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Abstract: In this paper we address various forms of identification problems for Boolean
networks (BNs) and for Boolean control networks (BCNs). For the former, we assume to have
a set of infinite or finite support output trajectories and we want to identify a BN compatible
with those trajectories. Conditions for the identified BN to coincide (up to a relabeling) with
the original BN are provided. For BCNs, the problem of identifying a BCN compatible with a
given family of corresponding finite support input/output trajectories is explored.

1. INTRODUCTION

The recent flourishing of papers addressing various as-
pects of Boolean networks (BNs) and Boolean control
networks (BCNs) is mainly credited to the possibility of
fruitfully employing these models (as well as probabilistic
BNs) in a number of emerging research topics, first of
all, genetic regulation networks [15, 24], and consensus
problems [14, 22]. However, their success would have not
been so remarkable were it not for the algebraic framework,
developed by D. Cheng and co-authors [2, 4, 5, 6] to
deal with BNs and BCNs. Indeed, by representing these
logical networks as linear state-space models (operating
on canonical vectors), it has been possible to pose and
solve a number of control problems, by making use of a set
up very similar to the traditional one employed for linear
systems. In addition, for certain control problems, graph-
based techniques, similar to the ones typically adopted for
positive linear systems, have also proved to be effective.
In detail, algebraic representations of BNs and BCNs have
provided a very convenient framework to investigate sta-
bility and stabilizability problems [3, 9, 10], controllability
[17], observability and state observer design [8], and more
recently optimal control problems [11, 16, 25].

The interest in identification problems for logical net-
works was stimulated by biological and genetic applica-
tions [1, 21, 23]. Indeed, it is clear that in those contexts a
mathematical model of the real logical network in general
is not available, and it is necessary to use input/output
data to determine a possible logical network that could
justify those evolutions. This very interesting application
area led D. Cheng and co-workers to investigate the iden-
tification problem for BCNs in a recent paper [7] (see also
[6]). In [7] the problem of determining under what condi-
tions there exists a pair of finite support corresponding 1

input and output trajectories, such that the smallest BCN
compatible with them is just the original BCN generating
them. It turns out that such an input/output pair exists

1 The word “corresponding” is here used to express the concept that
the output trajectory is generated by the BCN corresponding to that
input trajectory and some unknown initial state.

if and only if the BCN is endowed with two very strong
structural properties (controllability and observability).
The goal of our research on this topic is to investigate
the general problem of identifying a possible BCN com-
patible with a given set of corresponding input/output
trajectories, without any assumption on the structure of
the original BCN, nor on its size, and without assuming
that the input/output trajectories we are measuring are
the special ones that allow for the BCN identification.
As a preliminary step in this direction, in Section II we
investigate a number of different identification problems
for BNs, and determine under what conditions a BN can
be correctly identified starting from a specific output tra-
jectory, from a family of output trajectories or from any
output trajectory it generates. Section III provides some
preliminary results, by addressing one specific identifica-
tion problem for BCNs. Starting from a given family S of
input-output trajectories of length T , we look for a BCN
whose input-output behavior on the time interval [0, T−1]
exactly fits the family S. Before proceeding, we introduce
some preliminary notation and mathematical tools.

Notation. Z+ denotes the set of nonnegative integers.
Given k, n ∈ Z+, with k ≤ n, by [k, n] denotes the set
of integers {k, k + 1, . . . , n}. We consider Boolean vectors
and matrices, taking values in B := {0, 1}, with the usual
operations (sum ∨, product ∧ and negation ¬). δik denotes
the ith canonical vector of size k, Lk the set of all k-
dimensional canonical vectors, and Lk×n ⊂ Bk×n the set
of k × n matrices whose columns are canonical vectors.
A matrix L ∈ Lk×n can be represented as a row vector
whose entries are canonical vectors in Lk, namely L =[
δi1k δi2k . . . δink

]
, for suitable i1, i2, . . . , in ∈ [1, k].

The k-dimensional vector with all entries equal to 1 is
denoted by 1k. The (`, j)th entry of a matrix M is denoted
by [M ]`j , while the `th entry of a vector v is [v]`. The
ith column of a matrix M is coli(M). Given a matrix
L ∈ Bk×k (in particular, L ∈ Lk×k), we associate with
it a digraph D(L), with vertices 1, . . . , k. There is an arc
(j, `) from j to ` if and only if the (`, j)th entry of L
is unitary. A sequence j1 → j2 → . . . → jr → jr+1 in
D(L) is a path of length r from j1 to jr+1 provided that
(j1, j2), . . . , (jr, jr+1) are arcs of D(L).
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There is a bijection between Boolean variables X ∈ B and
vectors x ∈ L2, defined by the relationship

x =
[
X
¬X

]
.

We introduce the (left) semi-tensor product n between
matrices (and, in particular, vectors) as follows [6, 17, 19]:
given L1 ∈ Rr1×c1 and L2 ∈ Rr2×c2 (in particular, L1 ∈
Lr1×c1 and L2 ∈ Lr2×c2), we set
L1 nL2 := (L1⊗ IT/c1)(L2⊗ IT/r2), T := l.c.m.{c1, r2},
where l.c.m. denotes the least common multiple. The semi-
tensor product represents an extension of the standard
matrix product, by this meaning that if c1 = r2, then L1 n
L2 = L1L2. Note that if x1 ∈ Lr1 and x2 ∈ Lr2 , then x1 n
x2 ∈ Lr1r2 . For the properties of the semi-tensor product
we refer to [6]. By resorting to the semi-tensor product,
we can extend the previous correspondence to a bijective
correspondence between Bn and L2n . This is possible in
the following way: given X = [X1 X2 . . . Xn ]> ∈ Bn,
set

x :=
[
X1

¬X1

]
n
[
X2

¬X2

]
n . . .n

[
Xn

¬Xn

]
.

2. IDENTIFICATION PROBLEMS FOR BOOLEAN
NETWORKS

A Boolean network (BN) is given by
X(t+ 1) = f(X(t)),

Y (t) = h(X(t)), t ∈ Z+,
(1)

where X(t) and Y (t) denote the n-dimensional state
variable and the p-dimensional output at time t, taking
values in Bn and Bp, respectively. f and h are (logic)
functions, i.e. f : Bn → Bn and h : Bn → Bp. By
resorting to the semi-tensor product n, state and output
Boolean variables can be represented as canonical vectors
in LN , N := 2n, and LP , P := 2p, respectively, and the
BN (1) satisfies [6] the following algebraic description:

x(t+ 1) = Lx(t), t ∈ Z+,
y(t) = Hx(t) (2)

where x(t) ∈ LN and y(t) ∈ LP . L ∈ LN×N and
H ∈ LP×N are matrices whose columns are all canonical
vectors of size N and P , respectively. For short, we use the
pair (L,H) to denote the BN in (2).

Roughly speaking, the identification problem for a BN can
be described as follows: given a family Y of trajectories
taking values in LP , determine an integer N̂ > 0, and
logic matrices L̂ ∈ LN̂×N̂ and Ĥ ∈ LP×N̂ such that the
BN (2) described by those matrices has all the trajectories
in Y as output trajectories. This idea can be formalized in
several different ways, depending on whether we assume
that Y consists of a single or of several trajectories, that
the trajectories in Y have infinite or finite duration, that
we know a priori that they are generated by a BN or
not. In addition, when the problem is solvable, we can
search for a BN of minimum size N̂ compatible with the
given set of trajectories Y. In this paper we address a
number of identification problems for BNs, but we always
assume that the trajectories in Y are output trajectories
generated by a BN. So, our task will be that of determining
the original BN, say (L,H), that produced those output

evolutions or another BN sharing with the original one the
given output trajectories.
As a starting point we note that the number of distinct
output trajectories of a BN is finite and upper bounded
by the size N of the BN. Moreover, every (infinite) out-
put trajectory {y(t)}t∈Z+ of a BN is eventually periodic,
meaning that there exist tr ∈ Z+ and Tp ∈ Z+, Tp > 0,
such that

y(t) = y(t+ Tp), ∀ t ≥ tr. (3)

Finally, the identification problem from the output trajec-
tories never brings to a unique result: if the pair (L̂, Ĥ) de-
scribes a BN compatible with the set of output trajectories
Y, then also the pair (Π>L̂Π, ĤΠ>) does, for every choice
of the permutation matrix Π. So, when we try to identify
the original BN generating the set Y, the best we can do is
to identify (L,H) up to a relabeling of the BN’s states. We
are now in a position to solve three identification problems.

Problem 1. Given a trajectory {ȳ(t)}t∈Z+ , with ȳ(t) ∈ LP
for every t ≥ 0, eventually periodic, determine, if possible,
the matrices L̂ and Ĥ of a BN (2) having {ȳ(t)}t∈Z+ as
an output trajectory.

Introduce the shift operator on the output trajectories
σ : (LP )Z+ → (LP )Z+ : (y(0),y(1), . . .) 7→ (y(1),y(2), , . . .)
and let X be the set of all shifted versions of the trajectory
{ȳ(t)}t∈Z+ . By the assumption that the given trajectory
is eventually periodic, we can find minimal nonnegative
integers tr ∈ Z+ and Tp ∈ Z+, Tp > 0, such that (3)
holds for {ȳ(t)}t∈Z+ , and this implies that the number of
distinct elements in X is finite and equal to N̂ := tr + Tp.
Set xi := (y(i − 1),y(i − 2),y(i − 3), . . .), i ∈ [1, N̂ ].
If we represent the state xi with the canonical vector δi

N̂
,

a BN (2) of order N̂ that is compatible with the given
output trajectory is described by the matrices

L̂ =
[
δ2
N̂

δ3
N̂

. . . δtr
N̂

δtr+1

N̂
. . . δN̂

N̂
δtr+1

N̂

]
Ĥ = [y(0) y(1) y(2) . . . y(N̂ − 1) ] .

(4)

To understand under what conditions L̂ and Ĥ coincide
with the matrices of the original BN, (L,H), generating
the given output trajectory, note that the previous algo-
rithm leads to a BN whose associated graph consists of a
cycle (the periodic part of the trajectory) together with a
chain of transient states leading to the cycle.

1	
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   7	
   8	
  

Fig. 1. Digraph corresponding to the BN identified from a single

output trajectory.
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The situation is depicted in Figure 1, where we have
omitted the outputs since they are not relevant for this
specific discussions. Of course, there may be no transient
part, in which case the identified BN consists of a simple
cycle (and generates only periodic state and output trajec-
tories). This is intrinsic of the structure of a BN. Indeed,
as shown in [8], the following result holds.

Proposition 1. Given a BN (2), there exists r ∈ N and a
permutation matrix Π such that

Π>LΠ = blockdiag{D1, D2, . . . , Dr} ∈ LN×N , (5)

with Dν =
[
Wν 0
Sν Cν

]
∈ Lnν×nν , (6)

where Wν is a (nν − kν) × (nν − kν) nilpotent ma-
trix, and Cν is a kν × kν cyclic matrix, i.e. Cν =[
δ2kν δ3kν . . . δkνkν δ1kν

]
.

This proves that the digraph of a BN consists of the union
of r independent subgraphs, each of them consisting of
a cycle and of a number of chains accessing the cycle.
Clearly, each state (and hence each output) trajectory is
generated by a specific initial state, and hence it explores
only a specific subgraph, and within that subgraph a
unique chain and the associated cycle. So, a necessary con-
dition for the pair (L,H) to be identifiable from the output
trajectory {ȳ(t)}t∈Z+ is that there exists a permutation
matrix Π such that

Π>LΠ =
[
W 0
S C

]
,

where

W =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . 1 0


=
[
δ2N−k δ3N−k . . . δN−kN−k 0

]

S =


0 0 . . . 0 1
0 0 . . . 0 0
0 0 . . . 0 0

. . .
0 0 . . . 0 0

 = [ 0 0 . . . 0 δ1k ] ,

and C is a k × k cyclic matrix.

Another necessary condition for identifiability is repre-
sented by the observability of the original BN (L,H).

Definition 1. [6, 8] Given a BN (2),
• two states x1 = δiN and x2 = δjN are said to be

indistinguishable, if the two output evolutions of the
BN starting at t = 0 from x(0) = x1 and from
x(0) = x2, respectively, coincide at every time instant
t ∈ Z+; otherwise they are distinguishable;
• the BN is said to be observable if every two distinct

states are distinguishable.

Indeed, suppose that the original BN, of size N , (L,H)
is not observable and hence there exist indistinguishable
states. If there exist transient states in the BN and the
output trajectory {ȳ(t)}t∈Z+ is not generated starting
from the first state of the chain (namely the only state with

no predecessor), then we will not be able to identify all the
states. On the other hand, if the BN consists only of a cycle
or the output trajectory is generated starting from the first
state of the chain, it will pass through (all the states, and
hence through) two indistinguishable states. Accordingly,
there will be two time instants 0 ≤ t1 < t2 < N such that
ȳ(t1 + τ) = ȳ(t2 + τ) for every τ ≥ 0. This ensures that
the output trajectory is also compatible with a BN of size
N − (t2 − t1), thus ruling out identifiability.

Conversely, it is also clear that the two aforementioned
necessary conditions are also sufficient for identifiabil-
ity, since if they are both verified the output trajectory
{ȳ(t)}t∈Z+ , generated corresponding to the first state of
the chain (or any state belonging to the cycle, in case there
are no transient states), will generate a set X of cardinality
N . So, we have proved the following result.

Proposition 2. Given a BN (2), a necessary and sufficient
condition for the existence of a single output trajectory
{ȳ(t)}t∈Z+ that allows to identify the matrices of the BN
(up to a permutation) is that the BN is observable and
has a graph consisting of a cycle together with a (possibly
empty) chain of arcs leading to the cycle (as in Fig.1).

The natural generalization of Problem 1 is the following
one:

Problem 2. Given a set Y of trajectories {ȳi(t)}t∈Z+ , i ∈
[1, k], with ȳi(t) ∈ LP for every t ≥ 0, each of them
eventually periodic, determine, if possible, the matrices L̂
and Ĥ of a BN (2) having Y as set of output trajectories.

Clearly, the problem solution is a generalization of the pre-
vious one: also in this case we define the set X , consisting of
all the distinct shifted versions of the output trajectories,
and the elements of X are the states of a BN compatible
with the given set of output trajectories. The first entry
of any such xi = δi

N̂
, where N̂ := |X |, determines the ith

column of Ĥ. Moreover, if xi corresponds to some shifted
output sequence and xj corresponds to the one step shifted
version of the same sequence, then Lδi

N̂
= coli(L) = δj

N̂
.

Proposition 3. Given a BN (2), a necessary and sufficient
condition for the existence of a finite set of output trajec-
tories Y that allows to identify the matrices of the BN (up
to a permutation) is that the BN is observable.

Proof. Necessity is obvious. On the other hand, if we
choose as Y the set of all output trajectories generated
starting from states that have no predecessors (or any state
of a cycle, in case there are no chains accessing it), then
the corresponding set X will have the same cardinality
as the original BN and we will be able to reconstruct
the original matrices, up to a relabeling, by means of the
simple algorithm just illustrated. 2

Note that the possibility of identifying (L,H) from the set
Y is strictly related not only to the structural properties
of the pair (L,H), but also to the specific choice of Y.
Indeed, all the output trajectories generated starting from
states that have no predecessors must be in Y, and for
every isolated cycle in the digraph there must be at least
one output trajectory in Y generated starting from a state
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of the cycle. So, the only case when a BN can be identified
from any set Y of its output trajectories is when the BN
is observable and its digraph is a single cycle. When so, Y
can always consist of a single trajectory.

To conclude the section, we address the identification
problem for BNs, by assuming that the output trajectories
in Y have finite support.

Problem 3. Given a time T > 0 and a set Y of finite sup-
port trajectories {ȳi(t)}t∈[0,T−1], i ∈ [1, k], with ȳi(t) ∈
LP for every t ∈ [0, T −1], determine, if possible, matrices
L̂ and Ĥ of minimal size N̂ of a BN (2) having Y as set of
output trajectories.

In this case the problem is always solvable, since one can
trivially choose a BN of size equal to kT , whose matrix
L̂ is described as in (5) and (6), for r = k and diagonal
blocks

Dν = [ δ2T δ3T . . . δTT δ1T ] , ν ∈ [1, k],
while

Ĥ = [ ȳ1(0) . . . ȳ1(T − 1) ȳ2(0) . . .

. . . ȳk−1(T − 1) ȳk(0) . . . ȳk(T − 1) ] .
So, the only nontrivial question is the minimization issue.

For the sake of simplicity, we consider the case when k = 1,
namely Y =

{
{ȳ(t)}t∈[0,T−1]

}
. Two cases possibly arise:

(1) ȳ(T − 1) 6= ȳ(t) for every t ∈ [0, T − 2];
(2) there exists t ∈ [0, T − 2] such that ȳ(t) = ȳ(T − 1).

Case (1) corresponds to the situation when the output
trajectory has not entered the periodic phase yet, and
hence necessarily T ≤ N , namely the number of output
samples is not bigger than the size of the generating BN.
Then the trivial solution previously provided (for k = 1)
is also the smallest one compatible with the given Y.

In Case (2), define the following sets (of finite cardinality):

S := {τ ∈ [0, T − 2] : ȳ(τ) = ȳ(T − 1)}
P := {T − τ : τ ∈ S}.

Set d := |P|. For every pi ∈ P, i ∈ [1, d], define also

tri := min{t ∈ [0, T − 1− pi] :

ȳ(t) = ȳ(t+ pi),∀ t ∈ [tri, T − 1− pi]}.
So, the idea is to be able to regard the finite sequence
ȳ(t), t ∈ [0, T − 1], as the initial portion of an infinite
output trajectory having transient phase of length tri and
period pi. A minimal realization compatible with Y has
size N̂ := min{tri + pi, i ∈ [1, d]}.
If (tr, Tp) := argmin{tri + pi, i ∈ [1, d]}, namely tr = tri
and Tp = pi for some i ∈ [1, d] and tr + Tp = min{tri +
pi, i ∈ [1, d]}, such a minimal BN is described as in (4).

Note that, by similar reasonings to the ones adopted for
the identification of a BN from a single infinite support
output trajectory (see Proposition 2), we can deduce the
following result.
Proposition 4. Given a BN (L,H), a necessary and suf-
ficient condition for the existence of a positive integer T
and an output trajectory {ȳ(t)}t∈[0,T−1] such that the BN
can be identified from such a trajectory is that the BN

is observable and its digraph consists of a cycle together
with a (possibly empty) chain of arcs leading to the cycle.

The case when Y consists of several trajectories follows the
same lines but it is more involved, since the minimization
is achieved by also verifying whether different trajectories
in Y can be regarded as generated by the same portion
of the BN digraph. Due to page constraint we omit this
analysis here and we refer the interested reader to [12].

3. IDENTIFICATION PROBLEMS FOR BCNS

A Boolean Control Network (BCN) is described by the
following equations

X(t+ 1) = f(X(t), U(t)),
Y (t) = h(X(t)), t ∈ Z+,

(7)

where X(t), U(t) and Y (t) denote the n-dimensional state
variable, the m-dimensional input and the p-dimensional
output at time t, taking values in Bn,Bm and Bp, respec-
tively. f and h are logic functions, i.e. f : Bn × Bm → Bn
and h : Bn → Bp. By resorting to the semi-tensor product
n, the BCN (7) can be described [6] as

x(t+ 1) = Ln u(t) n x(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+,

(8)

where x(t) ∈ LN ,u(t) ∈ LM and y(t) ∈ LP , with
N := 2n,M := 2m and P := 2p. L ∈ LN×NM and
H ∈ LP×N are matrices whose columns are canonical
vectors of size N and P , respectively. We will refer to a
BCN described as in (8) by means of the pair (L,H). Note
however, that in this case L is a rectangular matrix and
not a square one. For every choice of the input variable at
t, namely for every u(t) = δjM , Ln u(t) =: Lj is a matrix
in LN×N . So, we can think of the state equation of the
BCN (8) as a Boolean switched system (see [18, 20]),

x(t+ 1) = Lσ(t)x(t), t ∈ Z+, (9)

where σ(t), t ∈ Z+, is a switching sequence taking values
in [1,M ]. For every j ∈ [1,M ], the BN

x(t+ 1) = Ljx(t), t ∈ Z+, (10)

represents the jth subsystem of (9).

The identification problem for BCNs has been recently
posed in [6, 7] in the following terms:

Problem 4. Given a BCN (L,H), under what conditions
there exist a positive integer T and a pair of input/output
trajectories {(ū(t), ȳ(t))}t∈[0,T−1], generated by the BCN
corresponding to some unknown initial state, such that the
BCN can be identified from such a pair of trajectories?

The problem solution provided in [6, 7] is as follows.
Proposition 5. Given a BCN (L,H), there exist a pos-
itive integer T and a pair of input/output trajectories
{(ū(t), ȳ(t))}t∈[0,T−1], generated by the BCN correspond-
ing to some unknown initial state, such that the BCN
can be identified (up to a relabeling of the states) from
such a pair of trajectories if and only if the following two
conditions hold:

i) the BCN is controllable, namely [6] for every x0 and
xf ∈ LN there exist d ∈ Z+ and an input sequence
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u(t), t ∈ [0, d−1], that leads the state trajectory from
x(0) = x0 to x(d) = xf ;

ii) the BCN is observable, in the sense that [6] there
exists an input sequence u(t), t ∈ Z+, such that the
initial state x(0) can be uniquely determined from the
knowledge of the pair of corresponding input/output
trajectories {(u(t),y(t))}t∈Z+ .

This characterization is useful from a theoretical point of
view, as it tells us under what conditions we may hope to
identify a BCN from the measurement of a corresponding
pair of (finite support) input/output trajectories. How-
ever, in general, we have no guarantee to be so lucky to be
able to measure a pair of trajectories endowed with these
features. In addition, the algorithms illustrated in [6, 7]
to identify the BCN presume that the size N of the BCN
is a priori known, and either consider all pairs (L̂, Ĥ) of
appropriate size, by moving from one to another according
to some distance function to be minimized (see Algorithm
17.1 in [6]), or suppose to have some information about
the underlying digraph of the BCN.

The identification problem we investigate in this section
is slightly different. On the one hand, we do not impose
controllability or observability properties on the BCN orig-
inating the input/output trajectories, and hence weaken
our requirements on the system. On the other hand, we
strengthen our requirements on the data, and assume to
have all the possible input/output trajectories of a given
duration T ,

{
{(u(t),y(t))}t∈[0,T−1]

}
, generated by the

BCN corresponding to the various initial states. To explore
this case, we provide an algorithm inspired by the work
of Gill [13]. For the sake of brevity we omit here all the
proofs that can be derived, mutatis mutandis, by suitably
adjusting those provided in [13]. A detailed derivation of
the following algorithm can be found in [12].
Denote by S the set of all possible corresponding in-
put/output trajectories generated by the BCN in [0, T−1].
Note that the last input sample, u(T − 1), is useless from
an identification point of view, and hence we set

S := {z[0,T−1] := (y(0),u(0),y(1),u(1), . . . ,

u(T − 2),y(T − 1))}.
S is called the input/output set of length T of the BCN.
We now define the set of all possible corresponding in-
put/output trajectories generated by the BCN in [0, k −
1], 1 ≤ k ≤ T :

S(k−1) := {z[0,k−1] := (y(0),u(0),y(1),u(1), . . . ,

u(k − 2),y(k − 1))}.
Clearly, S = S(T−1). The I/O set S is compatible, namely

(1) S(0) has at least one element;
(2) for every z̄[0,k−1] ∈ S(k−1) and every ū(k − 1) ∈ LM

there exists ȳ(k) ∈ LP such that

z̄[0,k] = (z̄[0,k−1], ū(k − 1), ȳ(k)) ∈ S(k);
(3) z̄[0,k] = (ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(k − 1), ȳ(k)) ∈
S(k) if and only if z̄[0,k−1] and z̄[1,k] = (ȳ(1), ū(1), ȳ(2),
ū(2), . . . , ū(k − 1), ȳ(k)) belong to S(k−1).

Two cases possibly arise: A) there exists some index
k ∈ [1, T − 1] such that |S(k)| = M · |S(k−1)| (in this case
we say that the I/O set S is bounded); B) no such k exists.

In Case A), we set b := min{k ∈ [1, T − 1] : |S(k)| = M ·
|S(k−1)|} and denote by d the cardinality of S(b−1). Also
we distinguish two subcases:
A1) for every z̄[0,b−1] ∈ S(b−1) there exists ẑ[0,b] ∈ S(b)

such that ẑ[1,b] = z̄[0,b−1]. If we regard the elements of
S(b−1) as states, this amounts to saying that every state
in S(b−1) has a predecessor;
A2) not every element in S(b−1) has a predecessor.

In Case A1) a solution of size N̂ := d can be
obtained in the following way: represent the d dis-
tinct elements of S(b−1) with the d canonical vectors
δid, i ∈ [1, d]. If δid is the representation of the string
(ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(b− 2), ȳ(b− 1)) then

coli(Ĥ) = Ĥδid = ȳ(b− 1).
On the other hand, for every ū(b−1) ∈ LM , the bounded-
ness property ensures that there exists a unique ȳ(b) ∈ LP
such that (ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(b−1), ȳ(b)) ∈ S(b).
If the string (ȳ(1), ū(1), . . . , ū(b − 1), ȳ(b)) ∈ S(b−1) is
represented by the canonical vector δjd, then

coli(L̂n ū(b− 1)) = L̂n ū(b− 1) n δid = δjd.

In this way, we can obtain all the columns of the matrices
L̂ and Ĥ of a BCN compatible with the given set of
input/output trajectories S. Note that, by the assumption
that every state has a predecessor, each row of L̂ has at
least one unitary entry.

It is worthwhile noticing that is we assume that the set of
input/output trajectories S is generated by a controllable
BCN, then every state in S(b−1) has a predecessor.

Proposition 6. If the BCN (L,H), of size N , generating
the set of input/output trajectories S is controllable, then
every state in S(b−1) has a predecessor.

Proof. Let
z̄[0,b−1] = (ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(b− 2), ȳ(b− 1))

be an element of S(b−1). This means that there exists
x̄0 ∈ LN such that z̄[0,b−1] is the input/output trajectory
generated by the BCN (L,H) corresponding to x(0) =
x̄0 and u(t) = ū(t), t ∈ [0, b − 2]. As the BCN is
controllable, there exists x̄−1 ∈ LN and ū−1 ∈ LM such
that x0 = Lnū−1nx̄−1. Then the input/output trajectory
(Hx̄−1, ū−1, ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(b−2), ȳ(b−1)) is
in S(b) and the state
(Hx̄−1, ū−1, ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(b− 3), ȳ(b− 2))
is a predecessor of z̄[0,b−1]. 2

In Case A2) the set of states defined by means of the
sequences in S(b−1) is not sufficient to account for the given
set of trajectories. So, we have to add to all the states
defined in S(b−1) the states obtained as follows: for every
z̄[0,b−1] = (ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(b− 2), ȳ(b− 1)) in
S(b−1) having no predecessor, define as states the following
b strings:
(ȳ(0)), (ū(0), ȳ(1)), (ū(1), ȳ(2)), . . . , (ū(b−3), ȳ(b−2)).

If we let X denote the set of all states (either belonging
to S(b−1) or defined as just shown) and we let N̂ denote
its cardinality, then all such states can be represented by
canonical vectors δi

N̂
. (It can be proved that N̂ ≤ (b +
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1)(MP )b). For those i ∈ [1, N̂ ] such that δi
N̂

corresponds
to a sequence in S(b−1), the ith column of H and of the
various matrices Lnū(b−1) are obtained as in point A1).
For those indices i ∈ [1, N̂ ] such that δi

N̂
corresponds to one

of the new strings, if δi
N̂

= (ū(k), ȳ(k + 1)), 0 ≤ k < b− 1
then coli(Ĥ) = Ĥδi

N̂
= ȳ(k + 1); if δi

N̂
= (ū(k), ȳ(k + 1)),

and δj
N̂

= (ū(k+1), ȳ(k+2)), then coli(L̂nū(k + 1)) = L̂n
ū(k + 1) n δi

N̂
= δj

N̂
; if δi

N̂
= (ū(b − 3), ȳ(b − 2)), and

δj
N̂

= z̄[0,b−1] = (ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(b − 2), ȳ(b −
1)), then coli(L̂n ū(b− 2)) = L̂n ū(b− 2) n δi

N̂
= δj

N̂
.

In this way the BCN is not completely determined, as some
columns of L are undefined. Indeed, for the new states we
do not know the transitions corresponding to all possible
inputs. However, it is possible to complete L in such a
way to not create additional input/output trajectories in
[0, T − 1] with respect to the ones belonging to S.

So, we are now remained with case B), when no index
k ∈ [1, T − 1] can be found such that |S(k)| = M · |S(k−1)|.
In this case we want to construct S(T ) from S = S(T−1) in
such a way that the previous relationship holds for k = T .
For every z̄[0,T−1] = (ȳ(0), ū(0), ȳ(1), ū(1), . . . , ū(T −
2), ȳ(T − 1)) in S and every input value ū(T − 1) choose
an arbitrary output value ȳ(T ) such that (ȳ(1), ū(1), . . . ,
ū(T − 1), ȳ(T )) is in S. As S is unbounded, this choice
is not unique and hence one can construct in this way
several different sets S(T ). However, the set Ŝ := S(T ) is
now bounded, since, by construction, |S(T )| = M ·|S(T−1)|.
So, we can apply the reasonings adopted in the bounded
case A), and obtain a BCN that has all the trajectories of
Ŝ as input/output trajectories in [0, T ], and hence all the
trajectories in S as input/output trajectories in [0, T − 1].
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