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Abstract: In this paper the formation and trajectory tracking control problem for multi-agent
systems is presented. Initially, a control strategy for a group of holonomic robots is proposed.
The proposed control is extended to the nonholonomic case. The control scheme is based on
potential functions which make possible the design of decentralized formation control scheme
while avoiding agents collisions. The trajectory tracking is achieved defining leaders which
attract the formation to a desired trajectory. Furthermore, if at least two leaders are defined,
the formation orientation tends to a desired pose (for the planar case). Assuming that the
communication graph is always connected, a stability analysis using Lyapunov theory ensures
the minimization of the potential function and the trajectory tracking. The control strategies
are verified by simulation.
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1. INTRODUCTION

Formation control of multi-agent systems has received
significant attention from the control community due to its
wide variety of applications. Recent works show its appli-
cation in areas like naval engineering (Cui et al., 2010) and
aerospace engineering (Abdessameud and Tayebi, 2011).
Among several formation control strategies used, we can
mention the behavior-based (Antonelli et al., 2010), con-
sensus (Ren et al., 2007; Li et al., 2011), leader-following
(Tanner et al., 2004; Chen et al., 2010), group coordination
using passivity (Arcak, 2007; Franchi et al., 2011), virtual
structures (Beard and Hadaegh, 1998; van den Broek et al.,
2009) and potential function (Leonard and Fiorelli, 2001;
Hengster-Movrić et al., 2010).

For mobile robots formation control, the main objective
is to control each agent using neighbor information in a
decentralized control strategy. In this framework, most
of the existing results deal with holonomic mobile robots
(Pereira et al., 2009; Xiao and Wang, 2008; Tanner et al.,
2007). However, in practical applications, mobile robots
have to satisfy nonholonomic constraints.

The control design for nonholonomic systems is quite in-
volved, mainly due to the Brockett’s condition. Therefore,
for agents with nonholonomic constraints, the formation
control problem becomes more challenging.

In (Tanner et al., 2004), stability properties of forma-
tion of mobile agents based on leader-following are in-
⋆ This work was supported in part by CNPq and FAPERJ, Brazil.

vestigated. In (Dierks and Jagannathan, 2007) a com-
bined kinematic/torque control law is proposed for leader-
follower based formation control based on backstepping. In
(Mastellone et al., 2007), a decentralized control scheme
which achieves dynamic formation control and collision
avoidance for a group of nonholonomic robots with kine-
matic model is proposed. The collision avoidance strategy
is based on locally defined potential functions which can
take different shapes and only require each agent to detect
other objects in its neighborhood. In (Dong and Farrell,
2009), a decentralized feedback control of a group of non-
holonomic dynamic systems with uncertain parameters is
considered. The control scheme is based on consensus,
graph theory, and backstepping techniques. In (Gouvea
et al., 2010), an adaptive formation control for nonholo-
nomic mobile robots with unknown dynamic parameters
is proposed. The control scheme is based on a saturated
artificial potential function which allows a decentralized
formation control design including collision avoidance. In
(Consolini et al., 2008, 2009) a geometric approach for
the stabilization of a hierarchical formation of unicycles
with velocity and curvature constraints is proposed, and
a leader-following strategy is suggested. However, collision
avoidance is not considered. Furthermore, a drawback of
leader-following strategies is that it depends heavily on the
leader for achieving the goal and over-reliance on a single
agent in the formation may be undesirable, especially in
adverse conditions.

In this paper, we address the problem of coordinating
multiple mobile robots (holonomic and nonholonomic) to
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follow a specific trajectory while maintaining a rigid pre-
defined geometric formation with a desired orientation.
The dynamic model of each robot is assumed to be uncer-
tain. An adaptive control law based on potential functions
is proposed to achieve the desired geometric formation.
Introducing virtual leaders to the communication graph
and thus to the potential function, we can specify the
formation position in the inertial frame. Furthermor, for
an arbitrary number of virtual leaders the formation can
track a predefined trajectory, and with at least two virtual
leaders the formation orientation can be controlled.

2. PROBLEM FORMULATION

First, we present a team of N vehicles fully actuated and
modeled by a set of Euler-Lagrange equations:

Mi(zi) z̈i + Ci(zi, żi) żi = τi (1)

where zi ∈ IRn is the robot configuration, Mi(zi) ∈
IRn×n is the inertia matrix, Ci(zi, żi)żi ∈ IRn is the
centripetal/Coriolis force, τi ∈ IRn is the applied torques.

The well-known properties of dynamic model (1) are used
for the formation control design:

(P1) Mi(zi) is symmetric and positive definite.

(P2) Ṁi(zi)− 2Ci(zi, żi) is skew symmetric.
(P3) The robot dynamics is linearly parameterizable, i.e.,
Mi(zi)v̇i + Ci(zi, żi)vi = Yi(zi, żi, vi, żi) θ

∗
i where Yi(.)

is a regressor matrix and θ∗i is the parameter vector.

Now, consider a team of N nonholonomic mobile robots.
For i = 1, · · ·N , the dynamic model of each robot is
described by:

Mi(zi) z̈i + Ci(zi, żi) żi = Bi(zi) τi +AT (zi) λi (2)

A(zi) żi = 0 (3)

where A(zi) ∈ IRk×n characterizes the kinematic con-
straints, λi ∈ IRk is the constraint multipliers, Bi(zi) ∈
IRn×p is a known input matrix and p = n− k.

Defining Ri(zi) ∈ IRn×m such that A(zi)Ri(zi) = 0, one
can replace constraints (3) with the kinematic model

żi = Ri(zi) vi (4)

where vi ∈ IRm is the vector of pseudo-velocities. Consid-
ering that z̈i = Ri(zi)v̇i + Ṙi(zi)vi and substituting (4) in
(2), after some algebraic manipulation, the robot dynamic
model can be expressed as

MRi(zi) v̇i +RTi (zi)CRi(zi, żi) vi = RTi (zi)Bi(zi) τi (5)

where MRi(zi) = RTi (zi)Mi(zi)Ri(zi) and CRi(zi, żi) =

Mi(zi)Ṙi(zi) + Ci(zi, żi)Ri(zi).

The robot dynamic model (5) also satifies properties (P1)-
(P3) (Bloch et al., 1992).

The topology of information exchange among robots is
described by a graph (Biggs, 1994). Then, the N mobile
robots are represented as N vertices of a graph G :=
{V,E}, where V := {v1...vN} is the set of vertices that
represent the robots and E ⊆ V ×V is the set of edges that
define the neighborhood relationship among robots. Thus,
the set of neighbors of robot i is Ni := {j|eij = (vi, vj) ∈
E}. The available information for the controller of robot
i is only the states of robot i and robot j for j ∈ Ni. A
path of length r from robot i to robot j is a sequence of

r + 1 distinct vertices starting with i and ending with j
such that consecutive vertices are neighbors. If there is a
path between any two vertices of a graph G, then G is said
to be connected. A graph is undirected if the edges have
no orientation ((i, j) = (j, i) ∈ E).

In this paper, we assume that the formation graph is
connected and undirected.

The control objective is to drive the N agents to a
formation which minimizes

J =

N
∑

i=1

Ji +

m
∑

i

Jri(zi − zri), (6)

with

Ji =

N
∑

i,j∈Ni

Jij(zij) (7)

where m ≤ N is the number of virtual leaders, zri is the
virtual leader configuration, zij = zi − zj and Jij , Jri are
defined as follows (Leonard and Fiorelli, 2001):

Definition 1. The potential function Jij is a differen-
tiable, nonnegative function of the distance zij between
agents i and j, such that

(1) Jij(zij) → ∞ as ||zij || → ∞ and ||zij || → 0.
(2) Jij attains its unique minimum when agents i and j

are located at a desired relative position dij .

Definition 2. The tracking potential function Jri is a
differentiable, nonnegative function of the agent position
||zi|| such that

(1) Jri(zi − zri) → ∞ as ||zi|| → ∞.
(2) Jri attains its unique minimum for zi = zri.

Note that Jij defines the desired distances between the
neighbors while Jri defines the desired trajectory and the
formation orientation. Furthermore, the tracking potential
function Jri has to satisfy the following constraint:

dij = ||zri − zrj || (8)

where the chosen trajectories zri must be compatible with
the desired distances between robots dij defined in Jij .

In the planar case, similar to a planar rigid body, the
formation orientation can be defined by the vector zri−zrj.

3. FORMATION CONTROL OF DYNAMIC
HOLONOMIC ROBOTS

In this case, consider the planar position of N robots
with dynamic model (1). In order to explore the passivity
property (P2) of the dynamic model, the auxiliary error
function si and its derivative are defined:

si = żi − żdi ; ṡi = z̈i − z̈di (9)

where zdi is a desired kinematic state which ensures that
the tracking trajectory and desired formation are reached.
The control goal is si → 0 as t→ ∞.

Substituting (9) in (1),

Miṡi + Cisi = τi −Miz̈di − Ciżdi. (10)

The desired kinematic model is given by:

żdi =−kfi∇ziJ + żri i = 1, · · · ,m

żdi =−kfi∇ziJ i = m+ 1, · · · , N (11)
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where kfi is a positive constant.

Two formation control laws are proposed. First, a control
law based on neighbors velocities and relative positions
information is proposed. Later, the control law is extended
to the case where the neighbor velocities information is not
available.

3.1 Adaptive control using neighbour velocity information

Defining the linear parametrization (P3)

Yiθ
∗
i = −Miz̈di − Ciżdi, (12)

the following control law is proposed:

τi = Yiθi −KDisi. (13)

whereKDi is a positive constant. The closed-loop dynamic
(12), (13) and (10), is given by

Miṡi + (Ci +KDi)si = Yiθ̃i (14)

where θ̃i = θi − θ∗i is the estimation error.

The following adaptive law based on B-MRAC (Hsu and
Costa, 1990) is used:

θ̇i = −σθi − ΓiY
T
i si (15)

where Γi ∈ R
n×n is the adaptive gain matrix and σ is the

following projection factor:

σ =

{

0 ; se |θi| < Mθi or σeq < 0
σeq ; se |θi| ≥Mθi and σeq ≥ 0

(16)

where σeq = −θiΓiY Ti si/|θi|
2 andMθi > |θ∗i | is a constant.

The first result of paper is stated in the following theorem.

Theorem 1. Consider a group of N robots modeled by (1),
with binary adaptive control law (13) and m ≤ N virtual
leaders. For sufficiently large KDi and kfi and ||żr|| < lr
where lr is a constant, there exists a sufficient small α such
that:

• ||zi(t)− zri(t)|| → O(α) as t→ ∞ for i = 1, ...m
• all closed loop signals are uniformly bounded and
the multi-agent system tends asymptotically to some
constant formation corresponding to ∇zJ → O(α)

• For m ≥ 2 the formation orientation converges to the
orientation defined by the m virtual leaders.

Proof: Consider the following Lyapunov function:

2V =

N
∑

i=1

(sTi Misi + θ̃TΓ−1θ̃) + 2αJ(z). (17)

It can be shown that:

V̇ ≤ −sTKDs+ α[∇zJ ]
T ż (18)

where s = [sT1 · · · sTN ]T , z = [ zT1 ... zTN ]T , KD =

diag{KDi} and ∇zJ = [∇z1J
T ... ∇zNJ

T ]T . Rewriting
(9) in term of (11)

żi = si − kfi∇ziJ + żr
one has that

V̇ ≤ −sTKDs+ αeTf s− αeTfKfef + αeTf żr (19)

where ef = ∇zJ , Kf = diag{kfi} and

żr = [żTr1 · · · żTrm 0 · · · 0]T .

Then defining eT = [sT eTf ]

V̇ ≤ −eT
[

KD −(α/2)I
−(α/2)I αKf

]

e+ eT
[

0
αI

]

żr (20)

From the Schur complement of

K =

[

KD −(α/2)I
−(α/2)I αKf

]

one can concluded that K is definite positive if

αKf −
α2

4
K−1
D > 0

σm(KD) >
α

4σm(Kf )
(21)

which are satisfied for sufficiently small α.

Since ||żr|| < lr, it can be shown that V̇ ≤ 0 outside a Dr

domain given by:

Dr = {e : ||e|| ≤ lrα/σm(K)} (22)

For KD and Kf large enough and ||żr|| < lr, there exists α
such that ||e|| (and consequently ∇zJ) tends to a residual
set of order O(α).

Since ||zi − zri|| tends to a residual set of order O(α), for
m ≥ 2, the formation orientation converges to the desired
orientation with a residual error of order O(α).

3.2 Adaptive control without neighbour velocity information

Here, formation and tracking control is only based on
relative positions among neighbors. Similar to the previous
case, define a new linear parametrization:

Yiθ
∗
i = −Miz̈ri − Ciżdi. (23)

Then the following control law is proposed:

τi = Yiθi −KDisi. (24)

Combining equations (23), (24) and (10) we get:

Miṡi + (Ci +KDi) si = Yiθ̃i −Miz̈fi (25)

where θ̃i = θi − θ∗i is the estimation error and z̈fi =
−kfid[∇ziJ ]/dt.

Similar to the previous section, the adaptive law (15) based
on B-MRAC (Hsu and Costa, 1990) is used. The main
result is stated in the following theorem.

Theorem 2. Consider a group of N robots modeled by
(1), with binary adaptive control law given by (24) and
m ≤ N virtual leaders. For sufficiently large KD and Kf

and |żr| < lr, there exist constant α sufficiently small such
that

• |zi(t)− zri(t)| → O(α)) as t → ∞ for i = 1, ...m
• all closed loop signals are uniformly bounded and
the multi-agent system tends asymptotically to some
constant formation corresponding to ∇zJ → O(α).

• For m ≥ 2 the formation orientation converges to the
orientation defined by the m virtual leaders.

Proof: Considering Lyapunov function (17), one has
that:

V̇ ≤ −sTKDs− sTMz̈f + α[∇zJ ]
T ż (26)

where z̈f = [ zfi ... zfn ]. Rewriting z̈fi in term of żi,

z̈fi = −

[

∂2J

∂z1∂zi
, ...,

∂2J

∂2zi
, ...,

∂2J

∂zN∂zi

]

żi. (27)

and z̈f = Hż where H is the Hessian matrix, and noting
from (9) that żi = si − kfi∇ziJ + żr, one has that

V̇ ≤ −sTKDs+ sTMHż + α[∇zJ ]
T ż (28)

and
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V̇ ≤−sTKDs+ sTMHs− αsTMHKfef + sTMHżr +

+αeTf s− αeTfKfef + αeTf żr (29)

where ef = ∇zJ ,Kf = diag{Kfi} and żr = [żTr1 . ż
T
rm 0 . 0]T .

Furthermore,

V̇ ≤−[sT eTf ]

[

K̄D −1/2L(α)
−1/2L(α)T αKf

] [

s
ef

]

+

+[sT eTf ]

[

MH
αI

]

żr (30)

where K̄D = KD −MH , L(α) =MHKf − αI.

Since, from property (P1), |M | < σM where σM is a
positive constant and in a compact domain defined by
V ≤ c, for a arbitrary large c > 0, the Hessian Matrix
H is bounded by ||H || ≤ σH .

From Schur complement of matrix K

K =

[

K̄D −1/2L(α)
−1/2L(α)T αKf

]

the following condition such that K is definite positive is
obtained:

αKf −
1

4
L(α)T K̄D

−1
L(α) > 0. (31)

which is satisfied if

ασm(Kf )σm(K̄D) >
1

4α
σ2
ML(α) (32)

For α = σM (MHKf), one has that

σm(Kf )σm(K̄D) > 0. (33)

Thus, the condition is satisfied.

Defining e = [sT eTf ]
T , it can be shown that V̇ ≤ 0 outside

domain Dr given by:

Dr = {e : |e| ≤ σM (MH)/σm(K)lr} (34)

For KD and Kf large enough and ||żr|| < lr, there exists α
such that ||e|| (and consequently ∇zJ) tends to a residual
set of order O(α).

The residual set is given by V ≤ cr where cr = supDr
J . As-

suming that it is possible to approximate J quadratically
about an equilibrium configuration given by ∇zJ = 0, it
can be concluded that within the residual set, |e| is of the
same order.

Since ||zi − zri|| tends to a residual set of order O(α), for
m ≥ 2, the formation orientation converges to the desired
orientation with a residual error of order O(α).

4. DYNAMIC NONHOLONOMIC ROBOTS

Now consider a team of nonholonomic mobile robot (5).
For the unicycle case, one can define zTi = [xi yi ψi],
vTi = [ui ωi] and

Ri =

[

cos(ψi) 0
sin(ψi) 0

0 1

]

(35)

where xi and yi are the cartesian coordinates, ψi is the
robot orientation and ui, ωi are the linear and angular
velocities respectively.

For the kinematic model (4), it can be proposed a kine-
matic control vi = vdi, with vdi = [udi ωdi] (i = 1, ...,m),

udi =−kfiefi + ūri (36)

wdi = urikriēri + kwieψri + wri (37)

for the robots tracking the virtual leaders and (i = m +
1, ..., N)

udi =−kfiefi (38)

wdi =−kwieψfi (39)

for the others robots of formation, where efi = ∇ziJ
TRli

is the projection of ∇ziJ
T in nonholomic motion direc-

tion Rli = [cos(ψi) sin(ψi)]; eψri = sin(ψi − ψri) is the
orientation error of robot i with respect to its virtual
leader orientation, ēri = (zi−zri)TRni is the projection of
eri = (zi − zri), the relative position among robot i and it
virtual leader, in Rni = [− sin(ψi) cos(ψi)]

T , the space of
directions orthogonal to Rli and ūri = uri cos(ψri − ψi) is
the projection of velocity of a virtual leader in direction of
its follower. The configuration of each virtual leader zri is
defined by

zri(t) = zr1(t) + di(t) (40)

where zr1(t) = [ xr1(t) yr1(t) ψr1(t) ]T is the leader tra-
jectory defined by

żr1 =

[

cos(ψr1) 0
sin(ψr1) 0

0 1

]

vr1(t) (41)

where vTr1 = [uri wri] and uri, wri are the respective
linear and angular velocities of leader i. di(t) is used to
define the desired orientation of formation and would be
chosen to obey the geometric pattern defined by potential
function.

Since, for the dynamic model, the robot velocities can be
not defined instantly, it is defined the auxiliary error

si = vi − vdi. (42)

Substituting (42) in (5), one has that

MRiṡi +RTi CRisi = RTi Biτi −MRiv̇di −RTi CRivdi (43)

The following dynamic control law is proposed:

τi = (RTi Bi)
−1(Yiθi −KDisi). (44)

where Yiθ
∗
i =MRiv̇di+R

T
i CRivdi is the linear parametriza-

tion, and θ̃i = θi − θ∗i is the parameter estimation error.

Replacing (44) in (43), one has that

MRiṡi + (RTi CRi +KDi) si = Y iθ̃i. (45)

In order to estimate θ, the adaptive law (15) is used.

The main result is stated in the following Theorem.

Theorem 3. Consider a group of N robots modeled by
(2), with binary adaptive control law given by (44) and
following m ≤ N virtual leaders. For sufficiently large
KDi,kfi,kwi and kri, and assuming |żr| < lr, for some
positive constant lr, then there exists α such that

• |zi(t)− zri(t)| → O(α) as t→ ∞ for i = 1, ...m
• all the closed loop signals are limited and a forma-
tion corresponding to residual value ∇J = O(α) is
achieved asymptotically.
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• For m ≥ 2 the formation orientation converges to the
orientation defined by the m virtual leaders.

Proof: Considering the Lyapunov candidate function

V =

N
∑

i=1

1

2

(

sTi MRisi + θ̃TΓ−1θ̃
)

+ αJ(z)

+α

m
∑

i=1

(

1− cos(ψri − ψi) +
kri
2
ē2ri

)

+ α

N
∑

i=m+1

1

2
e2ψfi,

(46)

one can concluded that:

V̇ ≤ −sTKDs+ α[∇zJ ]
T ż + αeTψrwr − αeTψrw̄

+αēr
TKr ˙̄er + αeψf w̃ − αeψf ψ̇f

(47)

where s = [sT1 · · · sTN ]T , KD = diag{KDi}, ∇zJ =
[∇z1J

T · · · ∇zNJ
T ]T , z = [zT1 · · · zTN ]T , eψr = [eψr1 · · · eψrm]T ,

wr = [wr1 · · ·wrm]T , w̄ = [w1 · · ·wm]T , ēr = [ ¯er1 · · · ¯erm]
T ,

eψf = [eψfm+1 · · · eψfN ]T , w̃ = [wm+1 · · ·wN ], ψf =
[ψfm+1 · · ·ψfN ].

Replacing (42) in (47) and after some algebraic manipula-
tion,

V̇ ≤ −sTKDs+ αeTf su − αeTfKfef + αeTf (̄u)r
−αeψrswr − αeTψrKwreψr + αeψfswf
−αeTψfKwfeψf − αeψfLasuf .

(48)

Defining e =
[

eTf eTψr e
T
ψf

]T
, K =

[

Kf 0 0
0 Kwr 0
0 0 Kwf

]

,

L =

[

I 0
0 −I
La I

]

T , v = T−1[uTwT ]T and E =

[

I 0
0 0
0 0

]

, one

can concluded that

V̇ ≤ −[sT eT ]

[

KD −α/2LT

−α/2L αK

] [

s
e

]

+ [sT eT ]

[

0
αE

]

v̇r

(49)

Using the Schur’s complement forA =

[

KD −α/2LT

−α/2L K

]

,

one can concluded that A > 0 if

αK −
1

4
α2LTK−1

D L > 0. (50)

which is satisfied for

σm(K)σm(KD) >
ασ2

M (L)

4
(51)

for α small enough. Defining ē = [sT eT ]T , it can be shown

that V̇ ≤ 0 if ē /∈ Dr, where

Dr = {ē : |ē| ≥ α/σm(A)|vr |} (52)

Assuming that |vr| < lr where lr is a constant, for
sufficiently large KD and K there exists α such that |ē|
tends to a residual set of order O(αr).

The residual set is defined by Vc ≤ cr, where cr = supDr
Vc.

Assuming that J can be approximated quadratically about
an equilibrium configuration defined by ∇zJ = 0, one can
concluded that, in residual set, the order of |ē| is the same
as in Dr. Since ||zi − zri|| tends to a residual set of order
O(α), for m ≥ 2, the formation orientation converges to
the desired orientation with a residual error of order O(α).

5. SIMULATION RESULTS

In this section, simulation results are presented to illus-
trate the proposed cooperative control design and perfor-
mance of theoretical results. Due to lack of space, only the
more difficult problem of trajectory tracking case (non-
holonomic robots without using neighbor velocity infor-
mation) will be discussed.

The dynamic model of each robot is a particular of (4) and
(5) given by

MRi v̇i + CRi(żi) vi = τi (53)

żi = Ri(zi) vi (54)

where MRi =

[

22.02 0.86
0.86 22.02

]

, CRi =

[

0 7.94ψ̇i
−7.94ψ̇i 0

]

.

The potential function among vehicles (Jij) and among
the vehicles and its respectively virtual leaders (Jri) are
described by

Jij =
aij
2

||zij ||
2
+
bijcij
2

exp(−||zij ||
2/cij)

Jri = ||zi − zri||
2

where aij = 0.01, bij = 10, cij = d2ij/log(bij/aij) and
dij = 0.3. The controller parameters are KDi = 100,
kfi = 1, kwi = 0.1 and kri = 100.

The simulation illustrates the case of a formation with
three agents trackinkg a circular trajectory while main-
taining the desired geometric pattern, which is an equi-
lateral triangle with side lengths of 0.3m. Figures 1, 2
and 3 show the trajectory of formation, tracking error and
formation error using two virtual leaders.

−1.5 −1 −0.5 0 0.5 1
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0

0.5

1

1.5
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2.5

 

 

Robot
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Robot
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Robot
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Trajectory

x(m)

y
(m

)

Fig. 1. Robots trajectories.

Note that, except for a residual error, the formation
orientation as well as its desired geometric pattern is
maintained while the desired trajectory is tracked. This
result is consistent with the statement of the Theorem 3.

6. CONCLUSION

This paper presents the formation and trajectory tracking
control problem for multi-agent systems. First, a control
law for a group of holonomic robots was proposed. Then,
the proposed control law was extended to non-holonomic
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case. The control scheme does not require neighbor ve-
locity knowledge and it is based on a potential function,
which made possible the design of decentralized forma-
tion controls scheme and avoided agents collisions. The
trajectory tracking was achieved defining leaders agents
which have the role of attracting the formation to de-
sired trajectory. Assuming that the communication graph
is always connected, a stability analysis using Lyapunov
theory ensured that, except for a small residual error, the
desired formation as well as the trajectory tracking are
reached. Simulation results illustrated the performance of
the control system proposed.
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