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Abstract: Time optimal control of systems with bounded inputs is a numerically awkward problem
as essentially a whole trajectory has to be designed on the basis of a single final point at unknown
time. Analytical solutions are possible only for very few problems, in general numerical techniques will
be needed, which, in view of the non convexity of the associated optimization problem, will typically
converge to a local minimum. In case of an unknown but experimentally accessible nonlinear system,
such a solution cannot be found numerically, but a learning algorithm has been proposed which typically
converges to a solution not far from the optimal one. However, as in the case of numerical computations,
no guarantee of global optimality can be given. In the numerical case, different randomization techniques
can be used to ascertain the existence of better solutions, e.g. by choosing different initial conditions.
This is more difficult in the case of an experimental method for unknown systems, but this paper proposes
an approach based on virtual outputs (linear combination of measurable states) for the same goal which
is shown to work in a classical problem of counterintuitive time optimal control - the fastest climbing of
a plane.
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1. INTRODUCTION

Time optimal design has not received as much attention as the
classical optimal control problem of the minimization of a cost
function defined along a trajectory, as in the case of a standard
LQR (Linear Quadratic Regulator) design. Roughly speaking,
the challenge in time optimal control consists in designing a full
trajectory based on one point unknown in time. In this paper
with time optimality the minimal time to reach a certain time
point is meant (cost function consisting only of an integral over
time).

However, in view of its practical importance, different methods
have been conceived and used for all kind of applications from
biological (Moreno [1999]), chemical process (Schroeder and
Mendes [1999]) to automotive challenges (Ortner et al. [2009])
or robotics (Bobrow et al. [1985]). The analytical solution is
in general based on the gradient of the cost function, typically
using the Euler Lagrange condition. For some problems, like
linear systems with bounded inputs, Pontryagin’s Maximum (or
Minimum) Principle Pontryagin et al. [1962] can be used to
derive a condition on the input. In general, however, the associ-
ated optimization problem will not be convex and an analytical
solution is not possible, so that standard optimization methods
(like multiple shooting Marler and Arora [2004], dynamic pro-
gramming Bryson [1999], Stengel [1994]) can be used. This
does not change the basic problem that a global optimum of a
non convex function cannot be determined for sure in almost all
cases, so that convergence of the numerical algorithms does not
imply that the ”real” time optimal value has been found. There
are of course several methods which can be used to explore
other solutions, hoping to get a better convergence, e.g. by

variations of the initial conditions or variations of the input and
change of the cost function (see e.g. Hintermüller et al. [2002]
or Molga and Smutnicki [2005]).

All these methods are based on explicit models, but in many
practical applications the control engineer is confronted with
the need to estimate the minimum achievable transition time
in order to allow a decision in terms of hardware design. In
such a case, an explicit model is hardly available, and empirical
methods are typically used, e.g. a parametrized family of pos-
sible solutions is established a priori and then experiments are
performed on the prototype in order to determine the optimal
weights. In the field of point-to-point control some model free
versions are available as in Janssens et al. [2011], however
such methods are restricted to specific classes, like linear time
invariant systems. A time optimal result for such a system can
be obtained by using Pontryagin and learning the switching
point. Other point-to-point methods, like in Freeman and Tan
[2012] require again a model of the system to compute the time
optimal solution.

A new approach has been introduced in Trogmann and del
Re [2012], which starts by requesting the system to track
the ideal but almost always unfeasible response in terms of
time optimality - a step change - and then relaxes it as far
as necessary to allow the system to track it. This method has
been found to converge to a sensible solution, and in practice
this solution is frequently near to the time optimal one which
can be calculated if a model and sufficient computational time
is available - for instance it was shown even to recover the
bang-bang behavior expected for nonlinear input affine systems
(see Trogmann et al. [2013]). However, there is no guarantee
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that the solution is the global optimum, exactly as in the case
of numerical, model based optimization. In addition a general
statement of how near the obtained approximated solution
lays to the “real” optimum cannot be given analytical and
theoretical. Only an experimental value can be given and will
be shown later in the paper.

Against this background, it would be interesting to explore
possible ”better” optima not immediately resulting from the
straightforward application of the method. As the method relies
on an internal ILC (Iterative Learning Control) loop to enforce
repeatability of the experiments, some techniques are not easily
implementable. In this paper, we suggest using appropriate
variations of the target function, to obtain a learning quantity
which can be used for the trajectory update algorithm presented
in Trogmann and del Re [2012]. As a virtual output in this
paper a linear combination of measurable states of the system
is meant, so that the output does not exist really, however it is
possible to compute it out if measurements. In addition it will
be shown that it works again for cases, for which it would fail in
standard configuration of the method. The rationale underlying
of this idea is a special property of time-optimal control, for
which only the initial and final point are specified, but the
intermediate values are free. In other terms, any target function
which ensures the desired transition will do.

The paper is structured as follows. First in Section 2 we recall a
known example of counter-intuitive time-optimal solution from
Bryson and Denham [1962], then in Section 3 we discuss the
classical time optimal solution and show the non convexity
of the problem, then in Section 5 we use our method on the
problem and on variations of it and in Section 6 finally show
that changing the target function does lead to a better solution
in terms of time optimality. As last part a conclusion is given
in Section 7.

2. MOTIVATING EXAMPLE

A particularity of the used aircraft (which has been presented
in Bryson and Denham [1962]) is the necessary interruption
in the ascent to gain additional speed. The result of this ma-
neuver is the time optimal solution to reach the desired final
point (flight level: 30 and 300 m

s speed). By using the standard
approach to approximate the time optimal solution, this would
fail, as the method does not recognize a necessary descent after
a certain point has been reached. So to cope with this phenom-
ena a change of the learning quantity will be necessary. Without
knowing the system it can not be assumed that the system is
strict increasing the output to obtain the time optimal solution.
For this it will be necessary to find a strict increasing quantity
to reach the time optimal solution.

To be able to compare the result of the learning method and
the standard optimization methods a model of the aircraft is
used. For simplicity a 3 degree of freedom model of the aircraft
is build up. In such a model the number of forces acting
on the aircraft are reduced as it can be seen in Figure 1 to
lift, drag, weight and thrust. The aircraft can be described
basically by two differential equation for aircraft speed and
pitch respectively,

v̇ =
F (h,M)

m
cosα− D(h,M,α)

m
−gsinγ

γ̇ =
L(h,M,α)

mv
+

F (h,M)

mv
sinα− g

v
cosγ

(1)

x

h
Thrust

Lift

Drag

Weight

γ

α

Fig. 1. Acting Forces on the air plane, α angle of attack, γ pitch
of the aircraft

with F (h,M) the thrust as tabular function, Figure 2, M the
Mach number depending on the height, D(h,M,α) the drag
value calculated out of (3), g the gravity depending on the
height, α the angle of attack as input and L(h,M,α) the lift
value calculated in (5). For simplicity the time dependency of
the variables in (1) has been omitted. Out of these two essential

Fig. 2. Maximal thrust of the engine depending on height and
Mach number

states of the aircraft 3 important additional states the height h,
the position over ground x and the mass are calculated,

ḣ = vsinγ

ẋ = vcosγ

ṁ = ṁ(h,M)

(2)

with ṁ as a function of height and velocity, which is available
as a tabular function. To obtain the drag, the drag coefficient is
needed, in general it is a tabular function valid only for a spe-
cific air plane, however it is possible to calculate it depending
on the angle of attack (α) and the Mach number (M).

D(h,M,α) =

(
CD0 +η

dCL

dα
α

2
)

ρv2ADrag

2
(3)

with CD0, η and dCL
dα

as tabular functions Figure 3
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dCL

dα
=


3.5 M < 0.8

3.5+ sin2 (M−0.8
0.4 π

)
0.8≤M ≤ 1.02

4.475−2.2
√

1−
(Mmax−M

0.98

)2
1.02≤M

η =


0.55 M < 0.7

0.55+0.15
(M−0.7

0.2

)6
0.7≤M ≤ 0.9

0.7+0.25
√

1−
(Mmax−M

1.1

)2
0.9≤M

CD0 =


0.013 M < 0.8

0.013+0.027sin2 (M−0.8
0.8 π

)
0.8≤M ≤ 1.25

0.039−0.004
√

1−
(Mmax−M

0.75

)2
1.25≤M

(4)
The lift coefficient is calculated in a similar way by using the

Fig. 3. Single coefficients to calculate the drag and lift coeffi-
cient and further the corresponding force.

same tabular function for dCL
dα

L(h,M,α) =
dCL

dα
α

ρv2ALi f t

2
. (5)

As already mentioned air pressure, density and gravity depend
on the actual height of the aircraft, more details can be found
in Roskam [1995].

In the normal case the pilot would control besides the angle
of attack, the thrust of the aircraft. For the comparison the
propulsion will not be controlled by the method, it will be set
to the maximal value for the actual flight position and aircraft
velocity.

As this model is highly complex as the original system it would
be necessary to see how the standard time optimal control looks
like.

3. STANDARD TIME OPTIMAL SOLUTION

Is it possible to obtain a solution using the standard methods
for time optimal control. To answer this question and for the
following observations a system in the form

ẋ = f (x,u, t)
y = g(x, t)

(6)

is used.

In general, an optimization problem can be stated in the form

J =

T∫
0

Φ(x,u, t)dt +Γ(x(T ),T ) (7)

consisting of a time depend part Φ(x,u, t) and a terminal cost
part Γ(x(t),T ) and additional constraints like

y(T ) = g(x(T ),T ) = y∗

Ax(t)≤ b
(8)

where g(·) is the output function, y∗ the required end point
and - in this example - linear conditions for the states x are
used specified by A and b. The optimization itself consists
of a minimization of the cost function (7) by respecting the
constraints (8) and will be written as

min
u

J

s.t.y(T ) = y∗

Ax(t)≤ b

(9)

with the already presented constrained variables.

Analytical methods like the Hamiltonian can be used when
the system is known and a description is available. With the
Hamiltonian in the form

H (x,u, t,λ0,λ ) = λ0Φ(x,u, t)+λ
T f (x,u, t) (10)

with λ the states of the auxiliary system, an optimal solution
can be obtained. It is well known that from the first variation of
the cost function J a condition on optimality is derived

∂H (x,u, t,λ )
∂u

= 0. (11)

and on convexity which is given if
∂ 2H (x,u, t,λ )

∂u2 > 0 (12)

is valid ∀x∗ and t ∈ [t0, t f ].

For linear and input affine nonlinear systems it is not possible
to calculate the optimal input using condition (11). In the case
of time-invariant linear systems ẋ = Fx+Bu (11) is constant

∂H (x,u, t,λ )
∂u

= λ
T B (13)

and convexity is not given as the second partial deviation is
zero. A similar result is obtained for input affine time-invariant
nonlinear systems ẋ = f (x)+g(x)u, in this case (11) gets to

∂H (x,u, t,λ )
∂u

= λ
T g(x) (14)

and the second partial derivative is zero. The solution for this
two cases is obtained by a constrained input and Pontryagin’s
Minimal Principle.

In the case of general time-invariant nonlinear systems ẋ =
f (x,u) it is necessary to calculate the first and second partial
derivative of the Hamiltonian. The condition gets to

∂H (x,u, t,λ )
∂u

= λ
T ∂ f (x,u)

∂u
(15)

For the aircraft in Section 2 it can be shown that the optimal
control input can not be computed out of (15). Indeed we obtain
∂H (x,u, t,λ )

∂α
= λ1

(
−F (h,M)

m
sinα− 1

m
2αη

dCL

dα

ρv2ADrag

2

)
+λ2

(
dCL

dα

ρv2ALi f t

2mv
+

F (h,M)

mv
cosα

)
.

As the result of this equation should be zero for all t ∈ [0,T ]
independently of λ1 and λ2, it is not possible to obtain an α to
ensure that both parts are zero.

The convexity in this case depends mainly on the sign of the
auxiliary system λ

∂ 2H (x,u, t,λ )
∂α2 = λ1

(
−F (h,M)

m
cosα− 1

m
2η

dCL

dα

ρv2ADrag

2

)
+λ2

(
−F (h,M)

mv
sinα

)
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under the assumption of arbitrary values of λ convexity is not
given if

• λ1 and λ2 are positive
• λ1 = 0 and αλ2 > 0

for single time points t ∈ [0,T ].

Time optimal control is just a special kind of optimal control
defined in the form

Φ(x,u, t) = 1
Γ(x,T ) = c(x(T )− x∗)

(16)

with c as a weighting of the final deviation.

Of course, all preceding remarks on non convexity apply here
as well. In this form the time is regarded explicitly and the
minimum of the cost function will return the time optimal
solution for the given system. The difficulty for this type of
optimal control is to find the connection between the input u
(which is used to minimized the cost function) and the time T .
One solution would be if it is possible to compute

dT
du

(17)

so it would be possible to determine how a change of the input
would affect the end time to reach the desired point. Another
possibility is using the Hamiltonian which provides for input
affine system a simple solution by using Pontryagin’s Maximal
Principle.

4. LEARNING APPROACH

The method Trogmann and del Re [2012] consists of two ILC
loops, an inner loop to control the unknown system by knowing
only some essential parts of the system and an outer loop acting
in some sense as a serial ILC. For the ILC there are two time
axis and so it is necessary to introduce the following notation
zi(k) represents the variable z(t) at time kτ (where τ is the
sampling time) at the i-th iteration.

A key difference to standard methods is that the learning
method does not use a cost function depending on time. Basi-
cally, if the inner ILC receives as reference feasible trajectory,
it forces the input to behave like the optimal one. In the case of
an unknown system, a first attempt consists in using the fastest
possible reference, the step, which, however is almost always
unfeasible. An unfeasible point can be detected by using the
actual and an initial output error e1 e.g. using a barrier function
like

fchange(k) =
δ

‖el(k)− el+1(k)‖
f̄change = min

{
max

{
fchange,0

}
,1
} (18)

where f̄change denotes the limited changing factor of each time
point k, l the iteration index of the update loop and δ is a factor
for the steepness when the barrier (el) is hit. Depending on the
value of f̄change(k) the new reference value is computed as

re fm+1(k) =
(

1−
f̄change(k)

2

)
re fm(k)+

f̄change(k)
2

ym(k)

(19)
with ym the output of the mth iteration.

A possible drawback for this methods is that for a remain-
ing initial error, transients during the learning can occur. In
Longman [2000] the phenomena is explained in more detail
the reason for this is that in the case of unknown systems it

can not be ensured by the design of the ILC that all errors
converge to zero. Especial in the case of unfeasible trajectories
and trajectory points. To avoid this, it is essential that if

‖ei+1‖2 < ‖ei‖2 (20)
with i as iteration index of the inner ILC, is violated the inner
loop has to stop and a trajectory update is needed.

The critical point in the design of the algorithm is the selection
of the right learning quantity. An intuitive selection would be
using the real target quantity. However, in the example shown
in Section 2, the method does converge to the desired final
point, however the resulting solution is not time optimal and
a final time of 800s is returned (see Figure 4).

5. ADAPTATION OF THE LEARNING METHOD

The counterintuitive time optimal solution of the basic problem
is well known, as it can be found in Bryson and Denham [1962].
The solution for the time optimal challenge for the aircraft
ascent is to find the right combination of pitch and velocity
over the time interval [0, t0] as these are the main components
influencing the height (2). To be able to gain height a pitch
> 0 is needed and by taking a closer look to (1) it can be seen
that a positive value for the angle of attack (α) increases the
pitch and at the same time decreases the velocity. However
as the pitch gets greater in the case of the velocity the mass
of the aircraft plays an important role and depending on the
actual thrust (which declines with the altitude and the velocity)
a further increase is only possible if

γ < sin−1
(

F (h,M)

mg
cosα− D(h,M,α)

mg

)
(21)

is valid. Due to the learning of the inner loop
αi+1(k) = αi(k)+ p

(
hre f (k−1)−hi+1(k−1)

)
+d
(
ḣre f (k−1)− ḣi+1(k−1)

) (22)

with p and d as learning gains, the angle of attack is increased
and the pitch of the aircraft rises.

To still be able to learn a time optimal solution for an unknown
system we examine the use of a different learning quantity. In
the case of the standard learning method a single quantity with a
start value y(0) and the desired end value y(t0) where t0 denotes
the minimal time is used to learn the time optimal trajectory.
In this paper we propose the use of a function w(k) instead of
single learning quantity e.g. hre f with the same properties of a
start value w(0) , y(0) and an end value w(t0) , y(t0). This is
a more general form of the learning as the output of the system
is already a possible function y(t) = g(x, t). In the case of the
presented aircraft as function

w(k) = ahre f (k)+bvre f (k) (23)
a linear combination of the height and the velocity with the
weightings a and b. The weightings are used to compensate the
difference of the numerical value of the used system states (the
height is two power of ten higher than the velocity).

The numerical computation using the proposed function in (23)
by setting a = 1 and b =−20 in combination with the learning
function (22) (p = 1e− 6 π

180 and d = 5e− 7 π

180 ) returns the
learned optimal trajectory shown in Section 6. For this setup the
desired final point of flight height 20.000m will be achieved in
a time of 319s (see Figure 4). With this experiment it is shown
that the change of the learning quantity it is possible to achieve
the desired goal by learning for systems which does not belong
to the class of input affine systems.
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6. COMPARISON TO STANDARD METHOD

The standard optimization with a time optimal cost function
and additional with a terminal cost has been implemented on
the same machine as the learning method once with standard
learning quantity (height) and the adapted learning quantity. To
perform the computation a standard PC with an Intel c© Core

TM

i5− 2400 with 3.1 GHz, 8 GB of RAM, Windows 7 64-bit
and MATLAB/Simulink is used. In the case of the standard
optimization the available MATLAB- functions have been used.
The same has been done for the learning method.

6.1 Standard vs. adapted learning

In a first attempt the standard learning method using the height
as quantity (desired end value is a specific height) was used.
As it turned out that only the end time is reached and the time
remains still high (around 800 seconds), the adapted learning
method has been used. In Figure 4 the first obvious disparity

Fig. 4. Position comparison: black solid line time optimal
solution, gray solid line the standard approach with the
height as reference and dash dotted gray with the new
virtual output.

is the final time until the aircraft reaches the desired height.
Another clear difference between the two learning methods
can be seen by comparing the velocity Figure 5. The different
velocity behavior is the main reason why the adapted learning
method is able to achieve an approximation of the time optimal
result.

Fig. 5. Velocity comparison: solid black line approximated time
optimal (with virtual output), dash dotted line the standard
approach with the height as learning.

Fig. 6. Height over velocity diagram for the steepest ascent
problem. Optimization in green, learned solution in blue

6.2 Optimization vs. Learning

In Figure 6 the optimization and the adapted learning method
use the maximal possible energy of the system.

By taking a look at the height over time for both cases some
distinctive points can be seen Figure 4. Around 200 seconds
the two methods are very close to each other, this suggests that
this point can be achieved with different control inputs up to
this time point. An additional fact is that the sudden ascent in
the case of the optimization is responsible for a faster ascent of
9 seconds or 3% faster result compared to the learned value
(see Table 1). It seems that the learning has found another
solution (as the optimal result is not convex) and is not able
to track such a step increase at this point.

6.3 Time until height reached

Table 1. Times until final point

time [sec] time [%]
optimization (only time) 310 100

optimization (time + terminal) 311 100,3
learned solution (height + velocity) 319 103

learned solution (only height) > 800 > 258

The difference between the two learning methods can be ex-
plained by the velocity difference and the used learning quan-
tity. In the case of the more interesting comparison between
optimization and learning the convexity of the system plays an
important role. Both results are close to each other and obtained
by different runs of the height.

Nevertheless, the learning methods do not use any information
of the system a priori (information is gained due to iteration)
a difference in the range of 3% can be neglected as it is an
approximation of the time optimal result. Probably by tuning
the ILC accordingly to a priori available information the result
will be closer to the time optimal one. A similar problem is the
first ascent and decline of the standard method, which depends
mainly of the search direction of the optimization method and
can have different shapes by starting the optimization again.

7. CONCLUSION AND OUTLOOK

In this paper it has been shown that by changing the learning
quantity, the time optimal solution can be obtained for highly
complex nonlinear systems. For this a linear combination of
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states instead of a single quantity is applied to the learning
process. It turned out that the selection of the learning quan-
tity is essential for the success of obtaining the time optimal
solution. The difficulty furthermore lays in the possibility to
recognize the use of a misleading quantity as the process returns
in any case a solution. By using the “wrong” learning quantity
no approximation of the time optimal solution will be possible.
So the process of selecting the learning quantity has to consist
of different linear combination of the states and compare the
results, to determine the “right” quantity.

A further work will treat the selection of the final quantity to
reduce the influence of the user and to lower error-proneness of
the method.
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