
A Hierarchical Bayes Approach for
Distributed Binary Classification in
Cyber-Physical and Social Networks

Angelo Coluccia ∗ Giuseppe Notarstefano ∗

∗Department of Engineering, Università del Salento
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Abstract: In this paper we consider a network of agents that can evaluate each other according
to an interaction graph modeling some physical interconnection or social relationship. Each agent
provides a score for its (out-)neighboring agents in the interaction graph. The goal is to design
a distributed protocol, run by the agents themselves, to group the network nodes into two
classes (binary classification) on the basis of the evaluation outcomes. We propose a hierarchical
Bayesian framework in which the agents’ belonging to one of the two classes is assumed to be
a probabilistic event with unknown parameter. Exploiting such a hierarchical framework, we
are able to design a distributed classification scheme in which nodes cooperatively classify their
own state. We characterize the solution for a fault-diagnosis context in cyber-physical systems,
and for an opinion-classification/community-discovery setup in social networks.

1. INTRODUCTION

Cyber-physical systems as power-networks, smart-grids or
distributed industrial plants are widely studied contexts in
the distributed control area. A fundamental issue arising
in such systems is fault diagnosis. Centralized schemes
may be not well-suited in such large-scale plants, so that
distributed schemes are sought. On a different context,
the spreading of social networks in everyday life raises up
a series of trust problems as well as opinion classification
problems that are becoming more and more important for
social users. These two apparently different scenarios share
some common characteristics. That is, in both cases, nodes
in the network may interact with neighboring ones, evalu-
ate them, and give a score. The evaluation can be a phys-
ical diagnosis for cyber-physical systems or a rating for
social networks. On the basis of these outcomes the nodes
would like to decide on their binary state (functioning vs
malfunctioning or pro vs against a community/opinion).

The problem of fault diagnosis has been deeply studied in
wired computer networks and parallel systems. However,
with the widespread of wireless communication, namely
ad-hoc and sensor networks, more fitting and scalable
approaches are needed. The distributed paradigm is a
natural choice in this context, and several distributed
protocols have been proposed (e.g., Chessa and Santi
[2002], Lee and Choi [2008]). However, most fault detection
algorithms are specific to the protocols implemented in
the network and often require a heavy communication
overhead to report state information. Self-diagnosis is a
more appealing and scalable approach, since sensor nodes
can infer their state by themselves on the basis of local
information, e.g., Liu et al. [2011] and Ma et al. [2012]. The
extension of methodologies for technological networks to
study social networks has recently become subject of great
interest. Typical problems of interest are the quantitative

modeling of uncertainty and trust in peer-to-peer networks
and recommendation systems Gyarmati and Trinh [2010],
Theodorakopoulos and Baras [2006]. A recent survey on
the connection between technological and social networks
is Chen et al. [2013]. Binary classification in a distributed
estimation framework has been proposed in Fagnani et al.
[2012] and Chiuso et al. [2011], where consensus-based
algorithms have been developed. A hypothesis testing
approach for multi-agent decision systems is considered
in Dandach et al. [2012], where a fusion center collects
independent local decisions from a network of individuals.

The contribution of the present paper is twofold. First,
we formulate a binary classification problem in a network
context as a distributed estimation problem. Differently
from the standard approach based on hypothesis tests, we
propose a hierarchical Bayesian framework. This allows
us to both take a binary decision on the node state and
to obtain a soft, “gray-scale” classification revealing the
confidence level of the taken decision. Such a confidence
level can be seen as a trust of the node classification. Fol-
lowing the approach introduced in Coluccia and Notarste-
fano [2013], see also Coluccia and Notarstefano [2014], the
main novel idea of the proposed framework is to capture
global features of the network (common features of a
system/society) by means of a common prior distribution
whose parameters, called hyperparameters, are unknown
and need to be estimated by the network agents. The
resulting estimator has a hierarchical structure in which
each node can self-classify once the hyperparameters have
been estimated by mens of a suitable distributed algo-
rithm. As a second contribution, we exploit the structure
of the proposed distributed classifier when the evaluation
outcome is itself a binary variable. In a first case study,
we consider a fault-diagnosis scenario in which a node can
test its neighbor and indicate if it is faulty or not. Since
the reliability of the test outcome depends on the state
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of the testing node, a joint decision must be taken. In a
second case study we analyze a social context in which
individuals can rate each other by expressing an “I like”
or not. For these two frameworks, we show that, in order to
estimate the hyperparameter, an aggregated information
is sufficient, namely the fraction of positive outcomes over
the total number of evaluations. Then, we show that this
aggregated information can be distributedly computed in a
completely asynchronous and directed network by using a
suitable version of a push-sum consensus algorithm. Given
the aggregated information, each node can self-classify by
computing locally the roots of a polynomial.

The paper is organized as follows. In Section 2 we set-
up the binary classification problem in asynchronous net-
works. In Section 3 we introduce the proposed hierarchical
Bayes framework and develop the distributed classifier for
a general scenario. Then we analyze the two case-studies of
fault-diagnosis in cyber-physical systems and community
discovery in social networks. Finally, in Section 4 we pro-
vide a performance analysis showing the appealing features
of the proposed distributed classifier.

2. THE BINARY CLASSIFICATION PROBLEM IN
ASYNCHRONOUS NETWORKS

We consider a network of agents with the ability of
performing an evaluation on some neighboring agents.
The outcome of each evaluation is a score given by the
evaluating agent on the evaluated one. The interaction
is described by an interaction graph. Formally, we let
{1, . . . , N} be the set of agent identifiers and GI =
({1, . . . , N}, EI) be a digraph such that (i, j) ∈ EI if agent
i evaluates agent j. The set of in-neighbors of j in GI , i.e.
the set of nodes that evaluate j, is denoted by N I

j . We
assume that each node has at least one incoming edge in
the interaction graph, that is there is at least one agent
evaluating it.

Accordingly, let E be the set of evaluation outcomes (E can
be, e.g., the set of reals, a real or natural interval, or the
boolean space {0, 1}). Then, for each agent in the network
we associate the following variables:

• si ∈ {0, 1} is the unobservable binary state of agent i
• tij ∈ E is the score (evaluation outcome) of the

evaluation performed by agent i on agent j

Besides the evaluation capability, the agents have also
communication and computation functionalities. That is,
agents can communicate (possibly) asynchronously ac-
cording to a time-varying directed communication graph.
Formally, we assume that the network evolution is trig-
gered by a universal slotted time, t ∈ Z≥0, not necessarily
known by the agents. The agents communicate accord-
ing to a time-dependent directed communication graph
t 7→ GC(t) = ({1, . . . , N}, EC(t)), where the edge set EC(t)
describes the communication among agents: (i, j) ∈ EC(t)
if agent i communicates to j at time t ∈ Z≥0. For each
node i, the nodes sending information to i at time t, i.e.,
the set of j ∈ {1, . . . , N} such that (i, j) ∈ EC(t) are called
in-neighbors of i at time t. The set of in-neighbors of i at
t is denoted by NC

i (t).

We assume that for each (i, j) ∈ EI there exists at least
one time instant t such that (i, j) ∈ EC(t). Then, we make

the following minimal assumption on the communication
graph connectivity:

Assumption 2.1. (Uniform joint strong connectivity).
There exists an integer Q ≥ 1 such that the graph(
{1,. . . ,N},

⋃(t+1)Q−1
τ=tQ EC(τ)

)
is strongly connected ∀ t≥0.

It is worth remarking that this network setup is very
general, since it naturally embeds asynchronous scenarios
in which the communication is not necessarily symmetric.

3. DISTRIBUTED BINARY CLASSIFICATION VIA
EMPIRICAL BAYES

3.1 Derivation of the Empirical Bayes classifier

We consider a probabilistic model for our classification
scenario. That is, we assume that each evaluation outcome
tij , (i, j) ∈ EI , is determined according to a probability
distribution, p(tij |si, sj), depending on the states of the
evaluating and/or evaluated agents, respectively si and sj .

According to the Bayesian framework, we consider the
state si of a node i as a stochastic variable with a prior
distribution p(si). We let p(si) be a Bernoulli’s distribution
B(1, ρ), i.e.,

p(si|ρ) = ρsi(1− ρ)1−si ,

where ρ ∈ [0, 1] is the Bernoulli’s distribution parameter.

Since the assumption that the prior is known to all nodes
would be too strong in a network scenario, we follow the
Empirical Bayes approach and assume that the parameter
ρ is unknown and needs to be estimated based on the
evaluation outcomes. Then, the idea is to use an estimate
of ρ to compute the posterior distribution.

Using the Bayes’ Theorem the joint distribution of evalu-
ations and states is obtained as

p(tij , si, sj |ρ) = p(tij |si, sj)p(si|ρ)p(sj |ρ). (1)

Remembering that the states are binary variables, the
probability of the evaluation is obtained by marginalizing
(1) with respect to si and sj ,

p(tij |ρ) =
∑

si∈{0,1}

∑
sj∈{0,1}

p(tij , si, sj |ρ).

Using the independence of the evaluation outcomes, the
Maximum Likelihood (ML) estimate of ρ can be obtained
from the posterior distribution p(tij |ρ) as

ρ̂ = arg max
ρ

∏
(i,j)∈EI

p(tij |ρ). (2)

The estimate ρ̂ can be used to approximate the posterior
distribution p(sj |tNI

j
, ρ), where tNI

j
is the vector of evalua-

tions performed on j, i.e. the vector of tij with (i, j) ∈ EI .
Remembering that the tij are independent, we compute

p(tNI
j
, sj |ρ̂) =

∏
i∈NI

j

p(tij , sj |ρ̂),

with p(tij , sj |ρ̂) obtained by marginalizing (1) with respect
to si, and

p(tNI
j
|ρ̂) =

∏
i∈NI

j

p(tij |ρ̂).
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Then, using the Bayes’ Theorem, the posterior distribution
turns to be

p(sj |tNI
j
, ρ̂) =

p(tNI
j
, sj |ρ̂)

p(tNI
j
|ρ̂)

. (3)

The state sj with maximum a-posteriori probability (MAP),
i.e., the one minimizing the classification error, is given by:

ŝj = arg max
sj∈{0,1}

p(sj |tNI
j
, ρ̂)

which means that node j will be classified as faulty if:

p(sj = 1|tNI
j
, ρ̂)

p(sj = 0|tNI
j
, ρ̂)

> 1 (4)

The MAP classifier obtained through equation (4) gives a
binary decision. That is, it is a hard classifier.

The proposed approach allows us to also have a soft
classifier. That is, we can classify the state with some
“confidence” (a gray-scale classifier vs a black-white one).
Indeed, to give a shade to this binary classification, the
values p(sj = 1|tNI

j
, ρ̂) and p(sj = 0|tNI

j
, ρ̂) can be used

to define a suitable score. A possible choice can be

Sj =
p(sj = 1|tNI

j
, ρ̂)

p(sj = 1|tNI
j
, ρ̂) + p(sj = 0|tNI

j
, ρ̂)

, (5)

where a score close to one means that the state sj = 1 is
very likely, and vice-versa.

We are now ready to design a distributed state classifier.
The optimization problem (2) has a very special structure.
Indeed, the cost function, after applying the logarithm, is
separable. Thus, the problem can be solved in a distributed
way by applying distributed optimization algorithms avail-
able in the literature. See, e.g., Zanella et al. [2012], Bürger
et al. [2014], Nedic and Olshevsky [2013] for distributed op-
timization algorithms working on asynchronous networks.
Once a copy of the ML estimate ρ̂ is available at each
node, it can self-classify by using the MAP hard classifier
(4) or the soft one (5). In both cases the computation can
be performed locally given the copy of ρ̂.

3.2 Distributed binary classifier for fault-diagnosis

We consider a scenario in which each node can test
neighboring nodes in the interaction graph with a binary
outcome indicating if the tested node is considered faulty
or not. Clearly, since each node performing the evaluation
can be itself faulty, its outcome is not always reliable. Also,
a node does not know if it itself is faulty or not. We assume
that the evaluation outcome is determined according to the
following rule. If node i is functioning, then it will return
the correct status of the evaluated node j (i.e., tij = 1 if
node j is faulty and tij = 0 if it is functioning correctly).
If node i is faulty, we assume that the outcome is random
with known probability a. In particular, if it is zero or one
with the same probability then a = 1/2, otherwise a will be
biased towards one of the two possible outcomes according
to prior information about the node behaviors. This model
can be regarded as a possible probabilistic extension of the
well known Preparata et al. [1967] model.

Formally, the conditional probability of tij given the states
si and sj is

p(tij |si, sj) = asi+(1−si) [sjtij + (1− sj)(1− tij)] . (6)

The probability of tij can be obtained by marginalizing
(1) with respect to si and sj . Marginalizing with respect
to si,

p(tij , sj |ρ) = aρ1+sj (1− ρ)1−sj+

+ [sjtij + (1− sj)(1− tij)] ρsj (1− ρ)2−sj , (7)

and then with respect to sj ,

p(tij |ρ) = aρ+ tijρ(1− ρ) + (1− tij)(1− ρ)2. (8)

With this expression in hand, we can exploit the structure
of the MAP classifier and show how it can be computed
by each node in a distributed way.

Let k =
∑

(i,j)∈EI
tij =

∑N
j=1 kj be the total num-

ber of positive outcomes, where kj =
∑
i∈NI

j
tij is the

number of positive outcomes on agent j. Similarly, let

n =
∑N
j=1 |N I

j | =
∑N
j=1 nj be the total number of edges of

the interaction graph GI , where nj = |N I
j | is the number

of incoming edges of node j.

Substituting (8) in the ML optimization problem (2), we
get

ρ̂ = arg max
ρ∈[0,1]

[aρ+ ρ(1− ρ)]
k [
aρ+ (1− ρ)2

]n−k
. (9)

Defining φ = k
n and denoting f(ρ; a, φ) the cost function

in problem (9), we can differentiate f(ρ; a, φ) with respect
to ρ so that,

f ′(ρ; a, φ) =

n [aρ+ ρ(1− ρ)]
k−1 [

aρ+ (1− ρ)2
]n−k−1

g(ρ; a, φ),

where

g(ρ; a, φ) =
[
φ(a+ 1− 2ρ)(aρ+ (1− ρ)2)+

(1− φ)(aρ+ ρ(1− ρ))(a− 2 + 2ρ)] .

Clearly, the first two factors have roots that do not depend
on φ and give a zero cost function. Thus maximizers are
obtained by studying the sign of the function g(ρ; a, φ).

It is worth noting that each node can compute locally the
maximizer ρ̂, provided that the global quantity φ = k

n can
be computed in a distributed way.

A closed form solution for ρ̂ can be computed when a = 1
2 .

The roots of g(ρ; 1
2 , φ) are ρ0 = 3

4 , which is indepen-

dent of φ, and ρ1,2 = 1
4 (3 ±

√
9− 16φ). Straightforward

computations show that ρ1 and ρ2, when real (φ ≤ 9
16 ),

are local maximizers. However, for φ ≤ 9
16 , ρ2 = 1

4 (3 +√
9− 16φ) ≥ 1. Thus, we have

ρ̂ =


3

4
if φ ≥ 9

16
1

4
(3−

√
9− 16φ) otherwise.

With the expression of ρ̂ in hand, we are able to compute
the binary classifier. Plugging the expressions of p(tij , sj |ρ̂)
and p(tij |ρ̂) into (3) and evaluating it for sj = 1, the fault
probability turns to be

p(sj = 1|tNI
j
, ρ̂) =

[
aρ̂2 + ρ̂(1− ρ̂)

]kj [
aρ̂2
]nj−kj

[aρ̂+ ρ̂(1− ρ̂)]
kj [aρ̂+ (1− ρ̂)2]

nj−kj .

An analogous expression can be obtained for p(sj =
0|tNI

j
, ρ̂), so that, according to (4), node j self-classifies

as faulty if
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[
aρ̂2 + ρ̂(1− ρ̂)

]kj [
aρ̂2
]nj−kj

[aρ̂(1− ρ̂)]
kj [aρ̂(1− ρ̂) + (1− ρ̂)2]

nj−kj > 1.

We want to stress one more time that, provided that φ
can be computed in a distributed way, agent j can obtain
locally both ρ̂ and the above classifier.

3.3 Distributed binary classifier for community discovery

We consider a social network scenario in which each agent
evaluates its neighbors in the interaction graph with a
binary outcome (“I like” or not). The binary state of each
node indicates its belonging or not to a community, or
its compliance with a given opinion. We imagine that the
evaluation be influenced by the fact that the two nodes
have or not the same state. In particular, we assume that, if
the two nodes have the same state, the evaluation outcome
will be tij = 1 with a high probability a. Otherwise the
outcome will be tij = 1 with a low probability b � a.
Formally, the conditional probability of tij given the states
si and sj is

p(tij |si, sj) = [atij (1− a)1−tij ]|si − sj |+
+ [btij (1− b)1−tij ](1− |si − sj |). (10)

We proceed along the same line as in the fault detection
scenario. Plugging (10) into (1) and marginalizing with
respect to si, after some straightforward calculations, one
gets

p(tij |sj , ρ) = ρsj (1− ρ)1−sj[
atij (1− a)1−tij (sj(1− ρ) + (1− sj)ρ)

+btij (1− b)1−tij ((1− sj)(1− ρ) + sjρ)
]
.

(11)

Marginalizing with respect to sj ,

p(tij |ρ) = 2ρ(1− ρ)[atij (1− a)1−tij ]+

+ (1− 2ρ+ 2ρ2)[btij (1− b)1−tij ]. (12)

In the next theorem we provide a closed form solution for
ρ̂, that each node can independently compute provided it
is able to calculate (in a distributed way) the quantity
φ = k

n .

Theorem 3.1. Consider a network of agents performing a
self-evaluation according to the network model in Sec-
tion 2, with tij ∈ E = {0, 1}. Let the evaluation outcome
be determined according to the conditional probability (6).
Then the ML estimate of the hyperparameter ρ is given
by:

ρ̂ =


1
2 if (1− φ) ≥ a+ b

2

1
2 ±

1
2

√
a+ b− 2(1− φ)

a− b
otherwise

where the choice of the sign only depends on a common
convention used to identify the state zero (or one). �

Proof. Using (12), the ML optimization problem (2)
becomes

ρ̂ = arg max
ρ∈[0,1]

[2ρ(1− ρ)(1− a) + (1− 2ρ+ 2ρ2)(1− b)]k

[2ρ(1− ρ)a+ (1− 2ρ+ 2ρ2)b]n−k.

The derivative of the cost function is

f ′(ρ;a, b, φ) =

n
[
2ρ(1− ρ)(1− a) + (1− 2ρ+ 2ρ2)(1− b)

]k−1[
2ρ(1− ρ)a+ (1− 2ρ+ 2ρ2)b

]n−k−1
g(ρ; a, b, φ),

(13)

where, after straightforward calculations,

g(ρ; a, b, φ) =

n(a− b)(2− 4ρ)[2(a− b)ρ2 − 2(a− b)ρ+ (1− φ− b)].
The roots of g(ρ; a, b, φ) are ρ0 = 1/2 and

ρ1,2 = 1
2 ±

1
2

√
a+ b− 2(1− φ)

a− b
,

which are complex conjugate for (1 − φ) ≥ (a + b)/2 and
real otherwise.

From (13), the other roots of f ′(ρ; a, b, φ) are

ρ3,4 = 1
2 ±

1
2

√
a+ b− 2

a− b
,

which are complex conjugate, and

ρ5,6 = 1
2 ±

1
2

√
a+ b

a− b
,

which are real and have a multiplicity of n−k−1. Since the
cost associated to these two roots is zero, they are clearly
(global) minimizers. Also, since they do not depend on
φ they do not affect the maximizers. Evaluating the sign
of the function g(ρ; a, b, φ), it can be easily shown that
both the two roots ρ1,2 are local maximizers. Plugging
these two roots in the cost function, we get the same cost
[2(1− a)ρ1ρ2 + (1− b)(ρ21 + ρ22)]k[2aρ1ρ2 + b(ρ21 + ρ22)]n−k,
so that they are both global maximizers and the proof
follows. �

3.4 Push-sum consensus for distributed computation of φ

We have shown that if the evaluation outcome is itself a
binary value, the global information that the agents need
to know to compute locally the classification is the rate
φ = k/n of positive tests over the total. Next we show
how, using a generalization of the push-sum consensus
algorithm proposed in Bénézit et al. [2010], the nodes can
compute such a quantity in a distributed way.

For each t ∈ Z≥0, each node i ∈ {1, . . . , N} stores in
memory two local states δi(t) and ηi(t), and an estimate
φi(t) of φ. Let wij(t) ∈ R+ be a set of weights, satisfying
wij(t) ≥ γ > 0 if (i, j) ∈ EC(t), wij(t) = 0 if (i, j) /∈ EC(t),

and
∑N
i=1 wij(t) = 1.

Initialization: δi(0) = ki, ηi(0) = ni, φi(0) = ki/ni.
Iterate:

δi(t+ 1) =
∑

j∈NC
i
(t)∪{i}

wij(t)δj(t)

ηi(t+ 1) =
∑

j∈NC
i
(t)∪{i}

wij(t)ηj(t)

φi(t+ 1) =
δi(t+ 1)

ηi(t+ 1)

(14)
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We want to point out some appealing features of the above
push-sum algorithm and thus of the proposed distributed
classifier.

(i) The weight matrix used in the protocol is column
stochastic (thus it is not the usual consensus ma-
trix which is row stochastic). For general directed
graphs the weight matrix is not required to be doubly
stochastic, since the agents do not need to reach
consensus separately on k and n, but only on their
ratio.

(ii) To run the above protocol, and thus compute φ =
k/n, the agents do not need to know any global
network or tuning parameter (as, e.g., the number
of nodes N or some step-size).

(iii) The agents do not need to know the (universal) time
t. Thus, the algorithm is well-suited for a completely
asynchronous implementation. Simply, when node i is
not communicating, it is enough to assume that there
are no edges (in the communication graph) going out
nor coming in agent i (i.e., NC

i (t) = ∅).
The next proposition shows the convergence properties of
the algorithm.

Proposition 3.2. Assume that Assumption 2.1 holds. Then
the distributed algorithm (14) reaches consensus on φ, i.e.,

lim
t→∞

φi(t) = φ for all i ∈ {1, . . . , N}.

Proof. The proof can be obtained by following the same
steps as in Bénézit et al. [2010], hence it is omitted for
the sake of conciseness. Notice that, weak ergodicity of
the forward product of the (column stochastic) weight-
matrices follows by Assumption 2.1. �
Remark 3.3. Assumption 2.1 could be relaxed in Proposi-
tion 3.2 if a convergence with probability one is allowed.
In particular, the assumption in Bénézit et al. [2010] could
be used instead. �

4. PERFORMANCE ANALYSIS

In this section we provide numerical results for the two
case studies developed in the previous section. Simulations
have been run according to the Monte Carlo method, with
1000 trials for each point.

4.1 Fault diagnosis

A network of N = 20 nodes has been considered, with
ρ = 0.2 and a = 1/2. Two instances of the classification
algorithm are shown in Fig. 1 for two different interaction
graphs: a directed cycle with 20 additional edges randomly
added (left), and a directed cycle with 40 additional edges
randomly added (right). Numbers inside the nodes are the
true states si. The decisions ‘1’ of the hard classifier are
depicted as a black circle on the node contour, while the
score Sj of the soft classifier is depicted as a shade of
gray from white (‘0’) to black (‘1’). In the figure some
classification errors are visible, either false positive (FP)
(i.e., a decision ŝi = 1 when the true state is si = 0) or
false negative (FN) (i.e., a decision ŝi = 0 when si = 1).
Notice that as the number of interactions grows (graph on
the right) more insightful information can be drawn from
the coloring thanks to the soft classifier.
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Fig. 1. Examples of hard (black circles for 1) and soft
(gray-scale filling, from white 0 to black 1) classifi-
cation for ρ = 0.2 (left: n = N + 20 edges; right:
n = N + 40 edges). Numbers are the true state.

A closer look to the performance of the classifier is reported
in Fig. 2, which shows the FP and FN rates for the same
network of N = 20 nodes as function of the number of
edges n. The interaction graph starts from a directed cyclic
configuration, then additional edges are added until the
graph is complete. The curves, obtained for ρ = 0.2, reveal
very good performance with both FP and FN below 1%
for moderate n. Notice the typical trade-off between FP
and FN rates, with the latter increasing as the former
decreases, before both converge to zero definitely.
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Fig. 2. False positive and false negative rates for N = 20,
as function of the number of edges n increasing from
N (cyclic graph) to N2 −N (complete graph).

Finally, we have assessed the power of the classifier for
increasing values of the fault probability ρ. Simulation
results, reported in Fig. 3, show that the classifier exhibits
good performance even for ρ close to 0.5, i.e., with half
of the nodes providing unreliable information. This is
obtained with just one fourth of the possible tests, i.e.,
n = 1

4 (N2 −N) = 95. For comparison, the case n = N in
cyclic topology is depicted with dashed lines: interestingly,
even with this minimal connectivity in the interaction
graph, the classifier performs satisfactorily until about
30% of faulty nodes.

4.2 Community discovery

Analogous Monte Carlo simulations have been run for
the community discovery classification model. Due to the
symmetry in the problem, we report the total misclassifi-
cation error, i.e., the number of nodes that have associated
themselves to the wrong community. The misclassification
error for a network of N = 100 nodes as function of the
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Fig. 3. False positive and false negative rates as function of
the fault probability ρ, with number of edges n equal
to 1/4 of the complete graph. For reference, the case
of cyclic graph (n = N) is also shown in dashed lines.

number of edges n is reported in Fig. 4 for ρ = 0.7. We
have set the probability of agreement between interacting
nodes to 99% (a = 0.99) for nodes in the same community
and to 1% (b = 0.01) for nodes in different communities.
The picture shows that for a number of edges, n, greater
than one fifth of the maximum number (complete graph),
the misclassification rate is already below 5%.
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Fig. 4. Misclassification errors for N = 100, as function
of the number of edges n increasing from N (cyclic
graph) to N2 −N (complete graph).

5. CONCLUSION

In this paper we have proposed a novel distributed scheme,
based on a hierarchical Bayes approach, for binary self-
classification in cyber-physical and social networks. In
the proposed framework agents gain information from the
network by distributedly estimating a hyperparameter for
the prior distribution of the node states. Based on the
estimated hyperparameter each node can take a decision
on its state. The estimation perspective allows us to
develop, together with the hard decision maker, a soft
classifier giving a level of “confidence” of the decision. We
have presented two application scenarios, fault-diagnosis
in cyber-physical systems and community discovery in
social networks, for which the global information of the
node binary classifier can be computed through a suitable
consensus algorithm. Future research directions include
the investigation of a dynamic scenario in which nodes
repeatedly evaluate their neighbors and use soft decisions
during the convergence process.
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