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Abstract: A relatively recent approach for robust Nonlinear Model Predictive Control (NMPC)
is based on scenario trees with a so-called recourse formulation. This approach is of interest,
because it is less conservative than worst-case robustification approaches. A major challenge
when using scenario trees for robust NMPC is the large number of scenarios, which grows
exponentially. This exponential growth quickly becomes a bottleneck for the computational
costs, which need to stay within bounds that permit real-time applicability. We present how to
generate scenarios based on a quadrature rule for the expectation value of an arbitrary economic
objective function. The use of sparse grids for the quadrature of the high-dimensional stochastic
integrals yields a drastically smaller number of scenarios than the tensor grid approaches used so
far. We compare the performance of several robust NMPC approaches for a distillation column
with three normally distributed uncertain parameters within a simulated Monte-Carlo controller
testbed.

Keywords: Nonlinear Model Predictive Control; Robust Optimization; Scenario Trees; Sparse
grids; Monte-Carlo controller evaluation.

1. INTRODUCTION

In Nonlinear Model Predictive Control (NMPC) we it-
eratively solve nonlinear optimization problems to ob-
tain optimal feedback control inputs for an underlying
dynamic system. Plant–model mismatch and unforeseen
disturbances in real-world applications are often large,
such that NMPC can only be used when the feedback
controls are computed in a robust sense (see, e.g., Bert-
simas et al. [2011]). Otherwise, violations of system con-
straints can cause severe economical detriments or even
safety-critical situations. Robust NMPC techniques treat
systematic model mismatch and disturbances as prob-
abilistic perturbations to the nominal model, e.g., via
game-theoretic worst-case approaches with linearization
of the inner adverse player optimization problem (Diehl
et al. [2006a]). This approach, however, suffers from a high
conservatism, because it safeguards against all possible
perturbation realizations at the same time. Lucia et al.
[2013] have shown that by using a scenario tree approach
this conservatism can be efficiently reduced while at the
same time maintaining feasibility with high probability.

The main challenge in Scenario Tree NMPC is the high
numerical effort for optimizing all scenarios at the same
time. As we shall see later, there is even an exponential
growth on the number of scenarios in the number of deci-
sion stages. Thus, the question of the choice of scenarios
is of paramount importance for real-time feasibility of
Scenario Tree NMPC. In this article, we propose a method
of scenario generation based on sparse-grid quadrature
rules [Gerstner and Griebel, 1998], which are a commonly
used tool in the field of uncertainty quantification.

2. NOMINAL NMPC

In NMPC, we compute a feedback control for a dynamic
system at a time t0 by solving an optimal control problem
on a sufficiently long prediction horizon [t0, tend] in the
future. The solution of the prediction problem depends
on an estimate of the current system state at t0, which
is usually obtained approximately by the means of mea-
surements and estimation techniques like the (extended)
Kalman Filter. Alternatively, the current system state
can be approximated by a dynamic parameter estimation
problem on a time-horizon [t−k, t0] in the past [Haseltine
and Rawlings, 2005, Diehl et al., 2006b]. Then, we shift
the prediction and estimation horizons into the future
by a small timestep (the so-called sampling time) and
repeat the prediction and estimation task. If the controlled
process has a finite end time, we might have to shrink the
prediction horizon at the end.

In this contribution, we focus on the prediction problem
on the current prediction horizon I = [t0, tend]. In each
NMPC iteration, we need to solve one optimal control
problem for states x : I → Rnx and controls u : I → Rnu .
Possibly uncertain parameters p ∈ Rd enter the dynamics
of the system and serve as the main lever for robustification
in this article. We assume that the model functions

f :Rnx × Rnu × Rd → Rnx , gf :Rnx → Rnf ,

gc :Rnx × Rnu × Rd → Rnc , Φ :Rnx × Rd → R

are sufficiently smooth. They describe the system dynam-
ics f , mixed control-state path constraints gc, terminal
state constraints gf , and the objective function Φ. We
denote the current (estimated) system state by x0 ∈ Rnx .
The prediction problem then reads
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min
x(t),u(t)

Φ(x(tend), p) (1a)

s.t. ẋ(t) = f(x(t), u(t), p), t ∈ [t0, tend], (1b)

x(0) = x0, (1c)

0 ≤ gc(x(t), u(t), p), t ∈ [t0, tend], (1d)

0 ≤ gf (x(tend)). (1e)

We can regard (1) as a parametric optimal control problem
in q = (x0, p). From now on we assume that there always
exists a locally unique optimum of (1), which we denote by
x∗(.; q), u∗(.; q). In this sense, ideal NMPC can be regarded
as the computation of a nonlinear feedback law u∗ for the
closed loop system

ẋ(t) = f(x(t), u∗(t;x(t), p), p).

Of course, discretization errors and feedback delay must
be taken into account in practice.

Direct methods like Direct Multiple Shooting [Bock and
Plitt, 1984] or Direct Collocation [Tsang et al., 1975,
Bär, 1983, Biegler, 1984] have proven to be versatile and
efficient for the solution of (1). However, in the presence
of hard real-time requirements, the resulting discretized
problems must be treated with advanced numerical meth-
ods. The Real-Time Iteration scheme [Diehl et al., 2003,
2005] for instance solves the resulting discrete multiple
shooting problems only approximately and reduces the
feedback time further through a splitting of the iteration
into a preparation and feedback phase. The resulting ini-
tial value embedding idea is also possible in the case of
Direct Collocation (see, e.g., Zavala and Biegler [2009]).
Further enhancements can be obtained by the exploita-
tion of the different time-scales of trajectories and their
sensitivities in the framework of the Multi-Level Iteration
[Bock et al., 2007, Kirches et al., 2010, Frasch et al., 2012].

3. ROBUST NMPC AND SCENARIO TREES

The major obstacle in the application of advanced control
methods like NMPC in real-world systems is the presence
of the often large mismatch between model and plant
or random process disturbances. We try to attack this
problem via robustification of the NMPC scheme.

From now on, we assume that the parameter vector p
originates from a fixed probability space (Ω,F , µ) with
Ω ⊂ Rd, F the corresponding Borel sigma algebra and
µ the measure corresponding to a known distribution. In
nominal NMPC, we solve a discrete counterpart of (1)
using only the mean value of p. Worst-case robustification
approaches like Diehl et al. [2006b] take the rather pes-
simistic viewpoint of an adverse player always choosing the
worst parameter realization. A relatively recent alternative
approach is the use of scenario trees for robust NMPC
[Lucia et al., 2013]: Instead of only using the mean of
p, we consider m ∈ N different realizations of p simul-
taneously. Additionally, we allow for changes of p in time
on nd ∈ N so-called decision points. In the case of only
d = 1 uncertain parameters, nd = 2 decision points, and
m = 3 realizations, we obtain (d ·m)nd = 9 scenarios. The
scenarions can be linked together to form a scenario tree
if their parameter realizations coincide in the beginning,
compare Fig. 1.

In contrast to the worst-case approach, we can have a
full set of controls for each scenario separately. Thus,
scenario tree NMPC exhibits less controller conservatism
than worst-case approaches [Lucia et al., 2013], because
one set of controls does not need to be feasible for all
possible realizations of p. In order to have a well-defined
feedback control and not to violate a causality principle,
we must require so-called non-anticipativity constraints to
couple the controls of different scenarios if their realization
histories coincide. In Fig. 1 for instance, we require the
non-anticipativity constraints

u1
0 = u2

0 = u3
0, u1

1 = u2
1 = u3

1,

u4
1 = u5

1 = u6
1, u7

1 = u8
1 = u9

1.

As we have seen, the number (d ·m)nd of scenarios grows
exponentially in nd. Thus, the choice of scenarios is of
major importance.

4. SCENARIO TREE GENERATION FROM
QUADRATURE FORMULAS

The design of a suitable scenario tree is always a trade-
off between the coverage of the uncertainty space and the
computation cost of large trees.

To motivate our approach we move back to (1). Instead
of minimizing Φ for only one realization of p, we take the
expectation of

Φ∗(x0, p) := Φ(x∗(tend;x0, p), p)

in the space of uncertain parameters as an objective
function. It can be expressed as an integral over the
d-dimensional probability space. When computing the
integral value numerically, we require a reliable quadrature
in high dimensions. To this end, we approximate the
expectation value with a sum over a finite set Γ ⊂ Ω
according to

E(Φ∗(x0, p)) =

∫
Ω

Φ∗(x0, p)dµ(p) =

∫
Ω

Φ∗(x0, p)fµ(p)dp

≈
∑
p∈Γ

w(p)Φ∗(x0, p)fµ(p).

We then interpret every p ∈ Γ as one parameter realiza-
tion. Thus, we have m = |Γ|. It is often argued that a

tpresent = t0 t1 t2 t3 t4t1
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Fig. 1. For d = 1 uncertain parameters, nd = 2 decision
points t0 and t1, and m = 3 realizations, we obtain
9 scenarios, which can be linked together to form a
scenario tree.
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robust scenario tree must contain the combined extreme
values for all uncertain parameters. However, our proba-
bilistic setting usually does not allow for identification of
extreme values. In the following we consider Φ∗fµ with
bounded mixed derivative, cf. (2). If we choose for in-
stance fµ such that the uncertain parameters are normally
distributed and the cost function such that the bounded
mixed derivative condition holds, an extreme realization
of all uncertain parameters at the same time is highly
unlikely on the basis of their joint distribution.

Along this line of arguments, we employ quadrature formu-
las with grid points that resolve the underlying probability
space accurately, but have benign computation costs in
higher dimensions.

5. SPARSE GRIDS

In the area of uncertainty quantification sparse grids are
the method of choice for the evaluation of high-dimensional
integrals. Function evaluations of Φ∗ at the nodes are
expensive in our case, because we need to simulate a full
scenario for each node. Therefore, we aim at reducing the
number of grid points compared to a full tensor grid with
md points without sacrificing accuracy on the basis of
sparse grids.

Following Gerstner and Griebel [1998], we now explain how
to approximate the integral of a function F : Ω→ R with
sparse grid quadrature. We denote the exact value by

Id(F ) =

∫
Ω

F (x)dx.

We consider a sequence of quadrature formulas on level
l ∈ N with ndl underlying points, ndl < ndl+1. Then the
exact integral can be approximated by

Qdl (F ) :=

nd
l∑

i=1

wliF (xli)

with quadrature weights wli ∈ R and node points
xli ∈ Ω, i = 1, . . . , ndl . Moreover, the underlying quadra-
ture grid on level l is denoted by

Γdl := {xli : 1 ≤ i ≤ ndl } ⊂ Ω.

The construction of sparse grids was proposed by Smolyak
[1963] for functions with bounded mixed derivatives of
order r, denoted by Wr

d ,

Wr
d :=

{
F : Ω→ R,

∥∥∥∥ ∂|s|F

∂xs11 · · ·x
sd
d

∥∥∥∥
∞
<∞, si ≤ r

}
, (2)

with multi-index s ∈ Nd and |s| =
∑d
i=1 si.

5.1 Smolyak’s algorithm

Let l ∈ N. For F ∈ Wr
1 , wli ∈ R, and xli ∈ Γdl , we consider

the one-dimensional quadrature formula

Q1
l (F ) =

n1
l∑

i=1

wliF (xli).

We then define the difference formulas

∆1
l (F ) := (Q1

l −Q1
l−1)F with ∆1

0(F ) := 0.

The difference formulas are quadrature formulas on the
grid Γ1

l ∪Γ1
l−1. If the quadrature formulas are nested, that

is Γ1
l−1 ⊂ Γ1

l , then the underlying grid of the difference

formula ∆1
l is Γ1

l .

To lift up the one-dimensional formulas to d-dimensional
formulas for F ∈ Wr

d , we define the tensor product of
quadrature formulas (Q1

l1
⊗ . . .⊗Q1

ld
) as the sum over all

possible combinations.

(Q1
l1 ⊗ · · · ⊗ Q

1
ld

)(F ) :=

n1
l1∑

i1=1

. . .

n1
ld∑

id=1

wl1i1 · wldid · F (xl1i1 , · · · , xldid).

Smolyak’s formula for F ∈ Wr
d , l ∈ N, and multi-index

k ∈ Nd can then be expressed as

Qdl (F ) :=
∑

|k|≤l+d−1

(∆1
k1 ⊗ . . .⊗∆1

kd
)(F ). (3)

The underlying grid for formula (3) is called sparse grid.

Compared to the sparse grid formula (3), the full tensor
product formula

d∑
j=1

∑
1≤kj≤l

(∆1
k1 ⊗ . . .⊗∆1

kd
)(F )

corresponds to summation over the whole cube of indices
{k : kj ≤ l, j = 1, . . . , d}. Instead, the sparse grid
formula (3) sums over a much smaller simplex of indices
{k : |k| ≤ l + d− 1}.
Alternatively to the formulation with difference formulas
∆1
kj

, we can denote Smolyak’s formula in terms of Q1
kj

by

Qdl (F ) =
l+d−1∑
|k|=l

(−1)(l+d−|k|−1)

(
d− 1

|k| − l

)
(Q1

k1 ⊗ · · · ⊗ Q
1
kd

)(F ).

Sparse grids of levels 0, 1, 2, and 3 as well as a tensor grid
in dimension d = 3 are depicted in Fig. 2, 3, 4 and 5.

5.2 Error bounds

Especially in higher dimensions, the number of underlying
quadrature nodes for sparse grid quadrature is much
smaller compared to tensor grid quadrature. In the nested
case, the number of quadrature points of a sparse grid is

ndl =
∑

|k|≤l+d−1

n1
k1 · . . . · n

1
kd
.

If we assume n1
l = O(2l), which is a justified assump-

tion for one-dimensional quadrature rules like the trape-
zoidal rule or the Clenshaw-Curtis rule, we arrive at
ndl = O(2l · l(d−1)). In contrast, the number of grid points
for full tensor product rules is O(2ld).

To formulate error bounds for sparse grid quadrature, we
start with an error bound E1

l (F ) of the one-dimensional
quadrature formulas with positive weights, as for example
in the case of the Clenshaw-Curtis rule. If we assume that
f ∈ Cr, the approximation

|E1
l (F )| = O((n1

l )
−r)

holds. We take such a quadrature formula as a basis for
Smolyak’s algorithm and additionally assume F ∈ Wr

d and
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Fig. 2. The sparse grid of
level l = 0 in dimen-
sion d = 3 is a single
point.

Fig. 3. The sparse grid of
level l = 1 in dimen-
sion d = 3 consists of
7 points on the coordi-
nate axes.

Fig. 4. The sparse grid of
level l = 2 in dimen-
sion d = 3 has 25
points which cluster at
the coordinate axes.

Fig. 5. The full tensor grid
with m = 3 in dimen-
sion d = 3 already con-
sists of 27 points.

n1
l = O(2l). Then the error of sparse grid quadrature is

[Gerstner and Griebel, 1998]

|Edl (F )| = O(2−lr · l(d−1)(r+1)).

As stated in Schillings [2011], the approximation quality of
sparse grids even outperforms tensor grid approximation
quality. The composition of sparse grid points, which clus-
ter along the axes (Fig. 4), is better than the composition
of tensor grid points (Fig. 5).

6. MONTE-CARLO TESTBED

For the evaluation of feasibility and performance of dif-
ferent NMPC controllers we construct a simplified real-
ity. For each sampling interval, we draw realizations of
the uncertain parameters from their joint distribution,
allowing jumps in the parameters on the sampling grid.
We further assume that the controller in question has
perfect knowledge of the current system state and of the
parameter realizations in the previous sampling intervals.
We want to stress, however, that the NMPC controller
does not know the current realization of the uncertain
parameters.

We then produce a large number of random sequences of
parameters. For each sequence of parameter realizations
we obtain a closed-loop objective and constraint value.
These values can then be investigated with statistical
methods. Thus, we can reduce the expected controller
performance and feasibility to a few values for meaningful
comparison.

V m mC

Mean 100 0.1 0.1
Standard deviation σi 5 0.005 0.005

Table 1. The standard deviation of all uncer-
tain parameters in the distillation column is

5% of its mean.

For simplicity, we use Direct Multiple Shooting without
Real-Time and Multi-Level Iterations.

7. CASE STUDY

We compare three NMPC controllers and consider their
advantages and disadvantages on the basis of the statistical
Monte-Carlo testbed results. More precisely, we compare
nominal NMPC with Scenario Tree NMPC using m = 3
on a sparse grid of level l = 1 (Fig. 3) and on a full tensor
grid (Fig. 5). In other words, we compare Scenario Tree
NMPC controllers with 1, 7, and 27 scenarios.

We solve a problem of distillation control [Diehl et al.,
2006a]. The model consists of five distillation trays. At
the bottom of the distillation column, the reboiler content
M0 with concentration ξ0 is heated and produces vapour.
We denote by ξi the concentration in tray i = 1 . . . 5.
The vapour equilibrium in the reboiler and in each tray
is given by an algebraic relation y(ξi) = ξi(1 +α)/(ξi +α)
depending on a constant parameter α ∈ R.

The distillation column can be controlled by the reflux
ratio R(t): At the top of the column, the vapour condenses
and a liquid molar flux L = V R/(1+R) is fed back into the
column, where V ∈ R is the vapour molar flux. We assume
that the parameter L is constant in each tray. At the top
of the column, distillate content MD with concentration
xD is produced. As the state vector we obtain

x = (M0, ξ0, ξ1, . . . , ξ6,MD, xD, α)T .

The dynamics of the distillation column are modelled as a
system of ordinary differential equations

Ṁ0 =−V + L,

ξ̇0 =M0
−1(Lξ1 − V y(ξ0) + (V − L)ξ0),

ξ̇i =m−1(Lξi+1 − V y(ξi) + V y(ξi−1)− Lξi),
i = 1, . . . , 5,

ξ̇6 =mC
−1V (y(ξ5)− ξ6),

ṀD = V − L,
ẋD =MD

−1(V − L)(ξ6 − xD).

For this study, we regard the vapour molar flux V , the
molar holdup of each tray m, and the molar holdup of the
condenser mC as uncertain. We assume that all uncertain
quantities are stochastically independent and normally
distributed with fixed mean and variance according to
Tab. 1.

The probability space of uncertainties is (R3,B(R3), µ)
with µ the measure corresponding to the joint distribution
of p = (V,m,mC)T .
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Fig. 6. A terminal constraint, the purity of the destillate,
is sometimes violated in the case of nominal NMPC.
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nsFig. 7. In case of single point quadrature, nominal NMPC,
the histogram of the produced amount of distillate for
2420 realizations can be fitted by a normal distribu-
tion around the mean of 49.680.

The control R(t) and the states are bounded according to

0 ≤ R(t) ≤ 15, t ∈ I,
xmin ≤ x(t) ≤ xmax, t ∈ I.

We further require that the purity of the distillate is at
least 99% at tend, i.e.,

0 ≤ gf (x(tend)) = xD(tend)− 0.99.

This terminal constraint ensures the quality of the distil-
late. The objective function is the amount of product

Φ(x(tend), p) = −MD(tend).

When applying the quadrature-based scenario tree gener-
ation to the distillation column, we use the current time t0
as the only decision point, therefore nd = 1. Additionally,
we consider only the closed compact interval [−3σi, 3σi]
for each uncertain parameter component and neglect the
tails of the distribution.

The most important property of the distillate is the purity,
because often the full batch needs to be thrown away if it
does not meet the product specifications.

In Fig. 6 we depict the purity constraint violation for
nominal NMPC. For a certain value of the constraint
violation at the x-axis we plot the corresponding number
of realizations with the specific violation in histogram bins.
In the cases of sparse and tensor grid Scenario Tree NMPC,
however, we have not observed any purity constraint
violations. This observation underlines the robustness of
the Scenario Tree approach.

Fig. 7, 8, and 9 show histogram plots of the negative objec-
tive MD(tend) for the cases of nominal NMPC, sparse grid,
and full tensor grid Scenario Tree NMPC, respectively. The
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Fig. 9. For the tensor grid quadrature the histogram of the
produced amount of distillate for 139 realizations can
be fitted by a normal distribution around the mean
of 49.639.

nominal sparse grid tensor grid

Mean 49.680 49.643 49.639
Standard deviation σi 0.111 0.110 0.105
p-value 0.081 0.118 0.264

Table 2. The the mean and standard deviation
of the amount of distillate in the terminal time
vary for different quadrature methods. The p-
values indicate how extreme the realization is.
With higher p-value the null-hypothesis, nor-
mal distribution, cannot be rejected anymore.

realizations of Φ∗ are sorted into bins on the x-axis. The
number of realizations is on the y-axis. We see, that the
bin heights can be approximated nicely by a gaussian bell
curve. We want to stress that it is not clear a-priori, how a
normally distributed input influences the output variables
of a nonlinear system. In the test case of the distillation
column, however, the null-hypothesis that MD(tend) is
normally distributed cannot be rejected based on the p-
value of a χ2 goodness-of-fit test (compare Tab. 2).

When we look at the mean values in Tab. 2, nominal
NMPC leads to a higher amount of distillate than in
the other two cases. However, this is mainly due to the
infeasibilities mentioned before. Thus, this behavior is
rather an economical drawback than an advantage. When
comparing the means and variances of the sparse grid
case and full tensor grid case in Tab. 2, there is only
a marginal difference. Thus, we can conclude that the
sparse grid Scenario Tree NMPC with 74% less scenarios
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yields virtually the same controller performance as the full
tensor grid Scenario Tree NMPC. Therefore the sparse
grid should be prefered to the full tensor grid in order
to save computation time without sacrificing controller
performance.

8. CONCLUSION

We have proposed a new method to generate scenario trees
for robust NMPC of uncertain systems with randomly
distributed parameters. Our approach is based on high-
dimensional quadrature rules, which can be efficiently
generated in an a-priori fashion on the basis of sparse grids.
The resulting scenarios differ from usually used ones in
that the extreme corner points of parameter realizations
are not included. In the case of distributed parameters,
these corner cases are simply highly unlikely to realize.

We have demonstrated the efficiency of our approach for
the case of robust control of a destillation column within
a virtual Monte-Carlo testbed, for which we could obtain
the same controller performance and feasibility with con-
sidering 74% less scenarios compared to a conventional full
tensor grid scenario tree approach. This means a drastic
reduction of computational time and opens up the pos-
sibility to use robust NMPC for a much wider range of
problems than could be tackled up to now.
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