV
2
MCn(α, β,Mm) + τn.

(6)

In (6), Cl(α, β,Mm), Cm(α, β,Mm), Cn(α, β,Mm) ∈ R

denote unknown coefficients of friction corresponding to
the aerodynamic moments; and τl (t) , τm (t) , τn (t) ∈ R

are the control moment inputs.

The equation of motion for the missile can now be ex-
pressed in Euler-Lagrange form, considering the coordi-
nate frames and dynamical equations defined above, as

Mq̈ = C(q̇)q̇ +G(q) + f(q̇) + τ + τd (7)

where q(t), q̇(t) ∈ R
6 denote the 6-DOF position and

velocity, respectively, of frame Fm(t) with respect to frame
Fe and τ ∈ R

6 represents the vector of control force
inputs 1 where

q(t) = [x y z φ σ ψ]T

q̇(t) = [vTm ωT
m]T

τ(t) = [τx τy τz τl τm τn]
T

(8)

In (7), τd (t) ∈ R
6 denotes an unknown, nonlinear, nonvan-

ishing bounded disturbance (e.g., due to unknown evasive
target maneuvers). Also in (7), M ∈ R

6x6 represents the
unknown constant inertia matrix, C(q̇) ∈ R

6x6 is the
Coriolis matrix, G(q) ∈ R

6 is the unknown gravity vector,
and f(q̇) ∈ R

6 denotes the unknown friction vector, which
are defined as

M = diag(m,m,m, Ix, Iy, Iz) (9)

C(q̇) = diag(−[mωm]×, [mvm]×) (10)

1 It should be noted that the control force input, τ , is assumed
to be decoupled in this preliminary study (i.e., the control can be
applied in 6-DoF independently). The 6-DoF independent control is
commonly used in order to simplify the dynamic model (Mehta et al.
[2011], Mehta et al. [2012a], Mehta et al. [2012b]). However, use of
a realistic dynamic model is intended for future studies in which
deflection surface angles are used to steer the missile [Yanushevsky
2007]).
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G(q) =

⎡
⎢⎢⎢⎢⎢⎣

−mg sin(σ)
mg cos(σ) sin(φ)
mg cos(σ) cos(φ)

0
0
0

⎤
⎥⎥⎥⎥⎥⎦ f(q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎣

kF ρairv
2
xCx

kF ρairv
2
xCy

kF ρairv
2
xCz

kF ρairv
2
xCl

kF ρairv
2
xCm

kF ρairv
2
xCn

⎤
⎥⎥⎥⎥⎥⎥⎦
(11)

In (9) and (10), diag(·) represents a diagonal matrix, and
[·]× denotes the skew-symmetric cross-product matrix.

3. IMAGE KINEMATICS

This section formulates the relationships between the
missile velocity q̇ (t) ∈ R

6 and the velocity of the target
T in the camera image plane. A monocular camera is
attached to the center of gravity of the missile airframe
2 .

A time-varying orthogonal frame Fc(t) is attached to the
camera such that the origins of Fc(t) and the missile body
frame Fm (t) coincide with the missile center of gravity. A
target T is represented as a point in Euclidean space, and
it is assumed to remain within the camera field of view. 3

The Euclidean coordinates of the target T expressed in
the camera coordinate frame Fc(t) can be represented as

m̄(t) � [xt(t) yt(t) zt(t)]
T (12)

where it is assumed that the target is always in front of
the camera (i.e., zt(t) > ε, ε ∈ R

+ ). The rate of change of
the Euclidean coordinates m̄(t) due to the camera motion
is related to the camera velocity as [Mehta et al. 2012a]

˙̄m(t) = −vc(t)− ωc(t)× m̄(t) (13)

where vc(t), ωc(t) ∈ R
3 are linear and angular velocities,

respectively, of the camera as measured in Fc (t). By using
a transformation of a left-hand coordinate frame to a right-
hand coordinate frame, the camera coordinate frame can
be related to the 6-DOF missile velocity as measured in
Fm (t) as

vc = [vy −vz vx]
T and ω = [ωy −ωz ωx]

T (14)

The target T is projected onto an image plane π as the
point

p(t) � [u(t) v(t)]T (15)
where pixel coordinates p(t) are related to the Euclidean
coordinates m̄(t) by projection geometry as

u(t) =
foaxt(t)

zt(t)
+ u0 v(t) =

fobyt(t)

zt(t)
+ v0 (16)

where fo ∈ R is the focal length, a and b ∈ R are scaling
factors along x and y-axes; and [u0, v0]

T ∈ R
2 are the

principal point coordinates (i.e., the intersection of an
optical axis with the image plane) of the camera. After
taking the time derivative of p(t), the following expression
for the rate of change of the pixel coordinates is obtained:

ṗ(t) =

[
u̇(t)
v̇(t)

]
= Jq̇(t) (17)

2 Although the camera is typically placed at the nose of the missile
in practical implementation, this assumption can be made without
the loss of generality, since any deviation can be accounted for by a
simple coordinate transformation.
3 This is to ensure the closed-loop behavior of the system. Some
existing vision-based controllers have a potential field implemented
around the FOV within the control law to ensure feature points stay
in the image plane (Corke and Hutchinson [2001]).

where J ∈ R
2×6 denotes the Jacobian matrix which

contains the projection geometry defined using (16) as

J =⎡
⎢⎢⎣
foaxt

z2t
−foa

zt
0

foayt
zt

foaxtyt
z2t

a(fo +
fox

2
t

z2t
)

fobyt
z2t

0
fob

zt
−fobxt

zt
b(fo +

foy
2
t

z2t
)

fobxtyt
z2t

⎤
⎥⎥⎦

(18)
It is assumed that the image Jacobian J(u, v, zt) is measur-
able. The estimation of depth is a challenging task using
a monocular camera. Any uncertainties due to inaccurate
depth information are assumed to be absorbed into the
unknown auxiliary terms Ñ and Nd, which are introduced
in the control development section. These terms are com-
pensated by the robust control law design. Future work
will consider using a homography-based approach, which
utilizes minimal feature point information about the target
in order to calculate depth information [Mackunis et al.
2007].

The image Jacobian J given above remains bounded
everywhere except at zt = 0. 4 This occurs when the
camera frame Fc (t) intercepts the target T . However,
the impact actually happens before Fc (t) intercepts the
target, since the origin of Fc (t) is at the missile CoG.
Therefore, the missile is considered to have intercepted
the target when 0 < zt ≤ zmin, zmin ∈ R

+.

4. CONTROL OBJECTIVE

The control objective of this system is to drive the relative
distance between the missile frame Fm and the target
frame T to zero. This can be achieved by driving the time-
varying target pixel coordinates p(t) to the desired image
coordinates pd, which is constant(i.e., the optical axis).
Therefore, the control objective can be mathematically
stated as:

p(t) −→ pd, where pd = [u0 v0]
T . (19)

5. CONTROL DEVELOPMENT

Property 1: The inertia matrix M is symmetric, positive
definite, such that for known positive constants m1, m2 ∈
R, the following inequality satisfied:

m1‖ξ2‖ ≤ ξTMξ ≤ m2‖ξ2‖ ∀ξ ∈ R
n (20)

To quantify the control objective, a tracking error term
e(t) � [e1 e2]

T ∈ R
2 is defined as the difference between

the image coordinates of the target and the principal point
as

e(t) � pd − p(t). (21)

After taking the time derivative of (21) and using the
image kinematic equation in (17), we obtain

ė(t) = −ṗ(t) = −Jq̇. (22)

To facilitate the subsequent control development and sta-
bility analysis, we add and subtract λe in (22) to yield

ė(t) = −Jq̇ + λe− λe (23)

where λ ∈ R is a positive constant control gain. An
auxiliary error term r(t) ∈ R

6 is introduced to facilitate

4 In light of this, pseudo-inverse of J(t) is singularity free.
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the following controller development and stability analysis
as

r(t) = −q̇ + J+λe (24)
where J+(t) ∈ R

6×2 denotes the pseudo-inverse of the
Jacobian matrix J(t). By using (23) and (24), the rate
of change of error term e(t) can be expressed as

ė(t) = −λe+ Jr. (25)

By pre-multiplying the auxiliary error signal r(t) byM and
taking the time derivative, the open-loop error dynamics
are obtained as

Mṙ = −Mq̈ +MJ̇+λe+MJ+λė (26)

By substituting (7) into (26) the open-loop error dynamics
can be expressed as

Mṙ = −JT e− τ + Ñ +Nd (27)

where the unknown, unmeasurable auxiliary terms Ñ (t) ,
Nd (t) ∈ R

6 are defined as

Ñ = −Cq̇ + Cq̇d −G(q) +G(qd)− f(q̇) + f(q̇d)

+MJ̇+λe−MJ̇+(qd)λe+MJ+λė−MJ+λė(qd)
+JT e− JT (qd)e

(28)
and

Nd = −Cq̇d −G(qd)− f(q̇d) + τd
+MJ̇+(qd)λe+MJ+λė(qd) + JT (qd)e

(29)

The terms qd and q̇d represent desired 6-DoF position
and velocity vectors respectively which are assumed to be
bounded and sufficiently smooth. The selective grouping of
the terms in (28) and (29) is motivated by the fact that the
following inequalities can be developed [MacKunis et al.
2010]

‖Ñ‖ ≤ ρ(‖z‖)‖z‖, ‖Nd‖ ≤ ζd (30)
where ρ (·) ∈ R is a bounding function, and ζd ∈ R is
a known positive bounding constant. In (30), z (t) ∈ R

8

denotes an augmented error vector defined as

z(t) � [eT rT ]T . (31)

Based on the open-loop error system in (27) and the
subsequent stability analysis, the control input τ (t) ∈ R

6

is designed as

τ = (ks + 1)r + βssgn(r) (32)

where ks, βs ∈ R are positive constant control gains; and
sgn(·) denotes the vector form of the standard signum
function, where the sgn(·) is applied to each element of the
vector argument. The use of sgn(·) fucntion is motivated
by the desire to compensate the unknown bounded target
maneuvers without the use of adaptive laws or function
approximators. After substituting the control law in (32)
into the open-loop error dynamics in (27), the closed-loop
error system is obtained as

Mṙ = Ñ +Nd − JT e− (ks + 1)r − βssgn(r). (33)

To facilitate the following stability analysis, the control
gain βs is selected to satisfy

βs > ζd (34)

where ζd is introduced in (30).

6. STABILITY ANALYSIS

Theorem 1. The controller presented in (32) ensures that
the missile airframe Fm asymptotically intercepts the
target in the sense that

lim
t→∞ r(t), e(t) = 0 (35)

Proof 1. Consider a non-negative function V (t) (i.e., Lya-
punov function) defined as

V (t) =
1

2
rTMr +

1

2
eT e. (36)

After taking the time derivative of V (t), using (25) and

(33) and cancelling common terms, V̇ (t) can be expressed
as

V̇ = rT Ñ+rTNd−rT (ks+1)r−rTβssgn(r)−eTλe. (37)

By using the inequalities defined in (30), V̇ (t) can be
upper bounded as

V̇ ≤ −λ0‖z‖2 +
ρ2 (‖z‖)
4ks

‖z‖2 (38)

where λ0 � min{1, λ}. Based on Inequality (38), the

control gain ks can be selected to render V̇ (t) < 0.
Specifically, by designing ks to satisfy

ks >
ρ2 (‖z‖)
4λ0

(39)

the upper bound on V̇ (t) can be expressed as

V̇ ≤ −C‖z‖2 (40)

where C ∈ R is a positive bounding constant. Thus,
provided ks satisfies (39), V̇ (t) is negative definite. Hence,
‖z (t)‖ → 0 as t → ∞, and ‖r (t)‖ , ‖e (t)‖ → 0 as t → ∞
from (31).

The expressions in (36) and (40) can be used to prove that
e(t), r(t) ∈ L∞ during closed-loop controller operation.
Given that e(t), r(t) ∈ L∞, (22) and (25) can be used to
conclude that ė (t) , ṗ(t) ∈ L∞. Standard linear analysis
techniques can then be used to show that q̇(t) ∈ L∞ from
(22). Given that r(t) ∈ L∞, τ (t) ∈ L∞ from (32).

7. SIMULATION - STATIONARY TARGET

The performance of the proposed robust control law was
tested via numerical computer simulation using Matlab.
The first simulation involved a stationary target located
at a Euclidean point with respect to the NED Earth frame
given by

[xt yt zt]
T = [1200 2400 − 5000]T (m) (41)

The missile body frame Fm (t) is initialized at the position

[xm(0) ym(0) zm(0)]T = [0 0 − 3500]T (m) (42)

and the initial missile orientation is

Rm =

[
0.5000 −0.8138 0.2942
0.8660 0.4698 −0.1710

0 0.3420 0.9397

]
. (43)

The modeling parameters used in the simulation environ-
ment are given by

m = 144.0 [kg] g = 9.81 [m/s2]
Ix = 1.615 [kg −m2] ρair = 0.26 [kg/m3]
Iy = 136.0 [kg −m2] kF = 0.01425 [m2]
Iz = 136.0 [kg −m2] kM = 2.716× 10−3 [m3]
ks = 30 [·] βs = 600 [·]

(44)
where m is mass of the missile, g is the gravitational
acceleration, Ix, Iy, and Iz are the missile moment of
inertia about the x, y, and z-axes, respectively. The density
of air is represented by ρair, while kF and kM are constant
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missile parameters. The aerodynamic friction coefficients
are obtained using

Cx = −0.57 + 0.0083α
Cy = −0.21β
Cz = (0.0429− 0.5052α+ 0.0125α2 − 0.0015α3)

+(−0.0191− 0.1230α− 0.0138α2 + 0.0006α3)Mm

Cl = 0.116β
Cm = (−0.0381− 2.7419α+ 0.2131α2 − 0.0055α3)

+(−0.4041 + 0.8715α− 0.0623α2 + 0.0014α3)Mm

Cn = 0.08β
(45)

The coefficients of friction in (45) and the missile dynamic
parameters are used only to generate the plant model;
they are not used in the guidance law. The simulation
includes additive white Gaussian noise (AWGN) in the
target pixel coordinate p(u, v) with a standard deviation
of 0.1 pixel and AWGN in the depth measurement z(t)
with a standard deviation of 10m. Simulation results show
that robust control law compensates for unmodeled effects
and the AWGN added into the system.

Figure 1 shows the initial target position (�) and the
final position of the target (�) in the image plane. It is
observed that the controller is able to drive the target
image to the desired image location at the principal
point u0, vo. The control input required to track the
target is plotted in Figure 2. The proposed robust control

−30 −20 −10 0 10 20 30 40
−120

−100

−80

−60

−40

−20

0

20

u [pixel]

v 
[p

ix
el

]

Fig. 1. Tracking of the stationary target in the image plane.

system is shown to be capable of tracking the target and
achieving interception in the presence of the uncertainties
and modeling errors introduced into the simulated system.
In this section, the simulation considered the case where
the target is stationary. The next section considers a non-
stationary target.

8. SIMULATION - NON-STATIONARY TARGET

The second simulation involved the evaluation of the
proposed controller’s performance in the presence of a
moving target. The simulation parameters are identical
to the first one with the addition of a moving target. The
target translational and angular velocities, vt and ωt, used
in the simulation are given as

0 1 2 3 4 5
−5

0

5

τ 1(t)
 [k

N
]

time [s]
0 1 2 3 4 5

−5

0

5

τ 2(t)
 [k

N
]

time [s]

0 1 2 3 4 5
−5

0

5

τ 3(t)
 [k

N
]

time [s]
0 1 2 3 4 5

−5

0

5

τ 4(t)
 [k

N
−m

]

time [s]

0 1 2 3 4 5
−5

0

5

τ 5(t)
 [k

N
−m

]

time [s]
0 1 2 3 4 5

−5

0

5

τ 6(t)
 [k

N
−m

]

time [s]

Fig. 2. The control input commands during closed-loop
operation.

vt = [50 30 0]T (m/s), ωt = [0 0 0.05]T (rad/s)
(46)

The target velocity is used to generate the simulation plant
model only; the target velocities are assumed unknown and
are not used in the control law.

Figure 3 shows the tracking performance of the proposed
controller in the presence of a moving target. It can be seen
that the controller drives the target toward the principal
point, and that the error is reduced asymptotically. Thus,
the missile intercepts the target with zero miss distance.
The trajectory of the missile in Euclidean space is plotted
in Figure 5. It was shown that the missile frame is able
to track the moving target and intercept it. The control
commands used during closed-loop operation are plotted
in Figure 4.
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]

Fig. 3. Tracking of the non-stationary target in the image
plane.

9. CONCLUSION

A robust vision-based missile guidance law is presented
for a missile equipped with a monocular camera system.
The guidance law yields asymptotic target interception

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5089



0 5 10 15 20
−5

0

5

τ 1(t)
 [k

N
]

time [s]
0 5 10 15 20

−5

0

5

τ 2(t)
 [k

N
]

time [s]

0 2 4 6 8 10
−5

0

5

τ 3(t)
 [k

N
]

time [s]
0 2 4 6 8 10

−5

0

5

τ 4(t)
 [k

N
−m

]

time [s]

0 2 4 6 8 10
−5

0

5

τ 5(t)
 [k

N
−m

]

time [s]
0 2 4 6 8 10

−5

0

5

τ 6(t)
 [k

N
−m

]

time [s]

Fig. 4. The control commands used during closed-loop
controller operation.
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Fig. 5. 3D visualisation of the missile trajectory (in blue)
and interception of the non-stationary target (in red).

of a target in the presence of dynamic uncertainty and
unknown target evasive maneuvers. The result is achieved
by using an image-based visual servo control method,
where the missile dynamics are combined with the target
image kinematics of the monocular camera. The proposed
control law is designed to be inexpensively implemented,
requiring no online adaptive laws, NNs, or complex com-
putations in the control loop. A Lyapunov-based stability
analysis is used to prove that the proposed control law is
capable of regulating the pixel coordinates of the target
to the principle point. Once the target image coordinates
are driven toward the principal point (optical axis), then
the missile converges to a collision course. A numerical
simulation is used to test the performance of the control
law in the presence of stationary and non-stationary tar-
gets, where the plant model contains modeling errors and
additive disturbances. The simulation results demonstrate
that the proposed vision-based robust pursuit guidance
law is capable of intercepting the target in both cases with
zero miss distance.
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