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Abstract: This paper studies the asymptotic behavior of several continuous-time dynamical
systems which are analogs of ant colony optimization algorithms that solve shortest path
problems. Local asymptotic stability of the equilibrium corresponding to the shortest path is
shown under mild assumptions. A complete study is given for a recently proposed model called
EigenAnt: global asymptotic stability is shown, and the speed of convergence is calculated
explicitly and shown to be proportional to the difference between the reciprocals of the second
shortest and the shortest paths.
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1. INTRODUCTION

Ant Colony Optimization has generated a lot of interest
due to emergent optimizing behavior resulting from agents
interacting through their environment, with minimal use
of global information. In the most basic application of
Ant Colony Optimization (ACO), a set of artificial ants
find the shortest path between a source and a destination.
Ants deposit pheromone on paths they take, preferring
paths that have more pheromone on them. Since shorter
paths are traversed faster, more pheromone accumulates
on them in a given time, attracting more ants and leading
to reinforcement of the pheromone trail on shorter paths.
This is a positive feedback process, that can also cause
trails to persist on longer paths, even though a shorter
path has been later discovered and trailed by the ant
colony. In Shah et al. (2008) and Shah et al. (2010), it was
shown that pheromone bias can be overcome only up to a
theoretical limit; beyond that, the problem of persistence
persists. ACO algorithms have employed a number of
strategies to overcome this lack of plasticity. For example,
in Stützle and Hoos (2000) an upper bound on the amount
of pheromone on a path was imposed. Finding the optimal
thresholds or parameter values is hard (Yuan et al., 2012),
and it is possible for several sub-optimal paths to end up
with the maximum allowed pheromone concentration, pre-
venting convergence to the optimal path. A more common
remedial measure employed by most ACO algorithms is
uniform evaporation on all paths (Dorigo et al., 1996). In
the presence of evaporation, maintaining a trail requires
continued deposition. Since evaporation necessitates the
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reinforcement of positive pheromone, it raises the initial
bias level, on sub-optimal paths, that can be reverted by
quicker returns on a shorter path. At present, it is al-
most ubiquitously used in most applications (Bullnheimer
et al., 1999; Dorigo and Gambardella, 1997; Parpinelli
et al., 2002; Bandieramonte et al., 2010). In the literature,
opinion exists that evaporation is too slow to play an
important role in foraging among real ants (Bonabeau
et al., 1999); however, it is known to significantly improve
the performance of artificial ant algorithms (Dorigo and
Stützle, 2004; Deneubourg et al., 1990).

There is a large literature on ACO and its applications
(see Dorigo and Stützle (2004) and references therein), but
relatively less literature on the mathematical properties of
ACO algorithms (Stützle and Dorigo, 2002; Dorigo and
Blum, 2005; Blum, 2005). Gutjahr (2006) proposed a lim-
iting process to derive a continuous-time (deterministic)
differential equation from the ensemble behavior of the
stochastic ant system.

One of the first ACO algorithms to provide an analysis of
equilibrium states was EigenAnt, proposed in Jayadeva
et al. (2013). EigenAnt showed the local stability of
the equilibrium corresponding to the shortest path, and
presented simulation results indicating robustness of this
stability to parameter choices. The approach of Gutjahr
(2006) was used in Iacopino and Palmer (2012) to derive
a continuous model, while EigenAnt, which is a discrete
model, was proposed independently in Jayadeva et al.
(2013), based on similar considerations.

The robust stability properties of the EigenAnt dynamics
presented in Jayadeva et al. (2013) motivate the question
of existence of other dynamics that could display simi-
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lar, or more interesting, behavior. In this context, the
present paper studies continuous-time generalizations of
the EigenAnt dynamics proposed in Jayadeva et al. (2013),
as well as the “binary chain” dynamics proposed in Ia-
copino and Palmer (2012), establishing several theoretical
results that were not established formally in the cited pa-
pers, notably global convergence as well as speed of conver-
gence results. It is established herein that continuous-time
EigenAnt dynamics converge globally to an equilibrium
corresponding to the shortest path, i.e. from initial states
corresponding to arbitrary initial pheromone concentra-
tions on a set of paths to an equilibrium state in which all
the pheromone is concentrated on the shortest path. To
the best of our knowledge, this is the first such proof of
global stability of the continuous-time ensemble behavior
(= ODE) of any ACO algorithm. It is also important to
emphasize that this global convergence is shown to be
robust, in the sense that it does not depend on choices
of two parameters (deposition and evaporation rates) of
the algorithm.

This paper is organized as follows. The models proposed
are presented in section 2. A general local stability result is
derived in section 3. The particular case of the EigenAnt
model is studied in section 4, for which the asymptotic
behavior is completely described, leading, in particular, to
a global stability proof and an estimate of the speed of
convergence. Simulations in section 5 show that some of
the new variants exhibit faster convergence, demonstrating
promise for use in ACO algorithms. The longer and more
technical proofs are available online in Bliman et al.
(2014).

2. EIGENANT DYNAMICS AND ITS VARIANTS

The analogue of the discrete-time EigenAnt dynamics
proposed in Jayadeva et al. (2013) is defined in continuous-
time, on the positive orthant Rn

+, as follows:

ẋ = γ

(

−αI+
β

∑

i xi

D

)

x, (1)

where α, β, γ are scalar positive constants, x = (x1, . . . , xn)
in R

n, D = diag(d1, . . . , dn) a diagonal matrix, with
diagonal entries satisfying:

d1 ≥ d2 ≥ · · · ≥ dn > 0 (2)

In the ant colony optimization context, the dis are recipro-
cals of path lengths Li, i = 1, . . . , n, where n paths connect
a source node to a destination node and xi represents
pheromone concentration on path i. In other words, (1) is
interpreted by saying that ants deposit pheromone on path
i, at rate βdi(xi/

∑

i xi), and it evaporates at rate α. The
number d1 is the reciprocal of the shortest path length and,
when the state trajectory x(t) converges to a multiple of
the vector e1, this indicates that the pheromone is totally
concentrated on the shortest path: in other words, the ants
have ‘found’ the shortest path. For more details on this
model in the ACO context, see Jayadeva et al. (2013).

The following class of models, that generalizes the EigenAnt
model, is considered in the present paper:

ẋ = g (−αI+ βφ(x)D) x, (3)

where φ : Rn → R is a real-valued differentiable function
subject to the following assumptions:

A1 As x → 0, φ(x) → ∞.
A2 φ(x) is nonincreasing with respect to each component

of x.
A3 φ(x) → 0 as ‖x‖ → ∞.

and g is a scalar increasing differentiable function such
that g(0) = 0, and for which we define, for any diagonal
matrix diag{a1, . . . , an},

g(diag{a1, . . . , an}) := diag{g(a1), . . . , g(an)}. (4)

Note that the choice φ(x) := 1/(
∑

i xi) satisfies the
assumptions A1,A2, A3 and, with g(x) = γx, converts
(3) into the EigenAnt dynamics. As regards assumption
A1, note that the choice of φ as the sum, that defines the
EigenAnt dynamics, is such that φ(0) is not defined, thus
this system is only studied in R

n\{0}. The following neural
network-like variant, which use the hyperbolic tangent
function and the scalar gain γ > 0, and corresponds to
g = γ tanh is also studied below:

ẋ = γ (tanh (−αI+ βφ(x)D))x (5)

3. LOCAL ASYMPTOTIC STABILITY OF THE
EQUILIBRIA

We study the local stability behavior of the generalized
model (3) in R

n\{0}, in the special case when di 6= dj for
i 6= j. First, the equilibria of the generalized model (3) are
described.

It is easy to see that, under the assumptions on φ and g
made in Section 2, (3) admits exactly n nonzero equilib-
rium points, x∗

i which, denoting the ith canonical vector
in R

n by ei, are, for i = 1, . . . , n, uniquely given by:

x∗

i = µiei, where µi is such that (6a)

φ(µiei) =
α

βdi
(6b)

For the specific choice of φ as the sum function, and g(x) =
x, the left hand side of (6b) evaluates to 1/µi, yielding the

explicit solution for the equilibria as βdi

α
ei, i = 1, . . . , n, as

in the discrete-time case studied in Jayadeva et al. (2013).

In regard to the equilibrium point analysis just carried
out, it should be emphasized that the proposed models all
have the desired equilibrium point x∗

1 (which corresponds
to the shortest path) as one possible equilibrium, amongst
others. The stability analysis, to be presented in what
follows, shows that only the desired equilibrium is stable,
while all others are unstable. Curiously, such analyses are
virtually absent from the ACO literature, exceptions being
the papers of Jayadeva et al. (2013); Iacopino and Palmer
(2012). In fact, convergence to spurious equilibria is often
reported in the literature and a specific analysis of this is
given in a particular case in Iacopino and Palmer (2012), in
which the ACO dynamics actually possess spurious stable
equilibria.

The stability properties of the equilibria are derived in the
following theorem.

Theorem 1. Assume that g is a scalar increasing differen-
tiable function such that g(0) = 0 and that φ satisfies the
assumptions A1 through A3 given in Section 2. Then

• The equilibrium points of (3) are exactly the n
distinct solutions x∗

i = µiei, i = 1, . . . , n of (6).
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• If di 6= dj for i 6= j, the equilibrium point x∗

1 is

locally asymptotically stable provided that ∂φ
∂x1

(x∗

1) <
0, while all other equilibria x∗

i , i = 2, . . . , n, are
unstable.

Proof. The proof is based on the analysis of the eigenval-
ues of the linearized system. For details, please see Bliman
et al. (2014). 2

4. CONVERGENCE PROPERTIES OF
CONTINUOUS-TIME EIGENANT DYNAMICS

This section is devoted to a complete analysis of the
asymptotic behavior of the EigenAnt dynamics (1). It is
clear that any component of the state x which departs
initially from zero remains zero at any time. Thus, with
no loss of generality, we assume positive initial conditions,
i.e.:

∀i = 1, . . . , n, xi(0) > 0. (7)

The results given below (Theorems 5 and 7) extend the
results of Theorem 1, for EigenAnt dynamics. Several
technical results (Propositions 2 to 4) are needed in order
to prove the main global stability result, Theorem 5.

Proposition 2. (Invariance of the positive orthant). For any
i = 1, . . . , n, for any t ≥ 0, xi(t) > 0.

In particular, defining

S(t) :=
∑

i

xi(t) , (8)

one has S(t) > 0 for any t ≥ 0.

Proof. The components of the solutions of (1) are contin-
uous with respect to time, and start from positive values.
As long as every component is positive, one has

ẋi + αxi =
βdi

∑

j xj

xi > 0 , (9)

whence:
xi(t) ≥ xi(0)e

−αt > 0 (10)

and the conclusion holds. 2

Proposition 3. (Upper and lower bounds of sum of states).
The following bounds hold:

βdn
α

≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤
βd1
α

. (11)

In particular, S is uniformly bounded from above, and
1

S
is locally integrable on R

+ (12a)

lim
t→+∞

∫ t

0

ds

S(s)
= +∞ (12b)

Proof. Summing the n expressions in (1) over i yields

Ṡ = −αS + β
∑

i

di
xi

S
. (13)

Thus
βdn ≤ Ṡ + αS ≤ βd1 , (14)

and therefore by integration:

βdn
α

+

(

S(0)−
βdn
α

)

e−αt ≤ S(t)

≤
βd1
α

+

(

S(0)−
βd1
α

)

e−αt (15)

from which (11) is deduced. Function S(t), being positive
and continuous, takes on values bounded away from zero
on any compact set of R+. Due to (11), it is bounded away
from zero on the whole set R+, and this in particular yields
(12a). Finally, identity (12b) is deduced from the fact that
S is uniformly bounded from above. 2

Proposition 4. For any trajectory of system (1), define 1

F (x) :=
∑

i

xi(0)

βdi
eβdix . (16)

Then,

• F : [0,+∞) → [
∑

i
xi(0)
βdi

,+∞) is increasing and

invertible;
• for any t > 0,

∫ t

0

ds

S(s)
= F−1

(

F (0) +
1

α
(eαt − 1)

)

(17a)

S(t) = e−αtF ′

(∫ t

0

ds

S(s)

)

(17b)

= e−αtF ′

(

F−1

(

F (0) +
1

α
(eαt − 1)

))

(17c)

• S(t) admits a (positive and finite) limit for t → +∞.

Proof. Instead of summing up the n identities in (1) as
was done before, we first integrate them, to obtain

xi(t) = xi(0)e

∫

t

0

(

βdi
S(s)

−α
)

ds
. (18)

Summing up now gives

S(t) =
∑

i

xi(t) = e−αt
∑

i

xi(0)e
βdi

∫

t

0

ds
S(s) , (19)

that is

S(t) = e−αtF ′

(∫ t

0

ds

S(s)

)

,

which is the first identity in (17b). One deduces

eαt =
1

S(t)
F ′

(∫ t

0

ds

S(s)

)

, (20)

and by integration over [0, t], t > 0,

F

(∫ t

0

ds

S(s)

)

− F (0) =
1

α
(eαt − 1) . (21)

This gives (17a), and subsequently (17c).

Observing equation (17c) shows that S(t) admits a limit
for t → +∞, and this finishes the proof. 2

The following theorem, which describes the overall asymp-
totic behavior, shows that if di < d1, then the ith compo-
nent of the vector x tends to zero, whereas, if d1 = d2 =

· · · = dj , then the sum of the components
∑j

k=1 xj(t) tends
to a fixed value as t tends to infinity. Thus, in particular,
it establishes global stability of the equilibrium set cor-
responding to the shortest path, without the assumption
di 6= dj for i 6= j, thus generalizing the local stability result
of Theorem 1 for EigenAnt dynamics.

Theorem 5. (Global stability and asymptotic behavior).

For any solution of (1), for i such that di < d1:

lim
t→+∞

xi(t) = 0 . (22)

1 Note that F depends on the xi(0). This dependence is not made
explicit, for notational simplicity, since no confusion should arise.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7033



Moreover,

lim
t→+∞

S(t) = lim
t→+∞

∑

j : dj=d1

xj(t) =
βd1
α

. (23)

Proof. Available online in Bliman et al. (2014). 2

The remainder of this section is devoted to estimating
the speed of convergence to the equilibrium exhibited in
Theorem 5. We first provide a technical result (Proposition
6) and then state the key results in Theorem 7, which
fully describes the manner in which each component of the
state vector (= pheromone concentration) tends towards
its limit.

From now on, let n′ be the cardinality of the set {di : i =
1, . . . n}. We consider the positive numbers d′i, i = 1, . . . n′

such that d1 = d′1 > d′2 > · · · > d′n′ and {d′i : i =
1, . . . n′} = {di : i = 1, . . . n}. In particular (as d′1 = d1):

d′i = max{di : di < d′i−1}, i = 1, . . . , n′ (24)

Proposition 6. Denote

σi =
1

βdi

∑

j : dj=d′

i

xj(0), i = 1, . . . , n′ (25)

With F defined as in (16), the following asymptotic
expansions hold:

F−1(y) =
1

βd′1
logA, where

A =





1

σ1



y − σ2

(

y

σ1

)

d′
2

d′
1
(1 + ε(y))







 (26a)

∫ t

0

ds

S(s)
= F−1

(

F (0) +
1

α
(eαt − 1)

)

=
1

βd′1
logB, where

B =





1

σ1





eαt

α
− σ2

(

eαt

ασ1

)

d′
2

d′
1
(1 + ε(t))







 (26b)

where (26b) holds along any solution of (1) and where ε,
in both (26a) and (26b), denotes a function which vanishes
when its argument goes to +∞.

Proof. Available online in Bliman et al. (2014). 2

Theorem 7. (Convergence rates). The following expansions
hold, for t → +∞, for any trajectory of the system (1):

xi(t) =

xi(0)





1

ασ1
−

σ2

σ1

(

1

ασ1

)

d′
2

d1

e
−α

(

1−
d′
2

d1

)

t

(1 + ε(t))





if d′i = d1 (27a)

xi(t) = xi(0)

(

1

ασ1

)

d′
i

d1

e
−α

(

1−
d′
i

d1

)

t

(1 + ε(t))

if d′i < d1 (27b)

S(t) =

n
∑

i=1

xi(t)

=
βd1
α

− βσ2(d1 − d′2)

(

1

ασ1

)

d′
2

d1

×

e
−α

(

1−
d′
2

d1

)

t

(1 + ε(t)) (27c)

where d1 and d′2 are respectively the inverse of the shortest
and second shortest paths (counted without multiplicity);
and where the quantities σ1 and σ2 are defined as functions
of the initial conditions in (25).

Proof. Formulas (27a) and (27b) are obtained by putting
(26b) in (18). The value of the sum S(t) is then deduced
by summing up over all indices i. It turns out that the
terms xi(t) whose index i is such that di < d′2 can be
omitted, as they lead to quantities of faster convergence.
The expressions xi(0) are finally removed with the help of
(25), to obtain formula (27c). 2

Theorem 7 establishes that the components xi which do
not correspond to the shortest path (i.e. di < d1) go to zero
with a decay rate proportional to d1−di. On the contrary,
the components xi for which di = d1 converge to the value
xi(0)
ασ1

> 0: in other words, the proportion limt→+∞ xi(t)
limt→+∞ xi′ (t)

is

equal to xi(0)
xi′ (0)

for any paths i, i′ whose lengths are equal

to the length of the shortest path. Finally, the convergence
occurs at a speed proportional to the difference between
the shortest and the second shortest paths.

5. SIMULATIONS OF EIGENANT DYNAMICS AND
ITS VARIANTS

This section presents simulations of the various models (3)
studied above. The example we use is a ten-path two-node
shortest path problem, meaning that two nodes are con-
nected by ten paths of lengths varying from 1 to 10. This
means that diagonal matrix D, which contains reciprocals
of path lengths, is given by diag(1, 1/2, 1/3, . . . , 1/9, 1/10).
The initial condition is chosen as (0.1, 0.2, 0.3, . . . , 0.9, 1.0),
which is referred to in ACO terminology as an initial
bias (largest state or pheromone concentration on longest
path).

The parameter choices are α = β = 1 and γ = 10 for (1).
We also study model (5) with α = β = 0.1 and γ = 10.
We also consider the latter model with an “infinite gain”,
namely

ẋ = γ (sgn (−αI+ βφ(x)D))x (28)

with α = β = 0.1 and γ = 0.5. Finally, for the purposes of
comparison, we will also show simulations with the choice
φ = 1/max{x}, which sets a theoretical limit on speed
of convergence, although it cannot be legitimately used in
the shortest path problem.

For all simulations, integration is carried out for a horizon
of 1000 or 2000 steps, as specified in the figure captions,
using the forward Euler method with stepsize = 0.02.

Two other choices of dynamics, namely, model (5) and
(28), both with φ =

∑

, are shown in Figures 2 and figure
3, respectively. Both show fast convergence to the stable
equilibrium corresponding to the shortest path. For the
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choice of g = tanh, it should be observed that the speed of
convergence depends on the parameter γ which was chosen
as 10 in Figure 2. On the other hand, in the case of choice
of g as a signum, it is necessary to set the “external” gain
γ = 1 in order to limit the chattering, visible in Figure
3, due to numerical integration of the discontinuous right
hand side of (28).

Given these choices of gain γ described above, a com-
parison of the trajectories of the pheromone concentra-
tion (x1) corresponding to the shortest path for the six
possible dynamical systems introduced above, is given in
Figure 4. From the simulations, it appears that model (3)
with g(x) = x and with g(x) = tanh(x) have virtually
indistinguishable behavior for the same choices of α, β, φ
and corresponding choices of γ. For these models, using
φ = max has a clear edge over those using φ =

∑

, in
terms of speed of convergence and also in terms of not
displaying an initial decrease in value. The model (28)
using the signum function can be regarded as an “infinite”
gain version of model (5), and therefore converges the
fastest of all, although the solution displays chattering.
Furthermore, while it is natural to attempt to simulate
(28) in order to speed up the convergence, the results
should be interpreted cautiously in view of the fact that
well-posedness of the initial value problem for equation
(28) has not yet been established.

Finally, in order to illustrate (23) of Theorem 5, path
lengths are chosen as (1, 1, 1, 2, 3, 4, . . . , 8) ∈ R

10, which

means that the sum of the components
∑3

k=1 xk(t), as t
tends to infinity, should tend to the fixed value βd1/α,
which is 1, in this case, since d1 = 1, α = β. This is
confirmed by the simulation shown in figure 5.
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Fig. 1. Convergence to equilibrium corresponding to the
shortest path, using EigenAnt dynamics (1), for a ten-
path two-node shortest path problem described at the
beginning of Section 5.

6. CONCLUDING REMARKS

This paper provided the first rigorous proof of global sta-
bility and asymptotic behavior of the continuous-time ver-
sion of the discrete-time EigenAnt dynamics. This is im-
portant because the discrete-time partially asynchronous
version of the EigenAnt dynamics has been explored by
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Fig. 2. Convergence to equilibrium corresponding to the
shortest path, using hyperbolic tangent dynamics (5)
with φ =

∑

i xi, for a ten-path two-node shortest path
problem described at the beginning of Section 5.
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Fig. 3. Convergence to equilibrium corresponding to the
shortest path, using signum dynamics (28), with φ =
∑

i xi, for a ten-path two-node shortest path problem
described at the beginning of Section 5.

Jayadeva et al. (2013) and shown to have essentially sim-
ilar behavior (see Jayadeva et al. (2013) for details on
the discrete-time partially asynchronous implementation).
The implication is that the discrete-time analogs of the
continuous-time variants proposed and studied in this
paper, which can converge faster than EigenAnt, should
also be useful for ACO applications, which are typically
discrete-time and partially asynchronous. The property of
robustness of stability with regard to parameter choices
(α, β) observed in Jayadeva et al. (2013) has been given a
firm theoretical basis in the continuous-time case studied
in the present paper. The EigenAnt algorithm was aptly
referred to as a bare bones algorithm in Ezzat et al. (2014),
which successfully incorporated it into the larger setting
of ACO metaheuristics for solving multiple node shortest
path problems such as the sequential ordering problem.
An important reason for the bare bones terminology is
that EigenAnt has only two parameters and, crucially,
because of the global convergence property for all param-
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Fig. 4. Comparisons of speed of convergence of the
state corresponding to the shortest path, for models
(1),(5),(28), for the choices φ =

∑

i xi,max{xi}.
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1 = d1 = d2 = d3 > d4 > · · · > d10, illustrating
Theorem 5, equation (23), namely, that the sum of
states x1, x2, x3 tends to the constant (βd1)/α = 1.

eter choices, which was shown in the present paper, its
performance is not critically dependent on these parame-
ters. Thus, this paper has introduced a new class of bare
bones algorithms that generalize EigenAnt and should
therefore be of interest in a larger class of applications
than the simple (paradigmatic) one that was subjected to
a complete theoretical analysis herein.

ACKNOWLEDGMENT

This research was supported by Inria (France), CNPq
(Brazil), and the Dept. of Science and Technology (India).

REFERENCES

Bandieramonte, M., Di Stefano, A., and Morana, G.
(2010). Grid jobs scheduling: the alienated ant algo-
rithm solution. Multiagent Grid Syst., 6(3), 225–243.

Bliman, P.A., Bhaya, A., Kaszkurewicz, E., and Jayadeva
(2014). Convergence results for continuous-time dynam-

ics arising in ant colony optimization. Technical report,
ArXiv.

Blum, C. (2005). Ant colony optimization: Introduction
and recent trends. Physics of Life Reviews, 2, 353–373.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999).
Swarm Intelligence:from Natural to Artificial Systems.
Oxford University Press US.

Bullnheimer, B., Hartl, R., and Strauss, C. (1999). An
improved Ant System algorithm for the Vehicle Routing
Problem. Annals of Operations Research, 89, 319–328.

Deneubourg, J.L., Aron, S., Goss, S., and Pasteels, J.M.
(1990). The self-organizing exploratory pattern of the
argentine ant. Journal of Insect Behaviour, 3, 159–168.

Dorigo, M. and Blum, C. (2005). Ant colony optimization
theory:A survey. Theoretical Computer Science, 344,
243–278.

Dorigo, M. and Gambardella, L. (1997). Ant Colony Sys-
tem: A Cooperative learning approach to the Traveling
Salesman Problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53–66.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant
System: Optimization by a colony of cooperating agents.
IEEE Transactions Systems, Man, Cybernetics-Part B,
26(1), 29–41.
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