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Abstract: The utility company has many motivations for modifying energy consumption
patterns of consumers such as revenue decoupling and demand response programs. We model
the utility company–consumer interaction as a reverse Stackelberg game and present an iterative
algorithm to design incentives for consumers while estimating their utility functions. Incentives
are designed using the aggregated as well as the disaggregated (device level) consumption
data. We simulate the iterative control (incentive design) and estimation (utility learning and
disaggregation) process for examples.
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1. INTRODUCTION

Currently, most electricity distribution systems only pro-
vide aggregate power consumption feedback to consumers,
in the form of a energy bill. Studies have shown that
providing device-level feedback on power consumption pat-
terns to energy users can modify behavior and improve
energy efficiency (Gardner and Stern, 2008; Laitner et al.,
2009).

The current infrastructure only has sensors to measure
the aggregated power consumption signal for a household.
Even advanced metering infrastructures currently being
deployed have the same restriction, albeit at high reso-
lution and frequency (Armel et al., 2013). Additionally,
deploying plug-level sensors would require entering house-
holds to install these devices. Methods requiring plug-level
sensors are often referred to as intrusive load monitoring,
and the network infrastructure required to transmit high
resolution, high frequency data for several devices per
household would be very costly.

A low cost alternative to the deployment of a large number
of sensors is non–intrusive load monitoring. We consider
the problem of nonintrusive load monitoring, which, in the
scope of this paper, refers to recovering the power con-
sumption signals of individual devices from the aggregate
power consumption signal available to our sensors. This is
also sometimes referred to as energy disaggregation, and we
will use the two terms interchangeably. This problem has
been an active topic of research lately. Some works include
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We propose that the utility company should use incentives
to motivate a change in the energy consumption of con-
sumers. We assume the utility company cares about the
satisfaction of its consumers as well as altering consump-
tion patterns, but it may not be able to directly observe the
consumption patterns of individual devices or a consumer’s
satisfaction function.

In brief, the problem of behavior modification in energy
consumption can be understood as follows. The utility
company provides incentives to myopic energy consumers,
who seek to maximize their own utility by selecting energy
consumption patterns. This can be thought of as a control
problem for the utility company. Additionally, the utility
company does not directly observe the energy consumption
patterns of individual devices, and seeks to recover it
from an aggregate signal using energy disaggregation. This
can be thought of as an estimation problem. Further, the
consumer does not report any measure of its satisfaction
directly to the utility. Thus, it must be estimated as well.

There are many motivations for changing energy con-
sumption patterns of users. Many regions are beginning
to implement revenue decoupling policies, whereby utility
companies are economically motivated to decrease energy
consumption (Eom, 2008). Additionally, the cost of pro-
ducing energy depends on many variables, and being able
to control demand can help alleviate the costs of inaccurate
load forecasting. Demand response programs achieve this
by controlling a portion of the demand at both peak
and off-peak hours (Mathieu et al., 2012). We propose a
model for how utility companies would design incentives
to induce the desired consumer behavior.

In this paper, we consider three cases of utility learning
and incentive design. In the first, the utility company
designs an incentive based entirely on the aggregate power
consumption signal. We propose an algorithm to estimate
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the satisfaction function of the consumer based on the
consumer’s aggregated power consumption signals in Sec-
tion 3. Then, in Section 4.1, we consider the case where the
utility company knows the power consumption signal of
individual devices and an unknown satisfaction function.
Finally, in Section 4.2, we consider the case when the
utility company only has access to the aggregated power
consumption signal, and uses an energy disaggregation
algorithm to recover the power consumption of individ-
ual devices. This disaggregated signal is used to allocate
incentives, but the results will depend on the accuracy
of our estimator, the energy disaggregation algorithm. We
conclude the paper by showing the results from simulations
of two examples of designing incentives while estimating
the consumer’s satisfaction function in Section 5. Finally,
in Section 6 we make concluding remarks and discuss
future research directions.

Utility Company

Utility
Learning/ NILM

y

Incentive

{γi}Di=1

{ŷi}Di=1

Fig. 1. Closing the Loop: Behavior modification via incen-
tives γi is a control problem. The consumer decides
when to use devices resulting in device level consump-
tion yi. Non–intrusive load monitoring (NILM) is used
to estimate problem device level usage ŷi. Similarly,
utility learning is an estimation problem

2. INCENTIVE DESIGN PRELIMINARIES

A reverse Stackelberg game is a hierarchical control prob-
lem in which sequential decision making occurs; in partic-
ular, there is a leader that announces a mapping of the
follower’s decision space into the leader’s decision space,
after which the follower determines his optimal decision
variables (Groot et al., 2012).

Both the leader and the follower wish to maximize their
pay–off determined by the functions JL(v, y) and JF (v, y)
respectively. The leader’s decision is denoted v; the fol-
lower’s decision, y; and the incentive, γ : y 7→ v. The basic
approach to solving the reversed Stackelberg game is as
follows. Let v and y take values in V ⊂ R and Y ⊂ R,
respectively; JL : R× R→ R; JF : R× R→ R. We define
the desired choice for the leader as

(vd, yd) = arg max
v,y

{
JL(v, y)| v ∈ V, y ∈ Y }. (1)

The incentive problem can be stated as follows:

Problem 1. Find γ : Y → V , γ ∈ Γ such that

arg max
y∈Y

JF (γ(y), y) = yd (2)

γ(yd) = vd (3)

where Γ is the set of admissible incentive mechanisms.

3. INCENTIVE DESIGN USING AGGREGATE
POWER SIGNAL

We cast the utility–consumer interaction in a reversed
Stackelberg game framework in which the utility company
is the leader and the consumer is the follower (see Fig-
ure 1). The leader’s true utility is assumed to be given
by

JL(v, y) = g(y)− v + βf(y) (4)

where g(·) is a concave function of the consumer’s energy
usage y over a billing period, v is the value of the incentive
paid to the consumer, f : Y → R is the consumer’s
satisfaction function for energy consumption which we
assume is concave and β is a multiplying factor capturing
the degree of benevolence of the utility company.

We assume that v ∈ V = [0, v̄] since the utility company
should not take additional money away from the consumer
on top of the cost of their usage and v should be less
than some maximal amount the leader is willing to pay
to the consumer v̄. Similarly, let y ∈ Y = [0, ȳ] where ȳ
is the upper bound on the allowed energy usage and let
Y̊ = (0, ȳ).

In a regulated market with revenue decoupling in place, a
simplified model may consider

g(y) = −y (5)

representing the fact that the utility wants the consumer
to use less energy. Similarly, if the utility company has
aspirations to institute a demand response program, a
simplified model may consider

g(y) = −
(
y − yref

)2
(6)

where yref is the reference signal prescribed by the demand
response program.

The consumer’s true utility is assumed to be

JF (γ(y), y) = −py + γ(y) + f(y) (7)

where p is the price of energy set and known to all and
γ : Y → R is the incentive mechanism. Thus, the consumer
solves the optimization problem

max
y
{JF (γ(y), y)| y ∈ Y }. (8)

We assume that the consumer is a household who is not
strategic in the sense that they take the incentive γ and
the price p and optimize their utility function without
strategically choosing y. In particular, we assume that the
consumer is myopic in that he does not consider past or
future incentives in his optimization problem.

Incentives are designed by solving Problem 1 where we
assume Γ to be the set of quadratic polynomials from Y
to R.

The leader does not know the follower’s satisfaction func-
tion f(·), and hence, must estimate it as he solves the

incentive design problem. We will use the notation f̂ for
the estimate of the satisfaction function and ĴL and ĴF
for the player’s cost functions using the estimate of f .

We propose an algorithm for iteratively estimating the
agent’s satisfaction function and choosing the incentive
γ(·). We do so by using a polynomial estimate of the
agent’s satisfaction function at each iteration and applying
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first-order optimality conditions. The use of more general
sets of basis functions is left for future research.

Suppose that γ(0) and γ(1) are given a priori. At each
iteration the leader issues an incentive and observes the
follower’s reaction. The leader then uses the observations
up to the current time along with his knowledge of the
incentives he issued to estimate the follower’s utility func-
tion.

Formally, at the k-th iterate the leader will observe
the follower’s reaction y(k) to a delivered incentive γ(k)

where we suppress the dependence of the incentive on
y. The follower’s reaction y(k) is optimal with respect to
JF (γ(k)(y), y) subject to y(k) ∈ Y .

We use the observations y(0), . . . , y(k) to estimate the
parameters in the follower’s satisfaction function given by

f̂ (k)(y) =

j∑
i=0

αiy
i+1 (9)

where j is the order of the polynomial estimate to be deter-
mined in the algorithm and we restrict α = (α1, . . . , αj) ∈
A a convex set, e.g. A = Rj+1

+ .

As in Keshavarz et al. (2011), we assume that an appro-
priate constraint qualification holds and we use Kharush-
Khun-Tucker (KKT) conditions to define a notion of ap-
proximate optimality. Thus, we can allow for some error
in the estimation problem either from measurement noise
or suboptimal consumer choice. In particular, for each

i = 0, . . . , k let γ
(i)

y(i)
= γ(i)(y(i)) and define

r
(i)
ineq = (g`(γ

(i)

y(i)
, y(i)))+, ` = 1, 2 (10)

r
(i)
stat(α, λ

(i)) = ∇JF (γ
(i)

y(i)
, y(i)) +

2∑
`=1

λ
(i)
` ∇gi(γ

(i)

y(i)
, y(i))

(11)

r(i)comp(λ(i)) = λ
(i)
` g`(γ

(i)

y(i)
, y(i)), ` = 1, 2 (12)

where (·)+ = max{·, 0},
g1(γ, y) = −y ≤ 0 and g2(γ, y) = y − ȳ ≤ 0 (13)

with Lagrange multipliers λ(i) = (λ
(i)
1 , λ

(i)
2 ).

Then, for {(γ(i), y(i))}ki=0, we can solve

min
α,λ

{ k∑
i=0

φ(r
(i)
stat, r

(i)
comp)| α ∈ A, λ(i) ≥ 0, i = 0, . . . , k

}
(P-2)

where the inequality for λ(i) is element-wise and φ : R ×
R2 → R+ is a nonnegative convex penalty function (e.g.
any norm on R× R2) satisfying

φ(x1, x2) = 0⇐⇒ {x1 = 0, x2 = 0}. (14)

The optimization problem (P-2) is convex since r
(i)
stat and

r
(i)
comp are linear in α and λ(i) and the constraints are

convex. If we solve (P-2) and φ is zero at the optimal

solution, r
(i)
stat and r

(i)
comp are zero at the optimal solution for

each i. If, in addition, r
(i)
ineq is zero at the optimal solution

for each i, then the estimate f̂ (k) at iteration k is exactly
consistent with the data.

If y(i) ∈ Y̊ , the problem simplifies to a checking a linear
algebra condition. Indeed, consider

ĴF (γ(y), y) = −py + γ(y) + f̂(y). (15)

In the case that f̂ is concave and under our assumption
that the follower is rational and hence plays optimally,
the observation y(i) is a global optimum at iteration
i. Otherwise, the observation y(i) is a local optimum;
the follower plays myopically. In both cases, we use the
necessary condition (Bertsekas, 1999)

∇Ĵ (i)
F (γ(y(i)), y(i)) = 0 (16)

for each of the past iterates i ∈ {0, . . . , k} to determine

estimates of the coefficients in f̂ (k).

At the k-th iteration, we have data {(γ(i), y(i))}ki=0. Since
we require γ(i) ∈ Γ, we can express each γ(i) as

γ(i)(y) = ξ
(i)
1 y + ξ

(i)
2 y2. (17)

Then, using Equation (16), we define

b(i) = p− (ξ
(i)
1 + 2ξ

(i)
2 y(i),d) (18)

and
ỹ
(i)
j =

[
1 2y(i) · · · (j + 1)(y(i))j

]
(19)

for i ∈ {0, . . . , k}.
We want to find the lowest order polynomial estimate of f
given the data. We do so by checking if b(k) ∈ range(Y (k))
where

Y (k) =


− ỹ

(0)
j −
...

− ỹ
(k)
j −

 , b(k) =

b
(0)

...

b(k)

 (20)

starting with j = 2 and increasing it until (20) is satisfied
or we reach j = k. Suppose that it is satisfied at j = N ,

2 ≤ N ≤ k. Then, we estimate f̂ (k) to be an (N + 1)-th
order polynomial. We determine αi for i ∈ {0, . . . , N} by
solving

b(k) − Y (k)α = 0, where α = [α0 . . . αN ]T . (21)

If b(k) /∈ range(Y (k)) for any j ∈ [2, k], we terminate.

Our algorithm prescribes that the leader check if y(i) ∈ Y̊
for each i. If this is the case, then he shall find the minimum
order polynomial given the data as described above. On
the other hand, he shall solve the convex problem (P-2).

Using {αi}ji=0, Ĵ
(k)
L , and Ĵ

(k)
F , the leader solves the incen-

tive design problem. That is, the leader first solves

(v(k+1),d, y(k+1),d) = arg min
v∈V,y∈Y

Ĵ
(k)
L (v, y) (22)

= arg min
v∈V,y∈Y

{
g(y)− v + βf̂ (k)(y)

}
(23)

Then, the leader finds γ(k+1) ∈ Γ such that

arg max
y∈Y

Ĵ
(k)
F (γ(k+1)(y), y) = y(k+1),d (24)

γ(k+1)(y(k+1),d) = v(k+1),d (25)

If y(k+1),d ∈ Y̊ , then since we restrict γ(k+1) to be
of the form (17) the above problem reduces to solving

A(k+1)ξ(k+1) = b̃(k+1) where
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A(k+1) =

[
1 2y(k+1),d

y(k+1),d (y(k+1),d)2

]
, ξ(k+1) =

[
ξ
(k+1)
1

ξ
(k+1)
2

]
, (26)

and

b̃(k+1) =

[
p− α0 − 2α1y

(k+1),d

v(k+1),d

]
. (27)

If b̃(k+1) ∈ range(A(k+1)) then a solution ξ(k+1) exists and
if A(k+1) is full rank, the solution is unique. Otherwise, if
y(k+1),d /∈ Y̊ , we terminate the algorithm.

Remark 1. The algorithm is motivated by the case when
the consumer’s satisfaction function is a polynomial of
order k and the utility company does not know k, by
following the algorithm past even k + 1 iterations, the
utility company will be playing optimally. Alternatively, if
incentives γ(i) were chosen randomly, the utility company
would not know when to stop choosing random γ(i)’s; thus,
after k + 1 iterations would begin playing suboptimally.

Proposition 1. Let f be polynomial of order k+1, y(0) ∈ Y̊
and γ(0), γ(1) be given a priori. Suppose that at each
iteration of the algorithm b(`) ∈ range(Y (`)), rank(Y (`)) =

` + 1, y(i) ∈ Y̊ and b̃(`+1) ∈ range(A(`+1)). Then, after
k iterations the satisfaction function is known exactly
and the incentive γ(k+1) induces the consumer to use the
desired control.

Proposition 2. Suppose that f is polynomial up to order
k+1 and that the leader has k+1 historical measurements

γ(−k), . . . , γ(1), y(−k), . . . , y(1) (28)

such that Y (k) is full rank where y(i) ∈ Y̊ for i = 0, . . . , k,
then the leader can estimate the follower’s satisfaction
function exactly and if there exists an incentive γ(k+1),
then it induces the desired equilibrium.

We conclude this section by providing an example of the
iterative process when f is a concave function.

Example 1. First, we suppose that γ(0), γ(1) ∈ Γ are
chosen a priori and are parameterized as follows:

γ(i)(y) = ξ
(i)
1 y + ξ

(i)
2 y2 (29)

for i ∈ {0, 1}. Then, the procedure goes as follows. The
leader issues γ(0) and observes y(0). Subsequently, he issues
γ(1) and observes y(1). Suppose y(0), y(1) ∈ Y̊ . The leader

determines α1, α0 in the estimation of f̂(y) = α1y
2 +

α0y by computing the derivative of Ĵ
(0)
F (γ(0)(y), y) and

Ĵ
(1)
F (γ(1)(y), y) with respect to y, evaluating at y(0) and

y(1) and equating to zero, i.e. he solves

−p− 2y(0) + 2(α1 + ξ
(0)
2 )y(0) + α0 + ξ

(0)
1 = 0 (30)

−p− 2y(1) + 2(α1 + ξ
(1)
2 )y(1) + α0 + ξ

(1)
1 = 0 (31)

for α0 and α1. If either y(0) or y(1) are on the boundary of
Y , then the leader solves (P-2) for α = (α1, α0).

Using α0, α1, the leader solves the following incentive
design problem for γ(2). First, find (v(2),d, y(2),d) ∈ V × Y
such that

Ĵ
(2)
L (v, y) = −y − v + α1y

2 + α0y (32)

is maximized. Since we restrict to quadratic incentives,
we parameterize γ(2) as in Equation (29) with i = 2. Now,

given the utility Ĵ
(2)
F (γ(2)(y), y), we find ξ

(2)
1 , ξ

(2)
2 such that

arg max
y∈Y

Ĵ
(2)
F (y; ξ

(2)
1 , ξ

(2)
2 ) = y(2),d (33)

ξ
(2)
1 y(2),d + ξ

(2)
2 (y(2),d)2 = v(2),d (34)

Assuming that y(2),d ∈ Y̊ , it will be an induced local
maxima under the incentive γ(2). Hence, Equation (33)
can be reformulated using the necessary condition

∇yĴ (2)
F (y(2),d; ξ

(2)
1 , ξ

(2)
2 ) = 0. (35)

Now, Equations (34) and (35) give us two equations in the

two unknowns ξ
(2)
1 , ξ

(2)
2 that can be solved; indeed,

−p+ ξ
(2)
1 + α0 + 2(ξ

(2)
2 + α1)y(2),d = 0 (36)

ξ
(2)
1 y(2),d + ξ

(2)
2 (y(2),d)2 = v(2),d (37)

Solving these equations gives us the parameters for γ(2).
Now, the leader can issue γ(2) to the follower and observe
his reaction y(2). The leader can then continue in the
iterative process as described above.

4. DEVICE LEVEL INCENTIVE DESIGN USING
DISAGGREGATION ALGORITHM

In a manner similar to the previous section, we consider
that the consumer’s satisfaction function is unknown.
However, we now consider that the utility company desires
to design device level incentives. We remark that the utility
company may not want to incentivize every device; the
process we present can be used to target devices with the
highest consumption or potential to offset inaccuracies in
load forecasting.

4.1 Exact Disaggregation Algorithm

We first describe the process of designing device level
incentives assuming the utility company has a disaggrega-
tion algorithm in place which produces no error. That is,
they observe the aggregate signal and then applies their
disaggregation algorithm to get exact estimates of the
device level usage y` for ` ∈ {1, . . . , D} where D is the
number of devices.

The utility company has the true utility function

JL(v, y) =

D∑
`=1

g`(y`)− v` + β`f`(y`) (38)

and the consumer has the true utility function

JF (γ(y), y) =

D∑
`=1

−py` + γ`(y`) + f`(y`). (39)

The utility company could choose only to incentivize
specific devices such as high consumption devices. This
fits easily into our framework; however, for simplicity we
just present the model in which incentives are designed for
each device.

The implicit assumption that the player utilities are sepa-
rable in the devices allows us to generalize the algorithm
presented in the previous section. Let us be more precise.

We again assume that γ
(0)
` , γ

(1)
` for ` ∈ {1, . . . , D} are

given a priori.

At the k-th iteration the utility company issues an incen-

tive γ
(k)
` for each device ` ∈ {1, . . . , D} and observes the
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aggregate signal y(k). Then they apply a disaggregation

algorithm to determine the device level usage y
(k)
` for

` ∈ {1, . . . , D}.
The utility company forms an estimate of the consumer’s
device level satisfaction function

f̂
(k)
` (y`) =

j∑
i=0

αi,`y
i+1
` (40)

and then solves the problem of finding the αi,`’s by solving
for α` = (α0,`, . . . , αj,`) as in the previous section for each
device ` ∈ {1, . . . , D}.
Proposition 3. For ` ∈ {1, . . . , D}, let f` be polynomial

up to order k` + 1, γ
(0)
` , γ

(1)
` be given a priori, and

y
(0)
` , y

(1)
` ∈ Y̊ . Suppose that at each iteration of the

algorithm b
(m)
` ∈ range(Y

(m)
` ), rank(Y

(m)
` ) = m` + 1,

y
(m)
` ∈ Y̊ , and b̃

(m+1)
` ∈ A(m+1)

` for each ` ∈ {1, . . . , D}.
Then, after

k∗ = max
`∈{1,...,D}

k` (41)

iterations, the satisfaction function is known exactly and

the incentives γ
(k∗+1)
` induce the desired equilibrium.

Note that the notation (·)` indicates the object defined in
Section 3 for the `-th device.

4.2 Disaggregation Algorithm with Some Error

Now, we consider that the leader has some error in his
estimate of the device level usage due to inaccuracies in the
disaggregation algorithm, i.e. the leader determines ŷ` such
that ‖y` − ŷ`‖ ≤ ε where ε > 0 is the resulting error from
the estimation in the disaggregation algorithm. Bounds on
ε can be determined by examining the fundamental limits
of non–intrusive load monitoring algorithms (Dong et al.,
2013b).

We again assume that γ
(0)
` , γ

(1)
` for ` ∈ {1, . . . , D} are

given a priori. Following the same procedure as before, at

the k-th iterate the leader will issue γ
(k)
` for ` ∈ {1, . . . , D}

and observe y(k). Then apply a disaggregation algorithm

to determine ŷ
(0)
` where

‖y` − ŷ`‖ ≤ ε (42)

for ` ∈ {1, . . . , D}. The incentive design problem follows
the same steps as provided in the previous section with the
exception that the y`’s are replaced with the estimated
ŷ`’s and we tolerate an error in solving for the minimal
polynomial estimate of f`.

5. NUMERICAL EXAMPLES

We simulate two examples of designing incentives while
estimating the consumer’s satisfaction function. In both
examples we assume a unit price per unit of energy, i.e.
p = 1.

5.1 Aggregate Signal and Log Satisfaction Function

We simulate a system in which the consumer has the true
utility given by

JF (γ(y), y) = −py + γ(y) + f(y) (43)
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Fig. 2. Estimated satisfaction function f̂ (2) and true sat-
isfaction function f . The true response y∗ = 6.56 and
the desired response yd = 6.5. Notice that the slope
of the estimated satisfaction function and the slope of
the true satisfaction function are roughly equal at yd

and y∗.

where the satisfaction function is

f(y) = 10 log(y + 1). (44)

We assume the utility company is in a regulated market;
hence wants the consumer to consume less. Thus, the
utility company has utility function

JL(v, y) = −y − v + βf(y) (45)

where the benevolence factor is β = 0.75. We let ȳ =
v̄ = 100. We choose two concave incentive function γ(0)(y)
and γ(1)(y) defined as follows: γ(0)(y) = −y2 + 10y and
γ(1)(y) = −y2 + 15y.

We use the algorithm presented in Section 3 to design
incentives while estimating α0 and α1. We simulate the
utility company issuing γ(0) and then γ(1) where the
consumer chooses his optimal response to each of the
incentives. The responses are y(0) = 5.29 and y(1) = 7.58.
After two iterations, we get a reasonable approximation of
the true f and a quadratic incentive γ(2);

f̂ (2)(y) = 2.57y− 0.093y2, γ(2)(y) = 0.33y− 0.05y2. (46)

The optimal power usage under the incentive γ(2) is y∗ =
6.56 and the desired power usage is yd = 6.5. It is clear
that the utility company could do better if he new the true

satisfaction function. Figure 2 shows f̂ (2)(y) and f(y). It
is important to notice that y∗ is nearly equal to yd and at

these two points the slope of f̂ (2) is approximately equal

to that of the true f . This indicates that f̂ (2) is a good
estimate of f .

5.2 Disaggregated Signal

We simulate a system in which the consumer’s the true
utility

JF (γ(y), y) =

10∑
`=1

−py` + γ`(y`) + f`(y`) (47)

where the satisfaction functions f`(y`) are exactly quadratic
for each device ` ∈ {1, . . . , 10};

f`(y`) = α1,`y
2
` + α0,`y` (48)

The utility company’s utility is given by
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Fig. 3. Relative error in estimate of αi,1’s for device 1 with
disaggregation error bound ε = 0.15. α∗i is the true
value. The relative error eventually decreases below
the noise bound ε = 0.15.

JL(v, y) =

10∑
`=1

−y` − v` + β`f`(y`) (49)

where the benevolence factor (i.e. a representation of how
much the utility company cares about the satisfaction
of the consumer) is β` = 1 for each `. The utility
company must disaggregate the aggregated energy signal
y giving rise to estimates ŷ`. If ŷ` = y`, i.e. there is
no error in the disaggregation algorithm, then after two
iterations the utility company would know the satisfaction
function of each device exactly. Let’s explore the case
when the disaggregation algorithm has ε–error. In our
examples we randomly generate noise within a given ε
bound and add that to the true yi’s to simulate the error in
the disaggregation step resulting from the disaggregation
algorithm.

Figure 3 shows the relative error on the estimates of αi,1
for i ∈ {1, 2} as a function of the iteration. The relative
error for other devices are similar. We used the error bound
ε = 0.15 for the disaggregation error. The relative error
decreases as the number of iterations increase.

As we iterate the noise introduced via disaggregation has
minimal impact on the estimate of αi,` for i = {1, 2} and
` ∈ {1, . . . , D}. We note that the designed incentive for this
problem converges to zero as we increase the iterations and
the impact of the noise is minimized. It becomes zero since
the benevolence factor is β` = 1 and the price p = 1; hence,
the agent and the leader have the same utility functions
after the leader learns the agent’s satisfaction function. As
we increase the noise threshold ε, the estimation of αi,`
degrades.

6. DISCUSSION AND FUTURE WORK

We modeled the utility company–consumer interaction as
a reversed Stackelberg game. We defined a process by
which the utility company can jointly estimate the con-
sumer’s utility function and design incentives for behavior
modification. Whether the utility company is interested
in inducing energy efficient behavior or creating an incen-
tive compatible demand response program, the procedure
we present applies. We are studying fundamental limits
of non–intrusive load monitoring in order to determine
precise bounds on the payoff to the utility company when

a disaggregation algorithm is in place and incentives are
being designed. We seek to understand how these funda-
mental limits impact the quality of the incentive design
problem as well as how they can be integrated into a
stochastic contorl framework for incentive design when
faced with non-strategic agents with unknown preferences.

The electrical grid is a social cyber-physical system (S-
CPS) with human actors influencing the trajectory of the
system. Inherent to the study of S-CPS’s are privacy and
security considerations. We remark that consumers may
consider their satisfaction function to be private informa-
tion. We are currently exploring the design of privacy–
aware mechanisms for ε–incentive compatible problems
(Nissim et al., 2012).
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