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Abstract: In this paper, a new control method for a probabilistic Boolean network (PBN)
is proposed. A PBN is widely used as a model of complex systems such as gene regulatory
networks. For a PBN, the structural control problem is newly formulated. In this problem,
a discrete probability distribution appeared in a PBN is controlled by the continuous-valued
input. In the proposed solution method, using a matrix-based representation for a PBN, the
problem is approximated by a linear programming problem. Furthermore, design of real-time
pricing systems of electricity is considered as an application. By appropriately designing real-
time pricing systems, electricity conservation is achieved. The effectiveness of the proposed
method is presented by a numerical example on real-time pricing systems.
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1. INTRODUCTION

Analysis and control of complex systems such as power
systems and gene regulatory networks are one of the
fundamental problems in control theory of large-scale
systems. In order to deal with such a complex system, it is
one of the appropriate methods to approximate a complex
system by a discrete abstract model (see, e.g., Tabuada
(2009)). On the other hand, human decision making is
also complex, and is modeled by a discrete model (see,
e.g., Adomi et al. (2010)). Thus, in analysis and control of
complex systems and those with human decision making,
a discrete model plays the important role.

Several discrete models such as Petri nets, Bayesian net-
works, automata-based models, Boolean networks have
been proposed so far (see, e.g., Jong (2002)). In this paper,
we focus on a Boolean network (BN) (Kauffman (1969)).
In a BN, the state is given by a binary value (0 or 1), and
the dynamics are expressed by a set of Boolean functions.
In addition, since the behavior of complex systems is fre-
quently stochastic by the effects of noise, it is appropriate
that a Boolean function is randomly decided at each time
among the candidates of Boolean functions. Thus, a prob-
abilistic BN (PBN) has been proposed in Shmulevich et al.
(2002a). In this paper, we adopt a probabilistic Boolean
network (PBN) as a discrete model.

For a given PBN, we consider the structural control prob-
lem (see, e.g., Kobayashi and Hiraishi (2013); Shmule-
vich et al. (2002b); Xiao and Dougherty (2007)). In this
problem, a discrete probability distribution is controlled.
For example, in Kobayashi and Hiraishi (2013), a discrete
probability distribution at each time is selected among
a given set. In this paper, we consider fine control of a
discrete probability distribution by using the continuous-
valued input. For a newly formulated problem, we pro-

pose an approximate solution method. First, a matrix-
based representation of BNs proposed in Kobayashi and
Hiraishi (2014) is extended to that of PBNs. Next, using
the obtained representation, the original problem is ap-
proximated by a linear programming (LP) problem.

Furthermore, as one of the applications, we consider a
design method of real-time pricing systems (see, e.g.,
Borenstein et al. (2002); Roozbehani et al. (2010); Samadi
et al. (2010); Vivekananthan et al. (2013)). A real-time
pricing system of electricity is a system that charges
different electricity prices for different hours of the day and
for different days, and is effective for reducing the peak
and flattening the load curve. In the existing methods,
the price at each time is given by a simple function with
respect to power consumptions and voltage deviations and
so on (see, e.g., Vivekananthan et al. (2013)). To the best
of our knowledge, decision making of customers has not
been explicitly considered so far. Thus, decision making
of customers is modeled by a PBN, and the problem of
finding the price at each time is formulated as a structural
control problem. The price corresponds to the continuous-
valued input. By a numerical example, the effectiveness of
the proposed method is presented.

Notation: For the n-dimensional vector x = [ x1 x2

· · · xn ]� and the index set I = {i1, i2, . . . , im} ⊆
{1, 2, . . . , n}, define [xi]i∈I := [ xi1 xi2 · · · xim ]�.
For two matrices A and B, let A⊗B denote the Kronecker
product of A and B. In addition, for q vectors y1, y2, . . . , yq
and the index set J = {j1, j2, . . . , jp} ⊆ {1, 2, . . . , q},
define

⊗
j∈J yj := yj1 ⊗ yj2 ⊗ · · · ⊗ yjp .

2. PROBABILISTIC BOOLEAN NETWORK

First, we explain a (deterministic) Boolean network (BN).
A BN is defined by
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1(k + 1) = f (1)([xj(k)]j∈N (1)),

x2(k + 1) = f (2)([xj(k)]j∈N (2)),
...

xn(k + 1) = f (n)([xj(k)]j∈N (n)),

(1)

where x := [ x1 x2 · · · xn ]� ∈ {0, 1}n is the
state, and k = 0, 1, 2, . . . is the discrete time. The set
N (i) ⊆ {1, 2, . . . , n} is a given index set, and the function

fi : {0, 1}|N (i)| → {0, 1}1 is a given Boolean function
consisting of logical operators such as AND (∧), OR (∨),
and NOT (¬). If N (i) = ∅ holds, then xi(k+1) is uniquely
determined as 0 or 1.

Next, we explain a probabilistic Boolean network (PBN)
(see Shmulevich et al. (2002a) for further details). In a
PBN, the candidates of f (i) are given, and for each xi,
selecting one Boolean function is probabilistically indepen-
dent at each time. Let

f
(i)
l

(
[xj(k)]j∈N (i)

l

)
, l = 1, 2, . . . , q(i)

denote the candidates of f (i). The probability that f
(i)
l is

selected is defined by

c
(i)
l := Prob

(
f (i) = f

(i)
l

)
. (2)

Then, the following relation

q(i)∑
l=1

c
(i)
l = 1 (3)

must be satisfied. Probabilistic distributions are derived
from experimental results. Finally, Ni, i = 1, 2, . . . , n are
defined by

Ni :=

q(i)⋃
l=1

N (i)
l .

We show a simple example.

Example 1. Consider the PBN in which Boolean functions
and probabilities are given by

f (1) =

{
f
(1)
1 = x3(k), c

(1)
1 = 0.8,

f
(1)
2 = ¬x3(k), c

(1)
2 = 0.2,

f (2) = f
(2)
1 = x1(k) ∧ ¬x3(k), c

(2)
1 = 1.0,

f (3) =

{
f
(3)
1 = x1(k) ∧ ¬x2(k), c

(3)
1 = 0.7,

f
(3)
2 = x2(k), c

(3)
2 = 0.3,

where q(1) = 2, q(2) = 1 and q(3) = 2 hold, N1 = {3},
N2 = {1, 3}, and N3 = {1, 2} hold, and we see that the
relation (3) is satisfied. Next, consider the state trajectory.
Then, for x(0) = [ 0 0 0 ]�, we obtain

Prob
(
x(1) = [ 0 0 0 ]� | x(0) = [ 0 0 0 ]�

)
= 0.8,

Prob
(
x(1) = [ 1 0 0 ]� | x(0) = [ 0 0 0 ]�

)
= 0.2.

In this example, the cardinality of the finite state set
{0, 1}3 is given by 23 = 8, and we can obtain the discrete-
time Markov chain by computing the transition from each
state. �

3. PROBLEM FORMULATION

In this section, we formulate the control problem studied in
this paper. In the standard control problem, the control in-
put is added to a given Boolean function. For example, the
control input is added as follows: f (i)([xj(k)]j∈N (i) , u(k)),

u(k) ∈ {0, 1}1. In general, we assume that the value of the
control input can be arbitrarily given. However, there is
a possibility that there exists no control input satisfying
this assumption. In control of gene regulatory networks, a
structural control (or structural intervention) method for
PBNs has been proposed so far (see, e.g., Kobayashi and
Hiraishi (2013); Shmulevich et al. (2002b)). For example,
in Kobayashi and Hiraishi (2013), the discrete probabilistic
distribution is switched at each time. In other words, the
discrete probabilistic distribution is selected among the set
of candidates. On the other hand, in complex systems such
as gene regulatory networks, power systems, and social
systems, it will be desirable to consider a weaker control
method. Thus, in this paper, we consider fine control of
probabilities in a discrete probabilistic distribution. This
control method can be regarded as a kind of structural
control methods.

In the structural control problem formulated here, we

assume that the probability c
(i)
l in (2) is given by

c
(i)
l (k) = a

(i)
l + b

(i)
l ui(k), (4)

where u := [ u1 u2 · · · un ]� ∈ [u1, u1] × [u2, u2] ×
· · · × [un, un] ⊆ Rn is the control input. The set [ui, ui]
expresses the input constraint, and ui, ui ∈ R1 are given

in advance. Of course, we must find u(k) such that c
(i)
l (k)

satisfies (3). In addition, the dimension of the control input
may be less than the dimension n of the state.

Under the above preparation, we consider the following
problem.

Problem 1. Suppose that for the PBN with (4), the lower
and upper bounds of input constraints ui, ui, and the
initial state x(0) = x0 are given. Then, find a control input
sequence u(0), u(1), . . . , u(N−1) ∈ [u1, u1]×[u2, u2]×· · ·×
[un, un] minimizing the following cost function

J =E

[
N−1∑
k=0

{Qx(k) +Ru(k)}+Qfx(N)

∣∣∣∣∣ x(0) = x0

]
, (5)

where Q,Qf ∈ R1×n, R ∈ R1×m are weighting vectors
whose element is a non-negative real number, and E[·|·]
denotes a conditional expected value.

The linear cost function (5) is appropriate from the follow-
ing reason: For a binary variable δ ∈ {0, 1}, the relation
δ2 = δ holds. That is, in the cost function, the quadratic
term such as x2

i (k) is not necessary.

According to the result in Kobayashi and Hiraishi (2012),
Problem 1 can be rewritten as a polynomial optimization
problem. However, in the case of large-scale PBNs, it will
be difficult to solve a polynomial optimization problem. In
this paper, an approximate solution method for Problem
1 is proposed.
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Hereafter, the condition x(0) = x0 in the conditional
expected value is omitted.

4. DERIVATION OF APPROXIMATE SOLUTION
METHOD

In this section, we derive an approximate solution method
for Problem 1. First, a matrix-based representation for
PBNs is derived. The obtained representation is an exten-
sion of a matrix-based representation for BNs proposed in
Kobayashi and Hiraishi (2014). Next, using the matrix-
based representation, an approximate solution method for
Problem 1 is derived.

4.1 Matrix-Based Representation for PBN

As preparations, some notations are defined. Binary vari-
ables x0

i (k) and x1
i (k) are introduced. If xi(k) = 0 holds,

then x0
i (k) = 1 holds, otherwise x0

i (k) = 0 holds. If
xi(k) = 1 holds, then x1

i (k) = 1 holds, otherwise x1
i (k) = 0

holds. Then, the equality x0
i (k) + x1

i (k) = 1 is satisfied.
Using x0

i (k) and x1
i (k), Consider transforming the BN (1)

into a matrix-based representation.

First, we explain the outline of a matrix-based represen-
tation by using a simple example.

Example 2. Consider the following BN:{
x1(k + 1) = ¬x2(k),
x2(k + 1) = x1(k),
x3(k + 1) = x1(k) ∧ ¬x2(k),

where N (1) = {2}, N (2) = {1}, and N (3) = {1, 2}. Then,
we can obtain the truth table for each xi(k+1). See Table
1 and Table 2. From these truth tables, we can obtain the
following matrix-based representation:[

x0
1(k + 1)

x1
1(k + 1)

]
=

[
0 1
1 0

]
︸ ︷︷ ︸
A(1)

[
x0
2(k)

x1
2(k)

]
,

[
x0
2(k + 1)

x1
2(k + 1)

]
=

[
1 0
0 1

]
︸ ︷︷ ︸
A(2)

[
x0
1(k)

x1
1(k)

]
,

[
x0
3(k + 1)

x1
3(k + 1)

]
=

[
1 1 0 1
0 0 1 0

]
︸ ︷︷ ︸

A(3)

⎡
⎢⎢⎣
x0
1(k)x

0
2(k)

x0
1(k)x

1
2(k)

x1
1(k)x

0
2(k)

x1
1(k)x

1
2(k)

⎤
⎥⎥⎦ ,

where each element of A(i), i = 1, 2, 3 is given by a binary
value (0 or 1), and a sum of all elements in each column
of A(i) is equal to 1. �

Such a matrix-based representation has been proposed in
also Cheng and Qi (2009); Cheng et al. (2011). However,
in the representation proposed in Cheng and Qi (2009);
Cheng et al. (2011), the matrix with the size of 2n × 2n

must be manipulated (n is the dimension of the state).
In the matrix-based representation proposed in Kobayashi
and Hiraishi (2014), the matrix with the size of 2 ×
2|Ni| are manipulated for each xi. Thus, the proposed
representation enables us to model a BN using matrices
with the smaller size.

Table 1. Truth tables for xi(k + 1), i = 1, 2.

x2(k) x1(k + 1)

0 1

1 0

x1(k) x2(k + 1)

0 0

1 1

Table 2. Truth table for x3(k + 1).

x1(k) x2(k) x3(k + 1)

0 0 0

0 1 0

1 0 1

1 1 0

Consider a general case. Define

xi(k) :=

[
x0
i (k)

x1
i (k)

](
=

[
1− xi(k)
xi(k)

])
.

Then, the matrix-based representation for xi(k+1) is given
by

xi(k + 1) = A(i)
⊗
j∈Ni

xj(k), (6)

where A(i) ∈ {0, 1}2×2|Ni|
and

⊗
j∈Ni

xj(k) ∈ {0, 1}2|Ni|
.

The matrix A(i) can be derived from the following proce-
dure.

Procedure for deriving A(i) in (6):

Step 1: Derive a truth table for xi(k + 1).

Step 2: Based on the obtained truth table, assign xi(k +
1) = 0 or xi(k + 1) = 1 for each element of

⊗
j∈Ni

xj(k).

Step 3: Express the assignment obtained in Step 2 by

a row vector. Denote the obtained row vector by A
(i) ∈

{0, 1}1×2|Ni|
.

Step 4: Derive A(i) as

A(i) =

[
11×2|Ni| −A

(i)

A
(i)

]
.

Next, consider extending the matrix-based representation
of BNs to that of PBNs. First, using a simple example, we
explain the outline.

Example 3. Consider the PBN in Example 1. Using the
matrix-based representation, the expected value of xi(k+
1) can be obtained as

E[x1(k + 1)] =

(
0.8

[
1 0
0 1

]
︸ ︷︷ ︸
A

(1)
1

+0.2

[
0 1
1 0

]
︸ ︷︷ ︸
A

(1)
2

)[
E[x0

2(k)]
E[x1

2(k)]

]
,

E[x2(k + 1)] =

[
1 1 0 1
0 0 1 0

]
︸ ︷︷ ︸

A
(2)
1

⎡
⎢⎢⎣
E[x0

1(k)x
0
3(k)]

E[x0
1(k)x

1
3(k)]

E[x1
1(k)x

0
3(k)]

E[x1
1(k)x

1
3(k)]

⎤
⎥⎥⎦ , (7)
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E[x3(k + 1)] =

(
0.7

[
1 1 0 1
0 0 1 0

]
︸ ︷︷ ︸

A
(3)
1

+0.3

[
1 0 1 0
0 1 0 1

]
︸ ︷︷ ︸

A
(3)
2

)

×

⎡
⎢⎢⎣
E[x0

1(k)x
0
2(k)]

E[x0
1(k)x

1
2(k)]

E[x1
1(k)x

0
2(k)]

E[x1
1(k)x

1
2(k)]

⎤
⎥⎥⎦ ,

where the condition x(0) = x0 is omitted. In this repre-

sentation, the matrices A
(1)
1 and A

(1)
2 correspond to the

Boolean functions f
(1)
1 and f

(1)
2 , respectively. In a simi-

lar way, A
(2)
1 , A

(3)
1 , and A

(3)
1 correspond to the Boolean

functions f
(2)
1 , f

(3)
1 , and f

(3)
2 , respectively. �

In general, using the matrix-based representation, the
expected value of xi(k + 1) can be obtained as

E[xi(k + 1)] =

⎛
⎝q(i)∑

l=1

c
(i)
l (k)A

(i)
l

⎞
⎠⊗

j∈Ni

E[xj(k)], (8)

where A
(i)
l ∈ {0, 1}2×2|Ni|

and
⊗

j∈Ni
xj(k) ∈ {0, 1}2|Ni|

.

The matrix A
(i)
l can be derived from the above procedure.

4.2 Reduction to a Linear Programming Problem

Using the matrix-based representation (8), consider trans-
forming Problem 1. First, Problem 1 can be rewritten as
the following problem:

Problem 2. Suppose that for the PBN with (4), the lower
and upper bounds of input constraints ui, ui, and the
initial state x(0) = x0 are given. Then, find u(0), u(1), . . . ,
u(N − 1) minimizing the cost function (5) subject to (3),
(8), and the input constraint.

In a similar way to Problem 1, Problem 2 is rewritten
as a polynomial optimization problem. In this paper, we
focus on the structure of

⊗
j∈Ni

E[xj(k)], and derive the
relaxed problem for Problem 2. The relaxed problem is
a linear programming (LP) problem, and can be solved
faster than a polynomial optimization problem.

First, we show an example.

Example 4. Consider the matrix-based representation ob-
tained in Example 3. We remark that the discrete prob-
abilistic distribution for each xi is independent. Then, in
(7), we can obtain

E[x0
1(k)x

0
3(k)] + E[x0

1(k)x
1
3(k)]

=E[x0
1(k)](E[x0

3(k)] + E[x1
3(k)])

=E[x0
1(k)].

In a similar way, we can obtain

E[x1
1(k)x

0
3(k)] + E[x1

1(k)x
1
3(k)] =E[x1

1(k)],

E[x0
1(k)x

0
3(k)] + E[x1

1(k)x
0
3(k)] =E[x0

3(k)],

E[x0
1(k)x

1
3(k)] + E[x1

1(k)x
1
3(k)] =E[x1

3(k)].

In addition,

E[x0
1(k)x

0
3(k)] + E[x0

1(k)x
1
3(k)] + E[x1

1(k)x
0
3(k)]

+E[x1
1(k)x

1
3(k)] = 1

holds. The obtained equalities can be used as constraints
in the relaxed problem. �

Next, consider a general case. Define

zi(k) :=
⊗
j∈Ni

E[xj(k)] ∈ [0, 1]2
|Ni|

.

Then, (8) can be rewritten as

E[xi(k + 1)] =

⎛
⎝q(i)∑

l=1

a
(i)
l A

(i)
l

⎞
⎠ zi(k)

+

⎛
⎝q(i)∑

l=1

b
(i)
l A

(i)
l

⎞
⎠wi(k) (9)

where wi(k) := ui(k)zi(k) ∈ [0, 1]2
|Ni|

. The relation
between E[xi(k)] and zi(k) is given by

E[xj(k)] = Cjzi(k), j ∈ Ni, (10)

where the matrix Cj ∈ {0, 1}2×2|Ni|
can be derived in a

similar to Example 4. Let z
(j)
i (k) and w

(j)
i (k) denote the

j-th element of zi(k) and wi(k), respectively. Then, we can
obtain

2|Ni|∑
j=1

z
(j)
i (k) = 1. (11)

From wi(k) := ui(k)zi(k), we can obtain

2|Ni|∑
j=1

w
(j)
i (k) = ui(k). (12)

In addition, we introduce the following constraints:

uizi(k) ≤wi(k)≤ uizi(k), (13)

0 ≤ zi(k) ≤ 1, (14)

0 ≤wi(k)≤ 1. (15)

For probabilities, we introduce the following constraint:

0 ≤ a
(i)
l + b

(i)
l ui(k) ≤ 1, l = 1, 2, . . . , q(i). (16)

Thus, we can obtain the following problem as a relaxed
problem of Problem 2.

Problem 3. Suppose that for the PBN with (4), the lower
and upper bounds of input constraints ui, ui, and the
initial state x(0) = x0 are given. Then, find u(0), u(1), . . . ,
u(N − 1) minimizing the cost function (5) subject to (3),
(9)–(16).

By a simple calculation, Problem 3 is reduced to an LP
problem. By solving Problem 3, we can evaluate the lower
bound of the optimal value of the cost function in Problem
3. In this paper, only an approximate solution method
is provided. However, since the control input is obtained
by solving an LP problem, the proposed solution method
using the matrix-based representation enables us to solve
the structural control problem for several classes of PBNs.
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Fig. 1. Illustration of real-time pricing systems.

5. APPLICATION TO DESIGN OF REAL-TIME
PRICING SYSTEMS

In this section, we consider a design method of real-time
pricing systems as an application of structural control of
PBNs. First, the outline of real-time pricing systems of
electricity is explained. Next, the PBN-based model of
real-time pricing systems is derived. Finally, a numerical
example is presented.

5.1 Outline

Fig. 1 shows an illustration of real-time pricing systems
studied in this paper. This system consists of one con-
troller and multiple electric customers such as commercial
facilities and homes. For an electric customer, we suppose
that each customer can monitor the status of electricity
conservation of other customers. In other words, the status
of some customer affects that of other customers. For
example, in commercial facilities, we suppose that the
status of rival commercial facilities can be checked by
lighting, Blog, Twitter, and so on. Depending on power
consumption, i.e., the status of electricity conservation,
the controller determines the price. If electricity conser-
vation is needed, then the price is set to a high value.
Since the economic load becomes high, customers conserve
electricity. Thus, electricity conservation is achieved. The
price does not depend on each customer, and is uniquely
determined.

5.2 Model

Consider modeling the set of customers as a PBN. The
number of customers is given by n. We assume that the
state of customer i ∈ {1, 2, . . . , n} is binary, and is denoted
by xi. The state implies

xi =

{
0 customer i conserves electricity,
1 customer i normally uses electricity.

The binary value of xi is determined by power consump-
tion of customer i. Let Di ⊆ {1, 2, . . . , n}, i = 1, 2, . . . , n
denote the set of customers, which affect to customer i.
In addition, we assume that there exists one leader in the
local area. The state of a leader is given by x1. Then, for
customer i, we consider the following PBN:

xi(k + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(i)
1 = 1, c

(i)
1 = a

(i)
1 + b

(i)
1 u(k),

f
(i)
2 = 0, c

(i)
2 = a

(i)
2 + b

(i)
2 u(k),

f
(i)
3 = xi(k), c

(i)
3 = a

(i)
3 + b

(i)
3 u(k),

f
(i)
4 = g(i)([xj(k)]j∈Di

),

c
(i)
4 = a

(i)
4 + b

(i)
4 u(k),

f
(i)
5 = x1(k), c

(i)
5 = a

(i)
5 + b

(i)
5 u(k),

where u(k) ∈ [u, u] ⊆ R1 is the control input correspond-

ing to the price. The Boolean functions f
(i)
1 and f

(i)
2 imply

that customer i forcibly conserves (or does not conserve)
electricity. In these cases, time evolution of the state does

not depend on the past state. The Boolean function f
(i)
3

implies that the state is not changed. The Boolean function

f
(i)
4 implies that the state of customer i is changed de-

pending on the other customers. The Boolean function f
(i)
5

implies that the state of customer i is changed depending
on the leader. Thus, decision making of customers can be
modeled by a PBN. The above Boolean functions are an
example of models for decision making. Depending on real
situations, we may use other Boolean functions.

For the PBN-based model obtained, we consider the fol-
lowing problem:

• find a time sequence of the price such that customers
conserve electricity as much as possible. However, it is not
desirable that the price is too high.

The condition that customers conserve electricity as much
as possible can be characterized by E[xi]. In other words,
power consumption is expressed by E[xi]. Hence, this
problem can be formulated as Problem 1 by appropriately
setting the weights Q and R.

5.3 Numerical Example

We present a numerical example. Parameters in the system
are given as follows: n = 8, D1 = {2, 8}, Di = {i−1, i+1},
i = 2, 3, . . . , 7, D8 = {1, 7}, a(i)1 = 0.1, b

(i)
1 = 0, a

(i)
2 = 0,

b
(i)
2 = 0.25, a

(i)
3 = 0.9, b

(i)
3 = −1, a

(i)
4 = 0, b

(i)
4 = 0.5,

a
(i)
5 = 0, b

(i)
4 = 0.25, u = 0.3, and u = 0.7. We remark

that under the input constraint u(k) ∈ [u, u], (3) and (16)
hold. The Boolean function g(i) is given by

g(i)([xj(k)]j∈Di
) = xj1(k) ∧ xj2(k) ∧ · · · ∧ xj|Di|

(k),

{j1, j2, . . . , j|Di|} = Di.

Parameters in Problem 1 are given as follows: x(0) =
[ 0 1 · · · 1 ]�, N = 15, Q = [ 1 · · · 1 ], and R = 5.

Next, we present the computation result. Fig. 2 shows
trajectories of E[xi(k)]. Fig. 3 shows trajectories of the
control input (the price). From these figures, we see that
E[xi] becomes small by fine adjustment of the control
input. In this example, the expected value of each state
converges to 0.32.

In addition, when the obtained control input is applied to
the system, the value of the cost function in Problem 1
was 79.4311. In the case of u(k) = 0.3 (i.e., the constant
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Fig. 2. The expected value of the state. Some states are
indistinguishable.
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Fig. 3. The obtained control input (price).

input), the value of the cost function in Problem 1 was
85.3581. In the case of u(k) = 0.7, the value of the cost
function in Problem 1 was 87.0247. From these values, we
see that the obtained control input is effective than trivial
control inputs. Of course, there is a possibility that the
obtained control input is not optimal for Problem 1.

Finally, we discuss the computation time for solving Prob-
lem 3. The computation time was 0.6 [sec], where we used
IBM ILOG CPLEX 11.0 as the LP solver. Thus, although
Problem 3 is an approximation of the original problem,
Problem 3 can be solved fast. It will be difficult to solve
the original problem (i.e., the polynomial optimization
problem) for this case by using MATLAB 32bit.

6. CONCLUSION

In this paper, we discussed the structural control prob-
lem for a probabilistic Boolean network (PBN). First,
the structural control problem was formulated. Next, an
approximate solution method was proposed. Finally, as
an application, we considered design of real-time pricing
systems of electricity. The proposed method provides us a
new control method for complex dynamical systems.

In future work, it is significant to evaluate the accuracy of
an approximation from the theoretical viewpoint.
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