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Abstract: The emerging new idea of lane-keeping electronic stability control is investigated. In a critical
situation, such as entering a road curve at excessive speed, the optimal behavior may differ from the
behavior of traditional ESC, for example, by prioritizing braking over steering response. The important
question that naturally arises is if this has a significant effect on safety. The main contribution here is to
give a method for some first quantitative measures of this. It is based on optimal control, applied to a
double-track chassis model with wheel dynamics and high-fidelity tire-force modeling. The severity of
accidents grows with the square of the kinetic energy for high velocities, so using kinetic energy as a
measure will at least not overestimate the usefulness of the new safety system principle. The main result
is that the safety gain is significant compared to traditional approaches based on yaw rotation, for several
situations and different road-condition parameters.

1. INTRODUCTION

New possibilities for electronic stability control systems (ESC)
(Isermann, 2006; Bosch, 2011; Rajamani, 2006) of vehicles are
now emerging, and the reason is increased situation awareness
due to preview sensors like cameras, radar, and satellite posi-
tioning systems (such as GPS). With the availability of indi-
vidual braking of each wheel, possibilities arise for a spectrum
of new systems, for example, collision avoidance or collision
mitigation (Chakraborty et al., 2013).

One highly critical situation is if a vehicle leaves its lane, that
is, enters the lane of opposing traffic or exits the road. Already
now there exists lane-departure warning (LDW) systems (Kim
and Oh, 2003), which are aware of such situations and alert
the driver in case of danger. This information is also deployed
in lane-keeping systems, which during normal driving actively
corrects a driver drifting out of lane with superimposed mild
control (Ali, 2012). A next step would be to utilize this infor-
mation in more severe situations, such as in (Ali et al., 2013)
and (Benine-Neto, 2011), leading to systems we here refer to
as lane-keeping ESC.

A number of interesting questions immediately arise, both
around what the resulting vehicle behavior would be and how
significant it would be in terms of increased safety for the driver
and passengers. Regarding vehicle behavior, it is interesting
to compare traditional ESC and optimal lane-keeping ESC in
critical situations, and a typical situation to study is overspeed
when entering a curve. Hence, this paper aims to quantify the
performance gains in terms of the highest possible entry speed
while staying in lane, when also trying to maintain vehicle
controllability.

⋆ This work has been supported by ELLIIT, the Strategic Area for ICT
research, funded by the Swedish Government. B. Olofsson and K. Berntorp
are members of the LCCC Linnaeus Center at Lund University, supported by
the Swedish Research Council.

1.1 Kinetic Energy as Severity Measure

Quantifying the level of safety and severity of critical situations
leading to collision is complex, but to get a first grasp kinetic
energy is a reasonable measure. The kinetic energy is propor-
tional to the square of the velocity v, and thus an increase in
velocity ∆v results in increased kinetic energy. In a crash the
kinetic energy has to be absorbed, and more absorbed kinetic
energy implies that more damage will be caused. In (Jansson,
2005) it is stated that the probability of fatality is proportional to
(∆v)4, up to a certain maximum velocity. The velocity interval
where this is valid is also bounded below and the reason is
that cars are built to handle reasonable amounts of damage,
and safety belts and airbags protect driver and passengers up to
some limit. Therefore, using kinetic energy as a measure will at
least not overestimate the usefulness of a new system that can
handle cases where the vehicle enters maneuvering situations
with critically high velocities.

1.2 Contribution and Outline

The main contribution in this paper is that we address the
questions raised in the previous subsections with a quantitative
method. A first major step doing so is to devise a method of in-
vestigation. A closely related study was presented in (Ali et al.,
2013), where a lane-keeping ESC is compared to traditional
ESC. Their proposed system consists of an MPC controller,
essentially preventing the vehicle from entering the critical op-
erating regions when initiating a corner with excessive speed.
In a similar context, others have studied optimal behavior in
a curve using a similar setup as we do, for example, (Sund-
ström et al., 2010) and (Andreasson, 2009). In the two referred
studies, wheel dynamics are neglected and longitudinal force
is used directly as input in a simplified tire model. We are
including wheel dynamics and comprehensive tire-force mod-
eling. Moreover, the problem of lane keeping is formulated as
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an optimization problem for each of the considered ESC con-
figurations, with the lane borders as boundary conditions in the
optimization. The major questions to analyze in the results are
whether braking all wheels and then steer should be prioritized,
or if braking wheels on one side to create a turning moment
inducing early rotation of the vehicle is more beneficial. The
particular aspect to consider here is the effect such differences
in strategy has on kinetic energy.

This paper is outlined as follows. In Section 2 the preliminaries
of the study are presented and the method of investigation is
defined. The employed chassis and tire modeling is described
in Section 3. In Section 4, the optimal control problem for lane-
keeping in a curve situation is defined. The results are presented
in Section 5 and they are subsequently discussed in Section 6.
Finally, conclusions are given in Section 7.

2. METHOD

As mentioned above, there are previous studies comparing
different optimal solutions for various actuator configurations
(Sundström et al., 2010; Andreasson, 2009). However, to our
knowledge, there are no previous comparisons to judge the sig-
nificance of different behaviors compared to traditional control
strategies including yaw-moment regulation, and a reason is
presumably that it is not evident how to do so. A complete
comparison is out of reach since it would require complete
implementations of both, including a state-of-the-art ESC sys-
tem and a proper driver model. The outcome would then be
heavily dependent on the properties of these, and especially
the lane-keeping skills of the driver model. However, the fol-
lowing approach should give a reasonable first estimate. The
characteristics of the traditional ESC, which we denote as T-
ESC, is to control yaw rate and body slip towards reference
values, calculated from the driver steering input. This control
is achieved by generating a yaw moment, around the vertical
axis of the vehicle, by braking individual wheels (Bosch, 2011).
Given a desired moment, the optimal braking strategy is to
apply braking on both wheels at one side, distributed between
front and rear depending on the current circumstances (Tøndel
and Johansen, 2005; Johansen, 2006).

In order to investigate the full potential of the control strategies
used in T-ESC, the best possible steering input together with
an optimal braking distribution of the wheels on one side is
considered. The studied maneuver is a left-hand turn initiated
with excessive speed. In this situation the vehicle is subject to
understeering, and a counterclockwise yaw-moment is there-
fore desired by the T-ESC scheme. To achieve this moment
with an optimal braking distribution, the wheels on the left side
are the only ones to be actuated according to the statements
above. It is clear that such a strategy would overestimate the
best behavior achievable with implementations of ESC systems
today, since the driver influence is neglected and the braking
and steering in traditional ESC are coupled via the reference
model, and thus they are not free control variables. Such a ve-
hicle with optimal braking on the left side in combination with
an optimal steering-wheel input is one of the two vehicles used
in the comparison. This vehicle will be labeled UBT-ESC for
upper-bound traditional ESC. Given the preconditions for the
different systems, the safety potential for UBT-ESC is strictly
higher than for T-ESC.

The other configuration in the comparison will be able to brake
all wheels individually and to steer optimally, and is here called

optimal lane-keeping ESC, denoted OLK-ESC. The interesting
research question is to investigate if there are any principle
differences in behavior, and the maximum velocities that can
be handled when over-speeding in a curve. Regarding behavior,
the question is whether the vehicle makes a different tradeoff
between yaw rate, side slip, and lane keeping. The fundamental
aspect here is to investigate if the different strategies exhibit any
significant improvements of safety. This gives a first engineer-
ing value for the potential of the different approach, which is
highly valuable.

3. MODELING

We use a double-track model with roll and pitch dynamics
and both longitudinal and lateral load transfer. Motivated by an
ESC-system perspective in the study performed, it is essential
to model the individual tire forces and also to incorporate
load transfer effects, heavily influencing the available braking
capacity (Lundahl et al., 2013). The chassis model has five
degrees of freedom, and is illustrated in Figure 1. The vehicle
chassis inertias in the roll, pitch, and yaw directions are Ixx,
Iyy, and Izz, respectively. Moreover, the distance from the center
of mass to the road in steady state is denoted h. The complete
derivation and dynamic equations for the model are omitted
here because of space limitations; for the details we refer
to (Berntorp, 2013). The suspension system is modeled as a
rotational spring-damper system. Consequently, the moment τφ
produced by the suspension system in the roll direction is given
by

τφ = (Kφ , f +Kφ ,r)φ +(Dφ , f +Dφ ,r)φ̇ , (1)
where φ is the roll angle, and correspondingly for τθ in the pitch
direction according to

τθ = Kθ θ +Dθ θ̇ , (2)

where θ is the pitch angle. In (1) and (2), K and D are
model parameters for the stiffness and damping. The dynamic
equations for the longitudinal load transfer are given by

(Fz,1 +Fz,2)l f − (Fz,3 +Fz,4)lr = Kθ θ +Dθ θ̇ ,
4

∑
i=1

Fz,i = mg,

(3)

where Fz,i denote the time-dependent normal forces, m is the
vehicle mass, g is the constant of gravity, and l f , lr are defined
as in Figure 1. The lateral load transfer is determined by the
relations

−w(Fz,1 −Fz,2) = Kφ , f φ +Dφ , f φ̇ , (4)

−w(Fz,3 −Fz,4) = Kφ ,rφ +Dφ ,rφ̇ , (5)

where w is the half-track width, see Figure 1.

3.1 Wheel and Tire Modeling

The slip angles αi and slip ratios κi are defined as in (Pacejka,
2006):

α̇i
σ

vx,i
+αi =−arctan

(

vy,i

vx,i

)

, (6)

κi =
Rwωi − vx,i

vx,i
, i ∈ {1,2,3,4}, (7)

where σ is the relaxation length, Rw is the wheel radius, ωi
is the wheel angular velocity for wheel i, and vy,i and vx,i are
the lateral and longitudinal wheel velocities for wheel i with
respect to an inertial system, expressed in the coordinate system
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Fig. 1. The double-track model, with roll and pitch dynamics.

of the wheel. Note that Figure 1 illustrates the static slip angles,
describing a pure geometric relation, compared to the dynamic
relation in (6). The wheel dynamics are given by

Ti − Iwω̇i −Fx,iRw = 0 , i ∈ {1,2,3,4}. (8)

Here, Ti is the drive/brake torque and Iw is the wheel inertia.
First-order dynamics are introduced for Ti according to

ṪiγT +Ti = Tu,i, (9)

where Tu,i is the control signal and γT a time constant.

The nominal tire forces—that is, the forces under pure slip
conditions—are computed with the Magic Formula model 1

(Pacejka, 2006), given by

Fx0,i = µx,iFz,i sin(Cx,iatan(Bx,iκi −Ex,i(Bx,iκi − atanBx,iκi))),
(10)

Fy0,i = µy,iFz,i sin(Cy,iatan(By,iαi −Ey,i(By,iαi − atanBy,iαi))),
(11)

for each wheel i, i ∈ {1,2,3,4}. In (10)–(11), µx and µy are the
friction coefficients and B, C, and E are model parameters. To
model combined slip we use the empirically verified approach
described in (Pacejka, 2006), where the nominal forces (10)–
(11) are scaled with weighting functions Gxα ,i and Gyκ ,i, which
depend on α and κ . The relations in the longitudinal direction
are

Hxα ,i = Bx1,i cos(atan(Bx2,iκi)), (12)
Gxα ,i = cos(Cxα ,iatan(Hxα ,iαi)), (13)

Fx,i = Fx0,iGxα ,i, i ∈ {1,2,3,4}, (14)

and the relations in the lateral direction are given by

Hyκ ,i = By1,i cos(atan(By2,iαi)), (15)
Gyκ ,i = cos(Cyκ ,iatan(Hyκ ,iκi)), (16)

Fy,i = Fy0,iGyκ ,i, i ∈ {1,2,3,4}, (17)

where B and C are model parameters. The vehicle model
parameters used in this paper are shown in Table 1 and the tire
model parameters in Table 2.

4. OPTIMAL CONTROL PROBLEM

The chassis and tire model presented in the previous section
is formulated as a differential-algebraic equation system ac-
cording to ẋ(t) = G(x(t),y(t),u(t)), where x is the state vector,
1 Also the tire modeling is essential in the study, since the resulting maneuvers
are expected to utilize the maximum available tire forces. Hence, a model of
comparably high complexity is motivated.

Table 1. Vehicle model parameters used in (1)–(8).

Notation Value Unit

l f 1.3 m
lr 1.5 m
w 0.8 m
m 2 100 kg
Ixx 765 kgm2

Iyy 3 477 kgm2

Izz 3 900 kgm2

Rw 0.3 m
Iw 4.0 kgm2

γT 0.1 s
σ 0.3 m
g 9.82 ms−2

h 0.5 m
Kφ , f ,Kφ ,r 89 000 Nm(rad)−1

Dφ , f ,Dφ ,r 8 000 Nms(rad)−1

Kθ 363 540 Nm(rad)−1

Dθ 30 960 Nms(rad)−1

Table 2. Tire model parameters in (10)–(17). The
same parameters are used for both the left and the

right wheel.

Notation Front Rear

µx 1.20 1.20
Bx 11.7 11.1
Cx 1.69 1.69
Ex 0.377 0.362
µy 0.935 0.961
By 8.86 9.30
Cy 1.19 1.19
Ey −1.21 −1.11
Bx1 12.4 12.4
Bx2 −10.8 −10.8
Cxα 1.09 1.09
By1 6.46 6.46
By2 4.20 4.20
Cyκ 1.08 1.08

y is the algebraic variables vector, and u is the input signal
vector. The time dependency of the variables will be implicit
in the rest of the paper. The wheel-torque control signals,
Tu = (Tu,1 Tu,2 Tu,3 Tu,4), as well as the steer angle δ of the
front wheels are considered as inputs. For simplicity we assume
that the front wheels have the same steer angle. In the case
with braking only on the left wheels, that is, UBT-ESC, it
is required that Tu,2 = Tu,4 = 0. Further, the tire-force model
is written as the equation system h(x,y,u) = 0. The chassis
and tire dynamics are implemented using the modeling lan-
guage Modelica (Modelica Association, 2014). The optimiza-
tion problem is formulated over the time horizon t ∈ [0, t f ],
where the upper limit t f on the time interval is free in the
optimization. The optimization objective is to maximize the
initial velocity v0 when entering the curve. However, depending
on the road geometry and the surroundings, it is sometimes
not enough just to stay in lane; for example, when it leads to
highly reduced vehicle controllability potentially resulting in
other dangerous situations. Thus, the aim is also to avoid large
body slip, which is defined as β = atan(vy/vx), where vx and
vy are the longitudinal and lateral velocities, respectively. This
tradeoff is parametrized by using a weight η in the objective
function. Accordingly, the dynamic optimization problem to be
solved is written as:
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minimize − v0 +η
∫ t f

0
β 2dt (18)

subject to Tu,i,min ≤ Tu,i ≤ Tu,i,max, i ∈ {1,2,3,4}, (19)

|δ | ≤ δmax, |δ̇ | ≤ δ̇max, (20)
x(0) = x0, x(t f ) = xt f , (21)

f (Xp,Yp)≤ 0, (22)
ẋ = G(x,y,u), h(x,y,u) = 0, (23)

where x0 are the initial conditions for the differential states, xt f

are the desired values at the final time t = t f , and (Xp,Yp) is the
position of the center of gravity of the vehicle. In practice, the
terminal conditions on the differential states are only applied
to a subset of the model variables. Further, f (Xp,Yp) is a
mathematical description of the road constraint for the center
of gravity of the vehicle in the curve maneuver. This constraint
is formulated as two circles with different radii in the XY -plane.

Since the primary objective of the safety system is to capture
the first and most critical part of the situation, the terminal
constraint is formulated as

ė(t f ) = 0.
Here e is the lateral deviation from the middle of the lane,
defined as

e =
√

X2
p +Y 2

p −R, (24)

where R is the mean radius of the curve. This terminal con-
straint implies that the vehicle has succeeded in avoiding going
out-of-lane, and can either begin recovering from the critical
situation, or immediately return control back to the driver.

The continuous-time optimal control problem (18)–(23) is
solved using the open-source software JModelica.org (Åkesson
et al., 2010), according to the method we presented in (Bern-
torp et al., 2013). In particular, the continuous-time optimiza-
tion problem is discretized using direct collocation methods
(Biegler et al., 2002), and the resulting discrete-time nonlin-
ear optimization problem (NLP) is solved numerically using
the state-of-the-art interior-point solver Ipopt (Wächter and
Biegler, 2006). The Jacobian and the Hessian related to the
problem are computed with numerical precision using auto-
matic differentiation (Griewank, 2000), which is essential for
robust convergence of the complex optimization problem at
hand. For further details on the solution methodology, see
(Berntorp et al., 2013).

5. RESULTS

The optimization problem (18)–(23) was solved for both UBT-
ESC and OLK-ESC, in the circular-shaped curve with the lat-
eral deviation (24) limited to −1 ≤ e ≤ 1 m. The maximum
steer angle and maximum steer rate were set to δmax = 29 deg
and δ̇max = 57 deg/s, corresponding to reasonable physical
and driver limitations. The vehicle was only allowed to uti-
lize braking torques. The wheel torque limitations were set to
Tu,i,max = 0 and Tu,i,min = −7.4 kNm. Here Tu,i,min was chosen
sufficiently large, such that the tire force FX is the main limiting
factor for braking in the maneuver.

To evaluate the influence of the weighting factor η , the opti-
mization problem was solved for different values of this param-
eter. In addition, to quantify the differences between UBT-ESC
and OLK-ESC for different road conditions, the friction coef-
ficients µ and the road-curvature radius R were also separately
varied. The scaling of µ was done according to

Table 3. Initial velocity and maximum body-slip
for different η , using γµ = 1 and R = 30 m.

UBT-ESC OLK-ESC
η v0 [km/h] |β |max [deg] v0 [km/h] |β |max [deg]

0 62.6 15 65.6 7.0
10 62.4 11 65.6 5.8

100 60.3 5.0 65.2 2.6
1000 55.6 2.1 64.5 1.0

Table 4. Initial velocity for reduced friction coeffi-
cients, using η = 100 and R = 30 m.

γµ UBT-ESC, v0 [km/h] OLK-ESC, v0 [km/h] v0-diff. [%]

1.00 60 65 8.2
0.90 57 62 8.1
0.80 54 58 7.9
0.70 51 55 7.4
0.60 47 51 7.3
0.50 43 46 7.3
0.40 38 41 7.4
0.30 33 36 7.7
0.20 27 29 8.4

µx,scaled = γµ µx,

µy,scaled = γµ µy,

where γµ is the scaling parameter. This is not an ideal repre-
sentation for low-friction surfaces, see (Olofsson et al., 2013).
However, it will give an indication of possible differences for
various road surfaces. Solutions for all parametrization con-
figurations of the optimization problem were typically found
in 100–300 iterations, requiring approximately 200–300 s on a
standard PC with an Intel Core i3 processor.

In Table 3, the initial velocity and the maximum body-slip,
corresponding to different η-values, are summarized for the
optimal solution obtained with UBT-ESC and OLK-ESC for
γµ = 1 and curve radius R = 30 m. For OLK-ESC, it is
obvious that v0 does not suffer from a larger η , that is, when
penalizing body-slip more. For example, there is only a 1.7%
loss in v0 between η = 0 and η = 1000 for OLK-ESC. On
the contrary, UBT-ESC exhibits a 11.2% reduction in v0 for
the corresponding weight difference. Also note that UBT-ESC
results in considerably larger |β |max for all values of η . Table 4
presents the initial velocity for UBT-ESC and OLK-ESC, when
reducing the friction coefficient µ , using a weighting parameter
of η = 100 and a road-curvature radius of R = 30 m. The table
shows that the advantage of OLK-ESC can be seen to persist
for the different friction levels, with very small variations,
allowing an entry velocity of approximately 7–8% higher than
UBT-ESC. The initial velocities resulting from different road-
curvature radii are shown in Table 5. As for the friction-
coefficient scaling, OLK-ESC results in a larger v0 for all radii.
Concerning entry velocity, the relative advantage of OLK-ESC
is also consistent over the different road-curvatures, being about
7–9% compared to UBT-ESC.

In the following, the results achieved as the optimal solutions
for UBT-ESC and OLK-ESC, using η = 100, γµ = 1, and
R = 30 m, are compared. In Figure 2, the geometric vehi-
cle trajectories are presented. The start position was set to
(Xp,0,Yp,0) = (30,0) m, that is, in the lower right corner in the
figure, with the vehicle heading in the tangential direction of the
road. Figures 3 and 4 display the optimal trajectories of chassis
variables and tire forces for UBT-ESC and OLK-ESC, in which
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Fig. 3. Optimal control solutions obtained for UBT-ESC, with η = 100, γµ = 1, and R = 30 m.
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Table 5. Initial velocity for various road-curvature
radii, using η = 100 and γµ = 1.

R [m] UBT-ESC, v0 [km/h] OLK-ESC, v0 [km/h] v0-diff. [%]

10 38 42 9.3
15 46 49 8.4
20 52 55 7.6
25 56 61 7.7
30 60 65 8.2
40 68 74 8.2
50 75 81 7.8

the absolute velocity v is defined as

v =
√

v2
x + v2

y .

Note that it is the wheel torque Ti, from (8), that is shown
in Figures 3 and 4. Further, Figure 5 shows the sum of the
longitudinal and lateral tire-forces FX and FY , resolved in the
road-surface plane. In addition, the yaw moment MZ generated
from the tire forces, that is, the moment about an axis orthog-

onal to the road, is visualized. These quantities are displayed
as functions of the driven distance s to allow a more eligible
comparison of the results from UBT-ESC and OLK-ESC. In
Figure 6, the component of the yaw moment that is a result of
the applied braking torques is shown. This moment is denoted
∆M and consists of the longitudinal braking forces Fx, as well as
the reduction of the lateral forces resulting from the increased
slip ratio κ during braking, and is defined as

∆M =−Fx,1(wcosδ − l f sinδ )+Fx,2(wcosδ + l f sinδ )
−Fx,3w+Fx,4w− (Fy0,1 −Fy,1)(l f cosδ +wsinδ )
− (Fy0,2 −Fy,2)(l f cosδ −wsinδ )+(Fy0,3 −Fy,3)lr
+(Fy0,4 −Fy,4)lr.

From Figures 2–6 it can be seen that OLK-ESC completes the
maneuver both in shorter time and less driven distance. The
time for executing the maneuver is for OLK-ESC t f = 1.0 s
and for UBT-ESC t f = 1.2 s, and the total driven distance is
s f = 14.8 m and s f = 17.7 m, respectively.
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Fig. 2. Geometric trajectories for UBT-ESC and OLK-ESC,
with η = 100, γµ = 1, and R = 30 m. The black bars
represent the vehicle position and heading direction for the
initial, half-way, and final time-instant.

When analyzing the control strategies for UBT-ESC and OLK-
ESC, seen in Figures 3 and 4, the most apparent difference is
the emphasis on braking versus creating a yaw moment. UBT-
ESC initially applies heavy braking at the left wheels, which
subsequently is reduced as the normal forces Fz for these wheels
decrease as a result of lateral load transfer. With this strategy,
a positive yaw-moment contribution is always achieved, see
∆M in Figure 6, acting in the same direction as the total yaw
moment, see MZ in Figure 5.

For OLK-ESC, however, braking is applied throughout the
whole maneuver, see T in Figure 4. Initially, a large braking
effort is applied on all wheels, followed by reduced braking
on all wheels except wheel 4. Because of the longitudinal
and lateral load transfer, the normal load Fz,3 is significantly
reduced. Hence, only small tire forces can be realized, and the
braking is therefore rapidly decreased for this wheel, see T3. For
the front wheels, the braking is gradually reduced as the steer
angle increases and the front lateral forces develop. Moreover,
because of the lateral load transfer, larger tire forces can be
utilized at the outer wheels (wheel 2 and 4), and a larger braking
effort can thus be employed at these wheels. Notice that this
will contribute to a negative ∆M (see Figure 6) counteracting
the yaw moment MZ in Figure 5. The differences between UBT-
ESC and OLK-ESC in braking effort throughout the maneuver
is also clearly seen in FX , Figure 5. However, UBT-ESC leads to
a solution with larger lateral forces FY (mainly around s = 6 m)
and, in the initial phase, a larger yaw moment MZ . Hence, OLK-
ESC results in a strategy with more emphasis on braking, while
sacrificing some of the cornering abilities in terms of lateral
forces FY and yaw moment MZ .

6. DISCUSSION

As an alternative to traditional ESC systems (T-ESC), whose
maximum safety potential is captured by the system called
UBT-ESC, we have considered an improved safety system
principle, OLK-ESC, utilizing all wheels for braking and the
situation awareness emerging in modern vehicles. The obtained
results from a quantitative comparison based on optimal control
using the UBT-ESC and OLK-ESC control principles exhibit
several interesting differences. First, the control strategy ob-
served for OLK-ESC in Section 5 differs considerably from
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Fig. 6. The braking forces contribution to the yaw moment.

the approach of more traditional stability control incorporating
yaw rotations. Regarding methodology, the most obvious is the
heavy braking leading to decreased velocity (and thus kinetic
energy), instead of focusing on applying an asymmetric braking
behavior achieving a yaw moment such that the vehicle starts
to rotate in the initial phase. A physical interpretation of this
is that reduced kinetic energy makes it easier to stay in lane.
Moreover, the fact that OLK-ESC favors braking to such extent
that it generates a moment counteracting the yaw rotation is
surprising (see Figure 6).

A series of optimal control problems was solved, where the
maximum initial velocity was determined for different friction
coefficients and curve radii (see Tables 4–5). It is clear that
the OLK-ESC performs significantly better than UBT-ESC for
all considered cases. The performance improvement over UBT-
ESC that OLK-ESC can deliver in terms of higher entry speed is
consistent regardless of friction coefficient and road-curvature
radius. Only minor deviations are seen in the relative differ-
ence in initial velocity for the different situation parameters.
The gain achieved with OLK-ESC is approximately 8%, when
measured as increased initial velocity that can be handled. As
mentioned in the introduction, it is to be noted that UBT-ESC
determined the optimal combination of steering input and yaw
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moment generation with full vehicle state and road informa-
tion, which corresponds to the best achievable performance
for this control principle in the given situation, but clearly
overestimates the capabilities of traditional ESC approaches.
Consequently, the safety performance increase from T-ESC to
OLK-ESC in an implementation should be significant.

In Section 1, the kinetic energy was introduced as a measure of
severity in impact situations. The kinetic energy is proportional
to the square of the velocity; hence, reducing the vehicle veloc-
ity prior to a collision is essential. Based on the results achieved
for OLK-ESC, with heavy initial braking, it is plausible that this
system would be beneficial also from this perspective compared
to traditional approaches.

Considering the promising results obtained for OLK-ESC in
this paper, a natural question is the feasibility and implemen-
tation of its strategy. One option would be to employ direct
onboard optimization, but with the computation times reported
in Section 5 this is not possible to realize today. Nevertheless,
with the current trend with decreasing computation times and
increasing computing power in vehicles, the vision of imple-
mentation is there. Moreover, other approaches based on offline
optimization (for example to the purpose of creating a library
of optimal solutions parametrized for a few key variables) or
approximation of parts of the vehicle model.

7. CONCLUSIONS

To study lane-keeping ESC, a quantitative method has been
devised based on two vehicles employing two different safety-
system principles, UBT-ESC and OLK-ESC. The dynamics are
modeled using double-track models with load transfer, and with
explicit modeling of wheel dynamics and tire-forces. The com-
putational method used is optimal control with the lane borders
as boundary conditions in the problem formulation. The results
showed that initial full braking is advantageous compared to
traditional ESC strategies resulting in yaw rotation. At the same
time, reduced kinetic energy also decreases the severity of a
crash and the numbers presented indicate clear significance of
this. Hence, a lane-keeping ESC has double benefit since it will
both increase the possibility of avoiding an accident by staying
in lane, and decrease the severity of an accident if it should
happen nevertheless.
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