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Abstract: This study deals with the problem of actuator fault identification and accommoda-
tion in particulate processes with discretely sampled measurements. The methodology involves
reducing the infinite-dimensional system describing the particulate process to obtain a finite-
dimensional model that captures the process dominant dynamics. A state feedback controller is
designed based on the reduced-order model, and a zero-order hold, inter-sample model predictor
is used to compensate for the discrete availability of measurements. The inter-sample model
predictor is updated at each sampling time once the actual measurements become available.
The location and magnitude of the actuator faults are estimated at each sampling time by
solving a moving-horizon least-squares optimization problem online. The closed-loop stability
properties of the sampled-data system are explicitly characterized in terms of the sampling
period, the controller design parameters, and the actuator effectiveness (absence or extent of
malfunction), which are subsequently used in the fault accommodation approach that maintains
closed-loop stability after a fault occurs. The ability of the proposed methodology to identify
and handle simultaneous and consecutive, as well as full and partial faults, are illustrated using
a simulated model of a non-isothermal continuous crystallizer.

Keywords: Sampled-data control, fault-tolerant control, fault identification, actuator faults,
particulate processes

1. INTRODUCTION

Fault-tolerant control of particulate processes is a fun-
damental problem encountered in a wide range of indus-
tries, including the agricultural, chemical, food, mineral,
and pharmaceutical industries. This problem is significant
given that malfunctions in the control system or process
equipment can negatively impact the particle size distri-
bution of interest and thus harm the desired end product
quality. This topic has received limited attention in the
process control literature despite the significant research
work on the synthesis and implementation of feedback
control systems on particulate processes (e.g., see Semino
and Ray (1995); Hu et al. (2005); Christofides (2002);
Doyle et al. (2003); Larsen et al. (2006); Du and Ydstie
(2012); Christofides et al. (2008)).

Major bottlenecks in the design of model-based fault-
tolerant control systems for particulate processes include
the infinite-dimensional nature of the process model as well
as the complex and uncertain dynamics of particulate pro-
cesses. An effort to address these problems was initiated in
El-Farra and Giridhar (2008) where a methodology for the
detection and handling of control actuator faults in par-
ticulate processes was developed based on low-order mod-
els that capture the dominant process dynamics. These
results were generalized in Giridhar and El-Farra (2009)
to address the problems of fault isolation and robustness
against model uncertainty.

A number of subsequent studies were carried out to
account for various implementation issues that arise in
the design of fault-tolerant control systems for particulate
processes, including, for example, the discrete and delayed
availability of output measurements (Napasindayao and
El-Farra (2013b)), and the presence of multi-rate sampling
and sensor faults (Napasindayao and El-Farra (2013a)).

In both studies, fault detection was achieved by designing
a fault-free time-varying alarm threshold off-line and later
comparing this with values of the residual for the entire
duration of the process. However, the scheme for fault
detection was stability-based, leaving “small” malfunc-
tions that do not lead to instability to go undetected.
In designing this threshold, there are competing design
requirements that need to be considered. For example,
there is the need to tighten the threshold for timely fault
detection; however, an extremely tight bound may result
in false alarms. It was also assumed in those studies that a
fault identification scheme was already in place which was
able to determine the nature and location of the fault. This
information was utilized in determining the appropriate
response for fault accommodation. After each fault, a new
alarm threshold for fault detection had to be calculated
and used since the closed-loop system will have different
stability properties after each fault accommodation event.

In this work, our aim is to address some of these limitations
by integrating within the fault-tolerant control methodol-
ogy a fault identification mechanism that allows for imme-
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diate detection of faults and/or malfunctions while deter-
mining its location and magnitude. One key element of the
proposed scheme is that it may still be used for fault iden-
tification even after fault accommodation. This allows for
timely fault detection in the event of consecutive system
faults. This is an advantage over the previous detection
schemes where a new alarm threshold had to be calculated
after every fault accommodation event. This recalculation
may result in delays in the fault detection preceding a
fault. Timely or even instantaneous fault identification is
important even for faults that do not immediately result
in an unstable behavior since these malfunctions may later
on result in poor plant performance or even instability.
In addition, rapid detection will also allow for systematic
scheduling of plant maintenance and equipment repair or
replacement.

Motivated by the above considerations, we develop in this
study a model-based framework for the integrated detec-
tion, identification and accommodation of actuator faults
in sampled-data particulate processes described by com-
plex population balance equations. Initially, model reduc-
tion techniques are applied to derive a finite-dimensional
model to be used in designing a stabilizing sample-and-
hold state feedback controller. This controller uses past
values of the state measurements in between sampling
times. The controller then utilizes updated state measure-
ments when sensor readings are received at discrete times.
Through a stability analysis, an explicit characterization
of the behavior of the closed-loop system is obtained as a
function of the controller design parameters, the update
time, and the actuator health. This characterization is
then used as a metric in determining the appropriate post-
fault response once a fault is detected. Fault identification
is carried out by solving a data-based moving-horizon
optimization problem. Data from the fault identification
scheme are used in the fault accommodation which in-
volves modifying the controller design parameters based
on the stability plots generated from the stability analysis.
Finally, the proposed fault-tolerant control framework is
applied to a simulated model of a non-isothermal con-
tinuous crystallizer and is shown to effectively handle
simultaneous and consecutive faults.

2. MOTIVATING EXAMPLE

A well-mixed non-isothermal continuous crystallizer is
used throughout the paper to illustrate the design and
implementation of the model-based fault detection and
accommodation to be developed. Particulate processes are
characterized by the co-presence of a continuous and dis-
persed phase. The dispersed phase is described by a par-
ticle size distribution whose shape influences the product
properties and ease of product separation. Hence, a popu-
lation balance on the dispersed phase coupled with a mass
balance for the continuous phase is necessary to accurately
describe, analyze, and control particulate processes. Under
the assumptions of spatial homogeneity, constant volume,
mixed suspension, nucleation of crystals of infinitesimal
size, mixed product removal, and a single internal particle
coordinate—the particle size (r); a dynamic crystallizer
model can be obtained from population, mass and energy
balances:
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where n(r, t) is the number of crystals of radius r ∈ [0,∞)
at time t per unit volume of suspension; τr is the residence
time; c is the solute concentration in the crystallizer; ρ
is the particle density; ǭ = 1 −

∫
∞

0 n(r, t)π 4
3r

3dr is the
volume of liquid per unit volume of suspension; cs =
−3T̄ 2 + 38T̄ + 964.9 is the concentration of the solute
at saturation computed using T̄ = T−273

333−273 ; T is the
crystallizer temperature; c0 is the concentration of solute
entering the crystallizer; k̄1, k̄2 and k̄3 are constants;
and δ(r − 0) is the standard Dirac function. The term
containing the Dirac function accounts for the nucleation
of crystals of infinitesimal size while the first term in the
population balance represents the particle growth rate.
The crystallizer exhibits highly oscillatory behavior due to
the relative nonlinearity of the nucleation rate as compared
to the growth rate. This results in process dynamics that is
characterized by an unstable steady-state surrounded by a
stable periodic orbit. The control objective is to suppress
the oscillatory behavior of the crystallizer in the presence
of actuator faults. This is carried out by stabilizing the
system at the unstable steady-state which corresponds to
a desired particle size distribution by manipulating the
solute feed concentration (c0) and the residence time (τr).

Through the method of moments, a sixth-order ordinary
differential equation system is obtained to describe the
temporal evolution of the first four moments of the particle
size distribution, the solute concentration, and the tem-
perature (see Chiu and Christofides (1999) for a detailed
derivation). The reduced-order model can be cast in the
following form:
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For typical values of the process parameters, the global
phase portrait of the system of (2) has a unique unsta-
ble equilibrium point surrounded by a stable limit cy-
cle at xs = [µs

0 µs
1 µs

2 µs
3 cs T s]T =

[0.0047 0.0020 0.0017 0.0022 992.95 298.31]T .
Sampled measurements of the moments (µ0, µ1, µ2, µ3),
the solute concentration (c), and temperature (T ) are
used to control the process. These state measurements
are collected discretely and sent to the controller where
the control action is calculated and then sent to the ac-
tuator to effect the desired change in the process state.
For simplicity, we consider the problem on the basis of
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the linearization of the process model around the desired
steady state. The linearized process model takes the form:

ẋ(t) = Ax(t) +Bu(t) (3)

where x(t) is the vector of state variables; u is the
manipulated input. The state vector is expressed as a
deviation variable, x(t) = χ(t) − xs, where χ(t) =
[µ0(t) µ1(t) µ2(t) µ3(t) c(t) T (t)]T ; and A and B
the state and input Jaacobian matrices, respctively.

Over the next sections, we describe the control architecture
and the fault identification scheme.

3. DATA-BASED FAULT IDENTIFICATION

3.1 Continuous and discrete fault models

To model the actuator faults, the reduced, linearized
system dynamics is written in the following form:

ẋ(t) = Ax(t) +Bαu(t) (4)

where α = diag{α1, α2} is a diagonal fault matrix that
accounts for the presence of actuator faults or malfunctions
in the system. Each of the diagonal elements in the fault
matrix (α) characterizes the local health status of the
individual actuators, where α1 represents the health status
of the actuator used to vary the inlet concentration (c0),
and α2 represents the health status for the actuator used
to adjust the residence time (τr). The entries of the
fault matrix (α) take values between 0 and 1, where 0
denotes total actuator failure, while 1 denotes the fault-
free state. In the absence of faults, α = I where I is the
identity matrix. The values of α1 and α2 can therefore be
thought of as measures of the severity of the fault, where a
smaller value implies a more severe fault that reduces the
effectiveness of the control actuator.

Since fault identification will be carried out using a set of
discrete historical input and state measurements (collected
at the sampling times), the continuous-time model in (4)
needs to be converted into a discrete-time form in order
to more readily compare the model predictions with the
historical data. The discrete-time system takes the form:

x[j + 1] = Âx[j] + B̂αu[j], j ∈ {0, 1, · · · } (5)

where Â = eA∆, B̂ = A−1(eA∆−I)B, ∆ = τj+1−τj is the
update period which represents the time interval between
discrete consecutive measurements, and j is the update
instance.

3.2 Data-based fault identification

Data-based fault identification involves estimating the
value of the fault parameter matrix α. This is done using
past data of the state measurements and the manipulated
input. These values are fitted to the faulty process model
in (5) using the cost function:

J(ζj , α̂) =

j−NI+1∑

p=j

(∥∥∥x[p+ 1]− Âx[p]− B̂α̂u[p]
∥∥∥
2
)

(6)

where ζj = {(x[j − p], u[j − p])|p = 1, 2, · · · , NI} denotes
the past NI historical data of the state measurements and
the manipulated inputs for each jth sampling instance.
Using a large value for NI results in higher accuracy for
calculated values obtained for the fault estimation matrix
α̂. However, this may also result in a high computational
load as well as discontinuities in the values of α̂ particularly
right after a fault has occurred since the pool of I/O data
used in the calculations will involve data both before and
after the fault. This parameter should therefore be selected
appropriately.

Using the cost function in (6), a finite-horizon least squares
optimization problem can be formulated as follows:

min
α̂

J(ζj , α̂)

s.t. 0 ≤ α̂i ≤ 1, i ∈ {1, 2}
(7)

Note that the calculated values of the fault matrix α̂ may
slightly differ from the actual values of α particularly at
the onset of the fault.

4. FINITE-DIMENSIONAL SAMPLED-DATA
CONTROL SYSTEM DESIGN

4.1 State feedback controller synthesis

The control system design involves first synthesizing
a state feedback controller that stabilizes the finite-
dimensional system when the sensors continuously trans-
mit data to the controller. We consider a state feedback
controller of the form:

u(t) = Kx(t) (8)

where the controller gain (K) is chosen to ensure that
the eigenvalues of A+ BK lie in the open left-half of the
complex plane.

4.2 Sampled-data controller implementation

The implementation of the controller of (8) requires con-
tinuous availability of the sensor measurements. Due to
measurement sampling, the controller cannot be directly
implemented since the measurements are only available at
discrete time instances. To compensate for the unavail-
ability of continuous measurements, a sample-and-hold
scheme is used wherein the controller utilizes previous
state measurements when current measurements are not
available. At each sampling time, the corresponding values
of the measured states are instantaneously transmitted to
the controller and are used to update the zero-order hold
model states. The model-based state feedback controller is
then implemented as follows:

u(t) = Kx̄(t), t ∈ [τj , τj+1)
˙̄x(t) = 0, t ∈ [τj , τj+1)

x̄(τj) = x(τj), j ∈ {0, 1, · · · }
(9)

where x̄ is a model state used in generating the discrete
control by utilizing previously held state values x(τj) until
the next state measurement x(τj+1) becomes available, j
denotes each sampling instance, and τj are the update
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times when values of the state are collected. It should be
noted that the zero-order hold model is used here only as
an example for illustration purposes, and that other inter-
sample model predictor schemes can be used in lieu of
the zero-order hold (see, for example, Montestruque and
Antsaklis (2003); Napasindayao and El-Farra (2013b)).

4.3 Closed-loop stability analysis

The objective of this section is to characterize the sampled-
data closed-loop system behavior in terms of the sampling
rate, ∆; the controller gain,K; and the actuator health pa-
rameter, α. This characterization will be used later in the
design of the fault accommodation logic. To investigate the
stability properties of the finite-dimensional sampled-data
closed-loop system, we first define the model estimation
error as e = x(t) − x̄(t), where e represents the differ-
ence between the model state given in (9) and the actual
measured state. Then, defining the augmented state vector
ξ(t) = [x(t) x̄(t) e(t)]T , the finite-dimensional sampled-
data closed-loop system is formulated as a switched system
and written in the form:

ξ̇(t) = Fξ(t), t ∈ [τj , τj+1)

e(τj) = 0, j ∈ {0, 1, · · · }
(10)

where F is a matrix defined as:

F =

[
A+BαK −BαK
A+BαK −BαK

]
, (11)

It can be verified (e.g., see Napasindayao and El-Farra
(2013b)) that the augmented closed-loop system described
by (10)-(11), subject to the initial condition ξ(0) =
[x(τ0) x̄(τ0) e(τ0)]

T := ξ0, has a response of the form:

ξ(t) = eF (t−τj)N jξ0 (12)
for t ∈ [τj , τj+1), ∀ j ∈ {0, · · · }, where N is given by:

N = Ise
F∆ (13)

where Is = diag{I, O} is a diagonal matrix that ac-
counts for the model update at each transmission time
which also resets the estimation error e to zero. The null
matrix O accounts for this update. Based on (12)-(13),
a necessary and sufficient condition for stability of the
finite-dimensional sampled-data closed-loop system can be
obtained. Specifically, consider the sampled-data closed-
loop system of (9) and the augmented system of (10)-
(11) whose solution is given by (12)-(13). Then the zeros
solution, ξ = [x x̄ e]T = [0 0 0]T , is exponentially stable if
and only if the spectral radius of the matrix N is less than
1, i.e., r(N(∆)) < 1. This ensures stability by limiting the
growth of the closed-loop state within each update period
as the measurement sampling is repeatedly executed over
time.

An examination of the structure ofN in (13) indicates that
its spectral radius is dependent on the sampling period,
∆, and on the augmented system matrix F which, in
turn, depends on the actuator health parameter, α, and
the controller gain, K. All these factors are tied together
through the stability condition which can, therefore, be

used to examine and quantify the various interdependen-
cies between these factors. For instance, if the sampling
rate and controller gain are fixed, one can determine the
level of actuator malfunction that the system can still
tolerate without leading to instability. Alternatively, for
a given fault, one can determine the range of controller
gains or sampling periods that can be used to compensate
for this fault.

5. FAULT-TOLERANT CONTROL

In this section, we use the non-isothermal continuous crys-
tallizer example introduced in Section 2 to illustrate the
proposed fault-tolerant scheme. Discrete measurements of
the moments of the particle size distribution (µ0, µ1, µ2,
µ3), concentration (c), and temperature (T ), are used to
control the system. The inter-sample state estimator is
used to estimate values of the states using held values
of past state measurements when actual sensor measure-
ments are unavailable. The simulations are performed un-
der a sampling period of ∆ = 6 min.

The system is controlled by simultaneously manipulating
the inlet solute concentration (c0), and the residence time
(τr). The stability regions are obtained using the stability
condition λmax(N) < 1 which is derived from the closed-
loop stability analysis of the test matrix N in (13) (see
Fig.1). These stability conditions were obtained as an
explicit function of the controller gain (K), sampling
period (∆), and the fault parameter matrix (α).

Fig.1 depicts the stability region as a function of the health
status of the actuators – with α1 corresponding to the
manipulated inlet concentration (c0) and α2 to that of the
residence time (τr). The blue area enclosed by the unit
contour line shows the region where the process is stable
since λmax(N) < 1 (i.e., the set of faults that do not lead to
instability), while the pink region denotes the set of faults
that lead to instability where λmax(N) > 1. Such a plot
is useful in predicting the behavior of the process and in
determining the appropriate fault compensation response
once a fault is identified. A partial malfunction in any of
the actuators could possibly occur such that the operating
point is shifted somewhere within the stability region.
Such faults are not detrimental to process stability and;
therefore, may not warrant immediate fault accommoda-
tion or control reconfiguration. Based on this knowledge,
the plant supervisor is then able to strategically prioritize
which specific control loop or plant equipment requires
maintenance or replacement through this stability-based
closed-loop analysis. In cases where there are more vari-
ables to consider (e.g., a larger number of manipulated
variables), instead of a two-dimensional contour plot, a
look-up table with values of the spectral radius of N for
varying magnitudes of the process parameters may be
generated off-line and then used to judge if an identified
fault warrants immediate response.

Among the highlights of the data-based fault identification
scheme developed in the study is the added capability
of identifying partial malfunctions that do not result in
system instability unlike past studies which made use of
a stability-based alarm threshold. This scheme results in
a more proactive approach in dealing with malfunctions
instead of a reactive one which triggers action when there
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Fig. 1. Region of stability as a function of the actuators’
health parameters used to determine whether fault
accommodation or system reconfiguration is required
(∆ = 6min). Contour plot of λmax(N) for pole values
[−1− 2− 3− 4− 5− 6].

is a threat of instability. Machine repair carried out at an
early stage may prove to be less costly and time-consuming
as opposed to the urgent repairs or fault accommodation
following a more severe and destabilizing malfunction.

5.1 Fault identification under partial faults

For both the simultaneous and consecutive faults con-
sidered below, the controller gain (K) was calculated by
specifying the location of the poles of A+BK at [−1 −2 −
3 − 4 − 5 − 6]. Fault identification was carried out using
the past 10 data points (NI = 10) of the state measure-
ments and manipulated input as well as the discrete model
generated in (5) to solve for the fault parameter estimation
matrix (α̂) in the optimization problem in (7). Actuator
faults in both manipulated variables were investigated and
the simulation was carried out under a sampling period
(∆) of 6 min.

The first case involves a simultaneous fault that occurs
after 10 h, with α1 = 0.8 and α2 = 0.5, where the actuator
handling the inlet concentration (c0) become 20% effective
while the other actuator used in varying the residence time
(τr) suffers a 50% loss in performance (Figs.1(a)-(b)). The
second case involves a consecutive fault occurring after 5
h followed by another one at 10 h. The first fault causes
a −10% step change in the performance of the actuator
responsible for adjusting the residence time (τr) while the
second fault is a gradual fault that causes a linear decline
in the control action of the actuator manipulating the inlet
concentration (c0) (Fig.1(c)-(d)).

In both cases, the fault identification scheme is shown
to be effective and capable of almost instantaneously lo-
cating and quantifying the faults. However, jumps in the
calculated values of the fault estimation parameters were
occasionally observed right after a fault had taken place.
These jumps are visible even in the plot of a fault esti-
mation parameter that was not assigned to monitor that
particular actuator at fault. This behavior is attributed
to the sudden disruptions in the data points used in the
data-based identification method which includes values of
the state and the manipulated variable before and after
the fault. This is why the optimization horizon (NI) has
to be properly selected – small values result in inaccu-

racies in the fault identification while large values lead
to sharp jumps or prolonged settling times. Due to this
behavior, plant response should be suspended until the
fault identification scheme settles to a final value. These
sharp discontinuities; however, may provide insight on the
health status of a neighboring actuator. In the case of
the consecutive faults, for example, two separate faults
were introduced at 5 h and 10 h. A plot of the fault
estimation parameter devoted to the actuator responsible
for manipulating the inlet concentration (c0) reveals a
spike at exactly 5 h when another malfunction affects the
neighboring actuator (Fig.2(c)). Based on that plot alone,
one can infer that a malfunction has occurred within the
system.
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Fig. 2. Actual and calculated values of the fault estimation
parameters for the manipulated inlet concentration
(c0), α1, and the residence time (τr), α2, under ∆ = 6
min. Plots (a)-(b): Simultaneous faults. Plots (c)-(d):
Consecutive faults.

5.2 Fault identification and accommodation

To illustrate the fault accommodation capabilities of the
control architecture, a destabilizing fault is introduced
after 10 h of operation, causing the actuator controlling
the inlet concentration (c0) to drop its effectiveness from
100% to 45%. Initially, for the fault-free system, we select a
value for the controller gain such that the poles of A+BK
are placed at [-9.5 -2 -3 -4 -5 -6] under a 6 min sampling
period. As can be seen from Fig.3, the fault identification
scheme is able to identify the location and magnitude of
the fault; and it is found that the fault is in α1. The
spectral radius of N was calculated using the original
parameter values and the new faulty condition, and the
fault was found to be destabilizing since the new operating
point was now inside the pink unstable region (Fig.4(a)).
To avoid instability, fault accommodation was carried out
using the stability region plot in Fig.4(a). The x-axis in
the plot is based on the first pole location which is the
only pole that was modified. This pole value is used as a
means to calibrate the selection of the multi-dimensional
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controller gain (K). The controller gain was adjusted by
shifting the location of the poles of A+BK to [−6.4− 2−
3 − 4 − 5 − 6]. This caused the operating point to return
to the stable region. The closed-loop simulation profiles
of the inlet outlet solute concentrations in Figs.4(b)-(c)
demonstrate the destabilizing effect of the fault in the
absence of fault accommodation. These undesired effects
were avoided through timely fault identification and fault
accommodation which maintained closed-loop stability
even after a potentially disruptive fault (see Figs.4(d)-(e)).
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Fig. 3. Fault identification after a potentially destabilizing
fault at 10 h with ∆ = 6 min.
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Fig. 4. Fault identification and accommodation re-
establishes closed-loop stability after a potentially
destabilizing fault. Plot (a): Region of stability based
on the health of the actuator controlling the inlet
concentration (c0), α1, and the pole value (λ) (∆ =
6min, α2 = 1). Plots (b)-(c): Closed-loop profiles of
the inlet concentration (c0) (b) and the outlet solute
concentration (c) without fault accommodation. Plots
(d)-(e): Closed-loop profiles of the inlet concentration
(c0) (d) and the outlet solute concentration (e) under
fault accommodation.
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