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Abstract: Human Adaptive Mechatronics (HAM) considers operator’s individual skills and preferences. 

Operator’s performance is time-varying and stochastic. Modifying the static parameters of the Human-

Machine Interface (HMI) the human operator’s skill level and dynamic characteristics can be passively 

adapted.  Knowledge-based approach is applied to change the machine parameters. This leads to a novel 

Skill Adaptive Control (SAC), which is described in the paper. A trolley crane system is simulated to test 

how operators can benefit of SAC. Four operators were using the system.   
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1. INTRODUCTION 

Despite the trend of increasing automation degree in control 

systems, human operators are still needed in applications 

such as aviation and surgery, or machines used in remote 

mining, forestry, construction, and agriculture, just to name a 

few.  

 

Traditionally, the human-machine systems are designed so 

that the machine is “constant” for every operator.  Human 

Adaptive Mechatronics (HAM) approach, on the other hand, 

focuses on individual design, taking into account the skill 

differences and preferences of the operators (Suzuki et al., 

2005; Harashima and Suzuki, 2006; Suzuki, 2010;  Tervo, et 

al., 2010; Tervo and Koivo, 2010; Suzuki et al., 2013).  

 

 In general, human performance is time-varying and sto-

chastic. In addition, the human operator adapts to the changes 

in the Human-Machine Interface (HMI) and he/she also 

learns while repeating similar tasks several times. Therefore, 

the tuning of the HMI should be done little-by-little. That is, 

once the skill/performance for the current settings has been 

evaluated, the optimal parameters for the HMI can be 

determined.  

 

In this paper passive adaptation of the human operator’s skill 

level and dynamic characteristics is realized by modifying the 

static parameters of HMI. Passive adaptation refers to a pro-

perty, where the machine adapts itself to the human 

operator’s skill level or control characteristics, but does not 

actively intervene to the human operator’s control signal (in 

contrast to the active adaptation). There are only few 

examples of implemented passive adaptation systems in the 

literature, which can be interpreted as relevant for the scope 

of this paper. For teleoperation, robust control tuning based 

on the human frequency response estimation is proposed by 

Rauhala and Koivo (2001). The human frequency response is 

estimated based on several executions of a given task. Then 

robust control tuning techniques are applied for designing the 

control law for teleoperation. Adaptation of the strength of 

the assistance given by an assistance system based on the 

human skill level is described by Yoneda et al. (1999). The 

assist control force is calculated based on the human control 

model. 

 
In this paper a knowledge-based approach is applied to 

change the machine parameters. The human model/skill eval-

uation is based on the statistical learning model concept 

discussed in (Palmroth, L. et al., 2009). The task is repeated 

and the statistical learner model evaluates the average 

performance of the human operator using the statistical 

distribution of data gathered. Fuzzy Inference System (FIS) is 

then used to determine the best possible HMI parameters. 

The procedure leads to a novel Skill Adaptive Control (SAC) 

algorithm. Mathematical model of the operator is not needed. 

  

The power of the SAC algorithm is shown in an experiment, 

where a crane-like system is operated by four operators. For 

the test subjects the algorithm converged towards a value 

where the task performance is rather constant.  

 

The paper is organized as follows. Section 2 gives a general 

description of the HMI adaptation system. Section 3 presents 

knowledge-based or heuristic methods, such as Fuzzy 

Inference Systems (FISs), which are used to adapt the HMI 

with respect to the human skill and dynamic characteristics. 

In Section 4 the Skill Adaptive Control (SAC) algorithm is 

developed. Section 5 presents the experimental setup and 
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results of the SAC algorithm, when four operators are 

carrying the task. 

 

2. DESCRIPTION OF THE HMI ADAPTATION SYSTEM 

 

The idea of the HMI adaptation is to make changes in the 

control interface to better suit the operator’s current skill 

level. The objective in the tuning is to prevent the unwanted 

phenomenon, such as oscillation due to the insufficient skill 

level of a human operator. Simultaneously the aim is to maxi-

mize the overall long term performance of the system. In a 

typical industrial system, such as a gantry crane, the HMI 

adaptation includes the phases shown in Fig.1. The structure 

shown in the figure is based on the framework for intelligent 

coaching of machine operators (Palmroth, L. et al., 2009). 

 

The first step is intent recognition. This can be performed 

using several methods. One that has been particularly 

successful with working machines is based on Hidden 

Markov Model (HMM) work cycle modeling (Aulanko and 

Tervo, 2009; 2010). In this paper the intent represents the 

objective of the work and the associated task sequence to be 

performed to accomplish the objective.  

 

 

Fig. 1. A flowchart of the phases in a general HMI adaptation 

system. 

 

Once the intent of the operator has been recognized, the 

objective of the work is known. The next step is to evaluate 

or model the task execution. This step is called skill 

evaluation. Skill evaluation in this paper is based on the 

statistical learning model concept. In principle, the task 

performance is evaluated using a Generalized Extreme Value 

(GEV) distribution (Kotz and Nadarajah, 2000) for each 

performance variable describing human skill. The statistical 

learner model evaluates the average performance of the 

human operator using the cumulative GEV distribution. The 

higher the cumulative GEV score is, the higher skill 

evaluation results are obtained. The parameters of the GEV 

distribution can be updated adaptively after each task 

execution to improve the skill evaluation.  

 

After the skill evaluation, the next phase in the human skill  

adaptive HMI is to determine whether the HMI parameters 

are optimal for the operator’s skill level or not. This can be 

done using analytic methods (Tervo and Koivo, 2010) or 

knowledge-based methods. This paper focuses on the latter. 

 

In the knowledge-based approach, the parameter optimization 

is done an expert system which performs reasoning about the 

suitability of the current parameter setup ξ based on the skill 

evaluation results Z 

 

ξ
* = HeuristicOptimization(Z, ξ),  (1) 

 

where “HeuristicOptimization” is for example a Fuzzy 

Inference System described in Section 4. This approach is 

feasible especially, when no accurate, mathematical human 

model is available. 

 

In parameter adaptation phase the parameters in vector ξ
*
 are 

used to define a new parameter setup. The method of 

adaptation depends on the application. One can use, for 

example an iterative learning rule to update the parameter 

setup of the machine. However, the adaptation should be 

slow enough so that the usability of the system would not 

suffer. The concept of Just Noticeable Differences can be 

used to determine the maximum allowable change in the 

parameters (Igarashi, 2009). 

 

The human skill adaptive HMI system can be seen as a block 

diagram shown in Fig. 2. The human controller tries to 

control the system based on the desired states (the intent) and 

the measured states (the observations given by the human 

senses). The human operator has a skill level, which can be 

evaluated based on the recognized intent, measured states, 

and the control actions the operator introduced.  It is assumed 

that the HMI is parameterized so that the properties of the 

machine can be set up to correspond the operator’s skill level. 

The parameter setup might include for example the 

sensitivity of the movements, the maximum allowable speed 

for different movements, and the configuration of the rate 

limiters (ramps) designed to smoothen the accelerations of 

the controlled elements. 

 

 
 

Fig. 2. Block diagram of the HMI adaptation system. The 

human operator controls the machine by using the control 

levers and buttons in the HMI. These are recorded in the 

machine’s database. In the figure,   describes human control 

commands. 

 

3. KNOWLEDGE-BASED APPROACH FOR HMI 

ADAPTATION 
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Knowledge-based or heuristic methods, such as Fuzzy 

Inference Systems, can be used to adapt the HMI with respect 

to the human skill and dynamic characteristics. This approach  

is useful, when no accurate human model is available. In this 

case, the adaptation is based on similar reasoning as in the 

Intelligent Coaching System (ICS) structure (Palmroth, L. et 

al., 2009). Here, FISs are used to tune the HMI parameters, 

because they provide convenient means to imitate the 

reasoning of a human expert. The theoretical foundation of 

the fuzzy logic and FISs has been well established, see for 

example (Zadeh, 1965; Kandel, 1991; Yen and Langari, 

1999). There exist widely used tools available to design and 

implement FISs.  

 

When tuning purely the sensitivity δ (or the gain k) of the 

HMI, the reasoning system becomes very simple. Consider a 

Sugeno-type FIS (Yen and Langari, 1999), where the inputs 

are the probability of high performance 

(PrHighPerformance), the current gain of the HMI 

(CurrentGain), and the information whether the operator uses 

the full control range available to perform the task 

(FullControlUse). The FullControlUse can be defined as 

 

 tmax
FullControlUse  ,

max

t


       (2) 

where  is the control signal and 
max is the maximum 

available control signal. 

 

The first input describes the probability to obtain high 

performance with respect to any performance or skill index. 

The index value can be interpreted as probability, because the 

skill indices are scaled using the statistical learner model 

described by Palmroth et al. (2009).  The output of the FIS is 

GainSuggestion, which describes whether the gain k of the 

HMI should be increased, decreased or kept constant. The 

output has then three constant membership functions: 

DECREASE (value -1), OK (value 0), and INCREASE 

(value 1). Assume a two-level partition for each input 

variable (LOW and HIGH), where the membership functions 

can be of any type. Now, the knowledge-based tuning can be 

realized simply by using the following rule base: 

 

1. If (PrHighPerformance is not HIGH) and (CurrentGain is    

       not LOW) then (GainSuggestion is DECREASE) 

2. If (PrHighPerformance is not HIGH) and (CurrentGain is  

not HIGH) and (FullControlUse is HIGH) then 

(GainSuggestion is INCREASE) 

3. If (PrHighPerformance is HIGH) then (GainSuggestion is 

       OK) 

 

The aim of the first rule is to decrease the gain k, if the low 

performance is due to too high a gain value. The second rule 

increases the gain, if the low performance is due to too low a 

gain value. In addition, it is required that the operator uses 

full control range until the gain is increased. This requirement 

is made, because if full controls are not used, the operator 

could increase the performance by using a larger control lever 

motions. If the performance is already at a high level, no 

modifications for the current HMI are needed. 

 

The defuzzification of the FIS is performed using the 

weighted sum method, because it does not normalize the sum 

of the outputs to unity. If a new data point does not fit to the 

rule base well, all outputs obtain low weights. The better the 

data point fits to the FIS rule base, the higher the confidence 

of the decision and thus the higher changes in the gain can be 

allowed. 

 

By using the knowledge-based approach, the suggestion how 

the gain k of the HMI should be modified during the n
th

 trial, 

is given by 

 

   ,  ,n n nk k FIS k  Z    (3) 

where Z is the vector containing the inputs for the FIS and 

0 1  . The parameters more suitable for the current 

performance level of the operator are obtained using 

 

*  ,n n nk k k      (4) 

 

In (3), the FIS gives values in between -1 and 1, which can be 

interpreted as the relative change in the gain during the n
th

 

trial. When multiplied with the current value
nk , the absolute 

change is obtained. The scalar  can be used to control the 

parameter adjustment. 

  

4. SKILL ADAPTIVE CONTROL (SAC) 

ALGORITHM 

 

The tuning method proposed above finds the parameters of 

the HMI, which are suitable for the current dynamics of the 

human operator with respect to the tuning criteria. However, 

the human operator adapts to the change in the machine’s 

dynamics as well as to the change in the HMI. Thus, the 

solution given by the tuning method cannot be considered 

global. That is, if the parameters of the HMI are changed, the 

human adapts himself/herself to the changed system. As a 

result, the human operator’s dynamics   changes and the HMI 

parameters may not anymore fulfill the design criteria. 

Therefore, a recursive approach called Skill Adaptive Control 

(SAC) algorithm is developed. The idea is that the solution 

for the HMI tuning problem given by the tuning method is 

used only as a direction to which the parameters should be 

changed. The magnitude of the parameter change depends on 

the amount of the improvement to be achieved due to the 

change. 

 

For simplicity, the following assumptions are made for 

realizing the SAC algorithm. It is assumed that the operator 

performs K trials of a well-defined control task. Moreover, 

the task the operator executes is the same in the trials, and the 

system dynamics remain constant. Thus, the plan of the 

operator is known beforehand. After performing K trials, the 

operator’s skills are evaluated using a knowledge-based 
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method using (1). Finally the parameters of the true HMI are 

adapted to better suit the operator’s current skill level. By 

using the new parameters, K trials are performed again and so  

forth. 

 

Once the optimal parameters for the current dynamics/skills 

of the human operator have been found, the parameters need 

to be adjusted so that the future performance is maximized. 

The parameters are adjusted by using the following iterative 

adaptation rule 

 
*

min( 1) max(min( ( ) ( ( ) ( )), ( ))i i i i i   ξ ξ ξ ξ ξ  (5) 

 

where γ (0 ≤ γ ≤ 1) is the learning rate, i is the iteration index, 

and 
min max( , )ξ ξ are the minimum and the maximum allowed 

values for the parameters. In the knowledge-based approach, 

too small a K enables high variation of the average 

performance and thus variance in the decision of the 

reasoning system. 

 

The proposed implementation of the SAC can be put in an 

algorithmic form as follows: 

 

1. Initialization: Set i = 1 and the initial values of (1)ξ . 

2. Data gathering: Perform K trials of a given task. 

3. Identification/evaluation: Evaluate the performance with 

respect to the chosen criterion and update the associated GEV 

distributions. 

4. Optimization: Solve (1) to obtain the optimal system 

parameters * ( )iξ for the current operator dynamics. 

5. Adaptation: Adjust the current system parameters to better 

suit the operator’s skill level by using (5). 

6. Termination: Set 1i i  and go back to step 2. 

Alternatively, the algorithm can be terminated if a predefined 

stopping criterion is fulfilled. 

 

It is worthwhile to mention that updating the parameters of 

the statistical learning model in step 3 leads to a self-tuning 

system. 

5.  EXPERIMENTAL SETUP AND RESULTS 

  

In order to test the SAC algorithm, a trolley crane simulator 

is set up. The simulator was developed in Tervo (2010) and 

Tervo and Koivo (2010) to test the concept of human skill 

adaptive control. In the simulator, the dynamics of the trolley 

crane system are simulated in Simulink and the visualization 

is done with Matlab. 

 

The structure of the trolley crane system is shown in Fig. 3. 

The rope is assumed to be stiff and its mass is assumed to be 

zero. The trolley can be moved in a horizontal direction by 

introducing the control force F. The trolley is assumed to be 

affected by linear friction force proportional to the velocity of 

the trolley. 

 

Mathematical model of the trolley crane system becomes  

  

2

2

( ) cos( ) sin( )

cos( ) sin( ) 0

M m z bz mL mL F

mL z mL mgL

   

  

     


  
        (5) 

 

 
 

Fig. 3. A free-body diagram of the trolley crane system. A 

load with weight m is connected to a trolley with weight M 

via a rope. The position in the horizontal direction is denoted 

by z, the length of the rope by L, and the rope angle by  . 

Control force is F. The friction coefficient is b. 

 

The physical parameters of the trolley crane used in the 

simulator experiment are given in Table 1. A linearized 

model of (5) was also used. 

 

Table 1. Physical parameters of the trolley crane model 

 

 
 

The objective of the experiment is to tune the gain k (that is, 

sensitivity δ) of the control interface using the SAC 

algorithm. In the task, the objective was to transfer the cart 

from initial point (−0.75 m) to the terminal point (0.75 m) 

and then dampen the swinging of the load. The initial values 

for ,  , and z   were zero. The task was defined to be 

finished, when the cart position is close enough to the 

terminal point (a predefined threshold), and the values of cart 

speed, rope angle, and angular velocity were under 

predefined thresholds. During the experiment, the values of 

,  ,  , and z z    were recorded into a file. In addition, the 

values of the operator’s control signal δ were recorded into 

the same file. In the identification, only the signals of δ and z 

were used, because the industrial cranes do not have rope 

angle   measurement available. 

 

The starting time of the task was randomized so that the 

human operator could not see the simulation visualization 

until a random time interval was passed. In this way the 

human operator delay from perception to action can be 

estimated accurately. For simplicity, the rope length was kept 
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constant during the task execution. For each experiment, the 

human operator performed the task 150 times, having 

unlimited rest time after each 10 trials. Every second of the 

trials was chosen for training data, and the rest for validation 

data. Thus, the training and the validation data sets consisted 

of 75 trials of the task. The data from the training and the 

validation sets were averaged. The effect of learning was not 

considered because the human operator had practiced the task 

over 100 times before the data were recorded. 

 

The SAC algorithm is run by four operators, who knew the 

purpose of the experiment. The first operator, OP1 performed 

the SAC iteration starting from a very low initial value of 

gain kn (kn = 0.6) as well as from a high initial value (kn = 8). 

The other operators OP2, OP3 and OP4 performed the 

iteration starting only from low initial value (kn = 0.6). 

Operator OP1 is a very experienced on this task. Operator 

OP2 is a beginner, with the least amount of practice. 

Operators OP3 and OP4 are rather experienced but with less 

training than OP1. 

 

Since the knowledge-based approach is heuristic, it cannot be 

guaranteed that the resulting parameters are optimal. 

However, sometimes the knowledge-based method is the 

only option. The first task in the knowledge-based approach 

is to define the performance (or skill) index. In this case, the 

overshoot percentage was chosen 

 

 

 
PO  100  1 ,

tmax z t

z T

 
   

 
  (6) 

where  z t is the cart position and T is the task execution 

time. The overshoot percentage was scaled into a “skill 

index” by using the statistical learner model approach. In 

practice, this is done by fitting a GEV distribution for the 

average PO values (average of each and the GEV probability 

density distribution are shown in Fig. 4 (on the left). As can 

be seen, the fit is not perfect but on the other hand, there were 

only 150 data points available (30 samples per subject). The 

right hand side plot in the figure is the complement 

cumulative distribution of the fitted GEV, which is used to 

obtain the normalized skill index value. 

 

GEV generalized extreme value distribution 

 
 

Fig. 4. The performance/skill evaluation using to the over-

shoot percentage and GEV. 

 

Now the inputs for the parameter adaptation FIS in (3) can be 

defined as PrHighPerformance (Overshoot-based index), 

CurrentGain kn(i), and FullControlUse (2). The operator-wise 

values for PO, as well as the corresponding skill index 

PrHighPerformance, and the other inputs of the parameter 

adaptation FIS are shown in Fig. 5.  

 

The input membership functions of the FIS are shown in Fig. 

6. Note that the third input (FullControlIse) is in practice 

binary-valued. The suggestion with respect to the current 

gain value are computed using (3), with α = 0.12. 

 

 
 

Fig. 5. The overshoot percentage (PO), the performance 

evaluation index (PrHighPerformance) according to the scale 

shown in Fig. 5, the current value of the gain
nk , and 

FullControlUse. 

 

 

 
Fig. 6. The input membership functions of the parameter 

adaptation FIS. 

 

Looking at PO and gain kn in Fig. 5 (left-hand side), one can 

see clear evidence of convergence, especially in gain. Recall 

that in knowledge-based approach one cannot expect a clean 

global optimum. 

5. CONCLUSIONS 

A knowledge-based approach for the HMI adaptation system 

for machine work is proposed. The method exploits the skill 

evaluation and the current parameter in a FIS, which 

performs reasoning whether the current parameters are 

suitable or not.  

 

In order to adapt the system to the human operator’s dynamic 

characteristics, the Skill Adaptive Control (SAC) algorithm is 

proposed. The algorithm consists on data gathering, 

modeling, optimization and adaptation steps. Basically the 
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data gathering is done by letting the human operator to 

perform the task several times, after which the rest of the 

steps are taken. Then the algorithm starts again from the 

beginning. The SAC algorithm is implemented in a trolley 

crane simulator, and an experiment involving several 

operators is performed. 

 

The knowledge-based approach is based only on statistical 

performance evaluation and heuristic rules. Thus, it cannot be 

guaranteed that the human operation would fulfill any closed-

loop performance criteria after parameter adjustment.  

 

Although the results obtained in the trolley crane experiment 

are promising, before the implementation of the method in a 

real-life system, the usability challenges should considered. 

In general, a significant challenge in the development of the 

human adaptive systems is to keep the system “familiar” for 

the human operator. Even the human adaptive system should 

(at least to some extent) fulfill the basic principles for the 

direct manipulation systems such as predictability, overall 

controllability and transparency. The usability issues are left 

for future research. 

 

REFERENCES 

 

Aulanko, S. and Tervo, K. (2009). Modeling and evaluation   

     of harbor crane work. IEEE International Conference on    

     Systems, Man, and Cybernetics (SMC2009), San Antonio,    

     USA, 869–874. 

 
Aulanko, S. and Tervo, K. (2010). Modeling and analysis of  

      harbor crane work efficiency using work cycle recogni-  

      tion. IEEE/ASME International Conference on Advanced  

      Intelligent Mechatronics, Montreal, Canada, 61-66.         

 
Harashima, F. and Suzuki, S. (2006). Human adaptive  

      mechatronics - Interaction and intelligence. IEEE    

      International Workshop on Advanced Motion Control,   

      Istanbul, Turkey, 1– 8. 

 

Igarashi, H. (2009). Subliminal calibration for machine  

      operation. IEEE Annual Conference on Industrial  

      Electronics, 4268–4273.   

 

Kandel, A. (1991). Fuzzy expert systems. CRC Press,  

      London.  

 

Kotz, S.  and Nadarajah, S. (2000). Extreme value distribu- 

      tions: Theory and applications. World Scientific, Sin- 

      gapore. 

 

Palmroth, L., Kalevi Tervo, and Aki Putkonen (2009).  

      Intelligent coaching of mobile working machine oper-  

      ators. IEEE 13th International Conference on Intelli- 

     gent Engineering Systems,   Barbados, 149-154. 

 

Rauhala, P. and Koivo, H.N. (2001). Modeling and robust  

       control of a telemanipulator, International Symposium On         

       Intelligent Automated Manufacturing (IAM’2001), Dubai,   

       United Arab Emirates, March 17-21, 2001. 

Suzuki, S. (2010). Human Adaptive Mechatronics. IEEE  

        Industrial Electronics Magazine 4, no 2, 28-35. 

 

Suzuki, S. and Harashima, F. (2006). Assist control and its  

       tuning method for haptic system. IEEE International  

       Workshop on Advanced Motion Control, 374–379. 

 

Suzuki, S., Igarashi, H., Kobayashi, H., Yasuda, T. and  

       Harashima, F. (2013). Human Adaptive Mechatronics  

       and Human-System Modelling. International Journal of  

       Advanced Robotic Systems 10, Article number 152.  

 

Suzuki, S., Tomomatsu, N., Harashima, F. and Furuta, K.  

       (2005). Skill evaluation based on state-transition model  

       for human adaptive mechatronics (HAM). IEEE Annual  

       Conference on Industrial Electronics Society, volume 1,  

       641–646. 

 

Suzuki, S., Kurihara, K., Furuta, K., Harashima, F. and Pan,  

       Y. (2005). Variable dynamic assist control on haptic  

       system for human adaptive mechatronics. IEEE Confe-  

       rence on Decision and Control, and the European  

       Control Conference, Seville, Spain, 4596-4601. 

 

Tervo, K. and Koivo, H. (2010). Towards Human Skill Adap- 

      tive Manual Control. International Journal of Advanced 

      Mechatronic Systems 2, no. 1/2, 46–48.   

 

Tervo, K., Palmroth, L. and Koivo, H. (2010). Skill Evalua- 

       tion of Human Operators in Partly Automated Mobile 

       Working Machines. IEEE Transactions on Automation 

       Science and Engineering 7, no. 1, 133–142. 

 

Tervo, K., Palmroth, L., and Putkonen, A. (2009). A hierar- 

      chical fuzzy inference method for skill evaluation of  

      machine operators. IEEE/ASME International Confe-  

      rence on Advanced Intelligent Mechatronics, Singapore, 

      136–141.  

 

Yen, J. and Langari, R. (1999). Fuzzy Logic - Intelligence,      

       Control, and Information. Prentice Hall, Upper Saddle   

       River, NJ, USA.  

 
Yoneda, M.  F. Arai, T. Fukuda, K. Miyata, and T. Naito.   

        (1999). Assistance system for crane operation with  

        haptic display operational assistance to suppress round   

        payload swing. IEEE International Conference on  

        Robotics and Automation, volume 4, 2924–2929. 

 
Zadeh, L. A. (1965). Fuzzy sets. Information and Control 8,  

        no. 3, 338-353. 

 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3544


