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Abstract: We show that for any positive integer d, there are families of switched linear
systems—in fixed dimension and defined by two matrices only—that are stable under arbitrary
switching but do not admit (i) a polynomial Lyapunov function of degree ≤ d, or (ii) a polytopic
Lyapunov function with ≤ d facets, or (iii) a piecewise quadratic Lyapunov function with ≤ d
pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite
programs that search for such stability certificates. Several constructive and non-constructive
arguments are presented which connect our problem to known (and rather classical) results
in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the
joint spectral radius. In particular, we show that existence of a sum of squares Lyapunov function
implies the finiteness property of the optimal product.
Index terms: stability of switched systems, linear difference inclusions, the finiteness conjecture
of the joint spectral radius, convex optimization for Lyapunov analysis.

1. INTRODUCTION

We are concerned in this paper with one of the most
basic and simple to describe classes of hybrid dynamical
systems, namely those that undergo arbitrary switching
between a finite set of discrete time linear dynamical
systems. In this setting, the input to our problem is a
set of m real n× n matrices Σ := {A1, . . . , Am}. This set
describes a switched linear system of the form

xk+1 = Aσ(k)xk, (1)

where k is the index of time and σ : Z→{1, ...,m} is a
map from the set of integers to the set {1, . . . ,m}. A basic
notion of stability is that of absolutely asymptotically stable
(AAS), also referred to asymptotic stability under arbitrary
switching (ASUAS), which asks whether all initial condi-
tions in Rn converge to the origin for all possible switching
sequences. It is not difficult to show that absolute asymp-
totic stability of (1) is equivalent to absolute asymptotic
stability of the linear difference inclusion

xk+1 ∈ coΣ xk, (2)

where coΣ here denotes the convex hull of the set Σ.
Among other motivations, dynamical systems in (1) or (2)
model a linear system which is subject to time-dependent
uncertainty. See for instance Liberzon [2003], Shorten et al.
[2007], or Jungers [2009] for more applications in systems
and control.

When the set Σ consists of a single matrix A (i.e., m = 1),
we are of course in the simple case of a linear system where
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asymptotic stability is equivalent to the spectral radius of
A having modulus less than one. This condition is also
equivalent to existence of a quadratic Lyapunov function.
When m ≥ 2, however, no efficiently checkable criterion is
known for AAS. Arguably, the most promising approaches
in the literature have been to use convex optimization
(typically linear programming (LP) or semidefinite pro-
gramming (SDP)) to construct Lyapunov functions that
serve as certificates of stability. The most basic example is
that of a common quadratic Lyapunov function (CQLF),
which is a positive definite quadratic form xTQx that
decreases with respect to all m matrices, i.e., satisfies
xT (ATi QAi − Q)x < 0,∀x ∈ Rn, i = 1, . . . ,m. On the
positive side, the search for such a quadratic function is
efficient numerically as it readily provides a semidefinite
program. On the negative side, and in contrast to the case
of linear systems, existence of a CQLF is a sufficient but
not necessary condition for stability. Indeed, a number
of authors have constructed examples of AAS switched
systems which do not admit a CQLF and studied various
criteria for existence of a CQLF (Ando and Shih [1998],
Dayawansa and Martin [1999], Mason and Shorten [2004],
Olshevsky and Tsitsiklis [2008]).

To remedy this shortcoming, several richer and more com-
plex classes of Lyapunov functions have been introduced.
We list here the five that are perhaps the most ubiquitous:

Polynomial Lyapunov functions. A homogeneous 1

multivariate polynomial p(x) of some even degree d is
a polynomial Lyapunov function for (1) if it is positive

1 Since the dynamics in (1) is homogeneous, there is no loss of
generality in parameterizing our Lyapunov functions as homogeneous
functions. Also, we drop the prefix “common” from the terminology
“common polynomial Lyapunov function” as it is implicit that our
Lyapunov functions are always common to all m matrices Ai in Σ.
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definite 2 and makes p(x) − p(Aix) positive definite for
i = 1, . . . ,m.

Although this is a rich class of functions, a numerical
search for polynomial Lyapunov functions is an intractable
task even when the degree d is fixed to 4. In fact, even
testing if a given quartic form is positive definite is
NP-hard in the strong sense (see, e.g.,Ahmadi [2012]).
A popular and more tractable subclass of polynomial
Lyapunov functions is that of sum of squares Lyapunov
functions.

Sum of squares (sos) Lyapunov functions. A homoge-
neous polynomial of some even degree d is a sum of squares
(sos) Lyapunov function for (1) if p is positive definite
and a sum of squares 3 , and if all the m polynomials
p(x) − p(Aix), i = 1, . . . ,m are also positive definite and
sums of squares.

For any fixed degree d, the search for an sos Lyapunov
function of degree d is a semidefinite program of size
polynomial in the input. When d = 2, this class coincides
with CQLFs as nonnegative quadratic forms are always
sums of squares. Moreover, existence of an sos Lyapunov
function is not only sufficient but also necessary for AAS of
(1) (Parrilo and Jadbabaie [2008]). This of course implies
that existence of polynomial Lyapunov functions defined
above is also necessary and sufficient for stability.

Polytopic Lyapunov functions. A polytopic Lyapunov
function V for (1) with d pieces is one that is a pointwise
maximum of d linear functions:

V (x) := max
i=1...,d

|cTi x|,

where c1, . . . , cm span Rn. The sublevel sets of such func-
tions are polytopes, justifying their name. Polytopic Lya-
punov functions (with enough number of pieces) are also
necessary and sufficient for absolute asymptotic stability.
One can use linear programming to search for subclasses of
these Lyapunov functions. These subclasses are big enough
to also comprise a necessary and sufficient condition for
stability (see Lin and Antsaklis [2005], Polański [1997,
2000]).

Max-of-quadratics Lyapunov functions. A max-of-
quadratics Lyapunov function V for (1) with d pieces is
one that is a pointwise maximum of d positive definite
quadratics:

V (x) := max
i=1,...,d

xTQix,

where Qi � 0. The sublevel sets of such functions are
intersections of ellipsoids.

Min-of-quadratics Lyapunov functions. A min-of-
quadratics Lyapunov function V for (1) with d pieces is
one that is a pointwise minimum of d positive definite
quadratics:

V (x) := min
i=1,...,d

xTQix,

where Qi � 0. The sublevel sets of such functions are
unions of ellipsoids.

2 A form (i.e., homogeneous polynomial) p is positive definite if
p(x) > 0 for all x 6= 0.
3 A polynomial p is a sum of squares if it can be written as p =

∑
i
q2i

for some polynomials qi.

By a piecewise quadratic Lyapunov function, we
mean one that is either a max-of-quadratics or a min-of-
quadratics. Both of these families are known to provide
necessary and sufficient conditions for AAS. Several ref-
erences in the literature produce semidefinite programs
that can search over a subclass of max-of-quadratics or
min-of-quadratics Lyapunov functions (see Goebel et al.
[2006]). These subclasses alone also provide necessary and
sufficient conditions for AAS. A unified framework to
produce such SDPs is presented in Ahmadi et al. [2013],
where a recipe for writing down stability proving linear
matrix inequalities is presented based on some connections
to automata theory.

For all classes of functions we presented, one can think of d
as a complexity parameter of the Lyapunov functions. The
larger the parameter d, the more complex our Lyapunov
function would look like and the bigger the size of an LP
or an SDP searching for it would need to be.

1.1 Motivation and contributions

Despite the encouraging fact that all five classes of Lya-
punov functions mentioned above provide necessary and
sufficient conditions for AAS of (1) that are amenable to
computational search via LP or SDP, all methods offer an
infinite hierarchy of algorithms, for increasing values of d,
leaving unclear the natural questions: How high should
one go in the hierarchy to obtain a proof of stability?
How does this number depend on n (the dimension) and
m (the number of matrices)? Unlike the case of CQLF
which is ruled out as a necessary condition for stability
through several counterexamples in the literature, we are
not aware of that many counterexamples that rule out
more complicated Lyapunov functions. For example, is
there an example of a set of matrices that is AAS but does
not admit a polynomial Lyapunov function of degree 4, or
6, or 200? 4 Or, is there an example of a set of matrices that
is AAS but does not admit a piecewise quadratic Lyapunov
function with 200 pieces? If such sets of matrices exist, how
complicated do they look like? How many matrices should
they have and in what dimensions should they appear?

In this paper we give an answer to these questions,
providing constructive and non-constructive arguments
for existence of “families of vary bad matrices”, i.e.,
those forcing the complexity parameter d of all Lyapunov
functions to be arbitrarily large, even for fixed n and m
(in fact, even for the minimal situation n = m = 2). The
formal statement is given in Theorem 1 below.

It is important to remark that the families of matrices we
present have already appeared in rather well-established
literature, though for different purposes. These matrices
have to do with the “non-algebraicity” and the “finiteness
property” of the notion of joint spectral radius (JSR) (see
Sections 2 and 3 for definitions). This leaves us with the
much simplified task of establishing a formal connection
between these two concepts and that of complexity of
Lyapunov functions. We hope that clarifying these connec-
tions sheds new light on the intrinsic relationship between
4 The largest degree existing counterexample that we know of is one
of our own, appearing in Ahmadi and Jungers [2013], which is a pair
of AAS 2 × 2 matrices with no polynomial Lyapunov function of
degree 14.
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the JSR and the stability question for switched linear
systems. Indeed, many of the results that we refer to in the
literature on the JSR appear much before counterexamples
to existence of CQLF in the switched system literature.

Theorem 1. For any positive integer d, the following fam-
ilies of matrices (parameterized by k) include switched
systems that are asymptotically stable under arbitrary
switching but do not admit (i) a polynomial (hence SOS)
Lyapunov function of degree ≤ d, or (ii) a polytopic
Lyapunov function with ≤ d facets, or (iii) a max-of-
quadratics Lyapunov function with ≤ d pieces, or (iv) a
min-of-quadratics Lyapunov function with ≤ d pieces:

(1) (1− 1
k ){A1, A2}, with

A1 =
(1− t4)

(1− 3πt3/2)

[√
1− t2 −t
0 0

]
,

A2 = (1− t4)

[√
1− t2 −t
t

√
1− t2

]
,

where t = sin 2π
2k+1 and k = 1, 2, . . ..

(This family appears in the work of Kozyakin [1990]
as an example demonstrating that the joint spectral
radius is not a semialgebraic quantity; see Section 2.)

(2) (1− 1
k ){A1, . . . , Am}, k = 1, 2, . . ., where A1, . . . , Am

are any fixed set of matrices with JSR equal to
1 that provide a counterexample to the finiteness
conjecture (see Blondel et al. [2003], Bousch and
Mairesse [2002]); for example, those in Hare et al.
[2011]:

A1 =

[
1 1
0 1

]
, A2 = α∗

[
1 0
1 1

]
,

where

α∗ ' 0.749326546330367557943961948091344672091...

(3) (1− 1
k ){A1, A2}, with

A1 = αk
[
0 0
1 0

]
, A2 = α−1

 cos
π

2k
sin

π

2k
− sin

π

2k
cos

π

2k

 ,
where

1 < α < (cos
π

2k
)−1.

(This family appears in the work of Lagarias and
Wang [1995] as an example demonstrating that the
length of the optimal product cannot be bounded;
see Section 3.)

The first construction and its relation to non-algebraicity
is presented in Section 2. The second and third construc-
tions are very similar and their relations to the finite-
ness property are presented in Section 3. One technical
difference between the second and third constructions is
that it is not known whether the former can produce
matrices with rational entries, while the latter can do so.
In Section 3, we present a result that is of potential interest
independent of the above theorem: that existence of a
sum of squares Lyapunov function implies the finiteness
property of optimal products. This result somehow links
lower and upper bound approaches for computation of the
joint spectral radius. Similar results were obtained in the
pioneering works of Gurvits [1996] for polytopic Lyapunov
functions and Lagarias and Wang [1995] for quadratic
Lyapunov functions, as well as, several other classes of
convex Lyapunov functions.

We shall also remark that for continuous time switched
linear systems, Mason et al. [2006] have established that
the degree of a polynomial Lyapunov function for an
ASS system may be arbitrarily high, answering a question
raised by Dayawansa and Martin. We have been unable to
come up with a transformation from continuous time to
discrete time that preserves both AAS and non-existence
of polynomial Lyapunov functions of any desired degree.

In Section 4, we provide an alternative proof of Theorem
1 based on an undecidability results due to Blondel and
Tsitsiklis [2000]. While this will be a non-constructive
argument, its implications will be stronger. Indeed, The-
orem 1 above implies that the complexity parameter d
(and hence the size of underlying LPs and SDPs) cannot
be upper bounded as a function of n and m only. The
undecidability results, however, imply that d cannot be
upper bounded even as a function of n, m, and the entries
of the input matrices. We close our paper with some brief
concluding remarks in Section 5. The proofs are omitted
due to space constraints.

2. COMPLEXITY OF LYAPUNOV FUNCTIONS AND
NON-ALGEBRAICITY

One classical approach to demonstrate that a problem is
hard is to establish that there is no algebraic criterion for
testing the property under consideration. This is formal-
ized by showing that the set of instances of a given size
that satisfy the property do not form a semialgebraic set
(see formal definition below). Such a result rules out the
possibility of any characterization of the property at hand
that only involves operations on the input data that in-
clude combinations of arithmetical operations (additions,
subtractions, multiplications, and divisions), logical oper-
ations (“and” and “or”), and sign test operations (equal
to, greater than, greater than or equal to,...); see Blondel
and Gevers [1993]. While this is a very strong statement,
non-algebraicity does not imply (but is implied by) Turing
undecidability, which will be our focus in Section 4. Never-
theless, non-algebraicity results alone are enough to show
that the complexity of commonly used Lyapunov functions
for switched linear systems cannot be bounded. The goal
of this section is to formalize this argument.

Definition 1. A set S ⊂ Rn defined as S = {x ∈ Rn :
fi(x)�i0, i = 1, . . . , r}, where for each i, fi is a polynomial
and �i is one of ≥, <,=, 6=, is called a basic semialgebraic
set. A set is called semialgebraic if it can be expressed as
a finite union of basic semialgebraic sets.

Theorem 2. (Tarski [1951], Seidenberg [1954]). Let S ⊂
Rk+n be a semialgebraic set and π : Rk+n → Rn be a
projection map that sends (x, y) 7→ x. Then π(S) is a
semialgebraic set in Rn.

We start by presenting two examples of semialgebraic sets
that are relevant for our purposes.

Lemma 1. The set Sn of stable n × n real matrices (i.e.,
those with spectral radius less than one), when viewed as

a subset of Rn2

, is semialgebraic.

Lemma 2. The set Pn,d of nonnegative polynomials in n
variables and (even) degree d is semialgebraic.

Unlike the case of stable matrices (Lemma 1), when
we move to switched systems defined by even only two
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matrices, the set of stable systems no longer defines a
semialgebraic set. This is a result of Kozyakin [1990].
The result is stated in terms of the joint spectral radius
(see Jungers [2009] for a monograph on the topic) which
captures the stability of a linear switched system.

Definition 2. (Rota and Strang [1960]) If ‖·‖ is any matrix
norm, consider ρk(Σ) := supAi∈Σ ‖A1 . . . Ak‖1/k, k ∈ N.
The joint spectral radius (JSR) of M is

ρ(Σ) = lim
k→∞

ρk(Σ). (3)

The joint spectral radius does not depend on the matrix
norm chosen thanks to the equivalence between matrix
norms in finite dimensional spaces. It is well known that
the switched system in (1) is absolutely asymptotically
stable if and only if ρ(Σ) < 1.

Theorem 3. (Kozyakin [1990]; see also Theys [2005]). The
set of 2 × 2 matrices A1, A2 with ρ(A1, A2) < 1 is not
semialgebraic.

We now show that by contrast, for any integer d, the set of
matrices {A1, . . . , Am} that admit a common polynomial
Lyapunov function of degree ≤ d is in fact semialgebraic.
This establishes the result related to the first construction
in Theorem 1.

Theorem 4. For any positive integer d, the set of matrices

{A1, . . . , Am} (viewed as a subset of Rmn2

) that admit
either (i) a polynomial Lyapunov function of degree ≤ d,
or (ii) a polytopic Lyapunov function with ≤ d facets, or
(iii) a piecewise quadratic Lyapunov function (in form of
max-of-quadratics or min-of-quadratics) with ≤ d pieces
is semialgebraic.

3. COMPLEXITY OF LYAPUNOV FUNCTIONS AND
THE FINITENESS PROPERTY OF OPTIMAL

PRODUCTS

A set of matrices {A1, . . . , Am} satisfies the finiteness
property if its JSR is achieved as the spectral radius of
a finite product; i.e., if

ρ(A1, . . . , Am) = ρ1/k(Aσk
. . . Aσ1),

for some k and some (σk, . . . , σ1) ∈ {1, . . . ,m}k. The ma-
trix product Aσk

. . . Aσ1 that achieves the JSR is called the
optimal product and generates the “worst case trajectory”
of the switched system in (1). The finiteness conjecture of
Lagarias and Wang [1995] (see also Gurvits [1992], where
the conjecture is attributed to Pyatnitskii) asserts that all
sets of matrices have the finiteness property. The conjec-
ture was disproved in 2002 by Bousch and Mairesse [2002]
with alternative proofs consequently appearing in Blondel
et al. [2003], Kozyakin [2005], and Hare et al. [2011]. In
particular, the last reference provided the first explicit
counterexample only recently. It is currently not known
whether all sets of matrices with rational entries satisfy
the finiteness property (Jungers and Blondel [2008a]).

Gurvits [1992] shows that if the set of matrices admits a
polytopic Lyapunov function, then the finiteness property
holds. The result is generalized by Lagarias and Wang
[1995] to Lyapunov functions that take the form of various
other norms, including ellipsoidal norms. In this section,
we combine the result of Lagarias and Wang on ellipsoidal
norms with some algebraic lifting arguments to establish

that sets of matrices which admit a sum of squares (sos)
Lyapunov function always satisfy the finiteness property.
Note that sos Lyapunov functions of degree ≥ 4 do not in
general define a norm as their sublevel sets may very well
be non-convex. Similar arguments imply that existence of
a piecewise quadratic Lyapunov function also results in the
finiteness property, though we restrict our attention here
to sos Lyapunov functions.

Theorem 5. (Lagarias and Wang [1995]). The finiteness
property holds for any set of n× n matrices

{A1, . . . , Am}
of JSR equal to one that share an ellipsoidal norm, i.e.,
satisfy ATi PAi � P for some symmetric positive definite
matrix P . Moreover, the length of the optimal product is
upper bounded by a quantity that depends on n and m
only. 5

Theorem 6. Let {A1, . . . , Am} be a set of n×n matrices of
JSR equal to one. If there exists a (homogeneous) positive
definite polynomial p of degree 2d that satisfies

p(x) sos, p(x)− p(Aix) sos, i = 1, . . . ,m,

then {A1, . . . , Am} satisfies the finiteness property. More-
over, the length of the optimal product is upper bounded
by a quantity that depends on n, m, and d only.

We conjecture that the assumption of having a sum
of squares Lyapunov function in our Theorem 6 can
be weakened to the assumption of having a polynomial
Lyapunov function. In dimension two, these two classes of
Lyapunov functions are the same (see Lemma 3 below) and
this allows us to show that any family of 2×2 matrices for
which the length of the optimal product blows up is also a
family of matrices where the degree of a stability proving
polynomial Lyapunov function is forced to blow up. This
is the idea behind constructions 1 and 3 in Theorem 1.

Lemma 3. For switched linear systems in two variables,
the set of polynomial Lyapunov functions of any degree
d coincides with the set of sum of squares Lyapunov
functions of degree d.

Corollary 1. Let A1, . . . , Am be any set of 2 × 2 matrices
with JSR 1 that violate the finiteness property. An exam-
ple is

A1 =

[
1 1
0 1

]
, A2 = α∗

[
1 0
1 1

]
,

with

α∗ ' 0.749326546330367557943961948091344672091... 6 .

For any positive integer d, there exists a positive integer
k such that the set of matrices (1 − 1

k ){A1, . . . , Am} is
asymptotically stable under arbitrary switching but does
not admit a polynomial Lyapunov function of degree ≤ d.

The next corollary is very similar but the matrix family
that it presents is completely explicit.

Corollary 2. Consider the matrix family
(1− 1

k ){A1, A2}, with

A1 = αk
[
0 0
1 0

]
, A2 = α−1

 cos
π

2k
sin

π

2k
− sin

π

2k
cos

π

2k

 ,
5 An expression for this bound is presented in (Lagarias and Wang
[1995]), which can easily be extended to our generalization.
6 See Hare et al. [2011] for an expression for the exact value of α∗
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where
1 < α < (cos

π

2k
)−1.

For any positive integer d, there exists a positive integer k
such that the set of matrices (1− 1

k ){A1, A2} is asymptot-
ically stable under arbitrary switching but does not admit
a polynomial Lyapunov function of degree ≤ d.

4. COMPLEXITY OF LYAPUNOV FUNCTIONS AND
UNDECIDABILITY

In this section, we show that our statements on lack of
upper bounds on complexity of Lyapunov functions also
follow in a straightforward manner from undecidability
results. Compared to the results of the previous sections,
the new statements are weaker in some sense and stronger
in some other. They are weaker in that the statements
are non-constructive. However, they imply the stronger
statement that the complexity of Lyapunov functions (e.g.,
degree or number of pieces) cannot be upper bounded, not
only as a function of n and m, but also as a computable
function of n, m, and the entries of the matrices in
Σ (Corollary 4). In addition to this, we can further
establish that the same statements are true for very simple
and restricted classes of matrices whose entries take two
different values only (see Theorem 10).

Theorem 7. For any positive integer d, there are fami-
lies of matrices of size 47 × 47 that are asymptotically
stable under arbitrary switching but do not admit (i)
a polynomial Lyapunov function of degree d, or (ii) a
polytopic Lyapunov function with d facets, or (iii) a max-
of-quadratics Lyapunov function with d pieces, or (iv) a
min-of-quadratics Lyapunov function with d pieces.

The main ingredient in the proof is the following undecid-
ability theorem, which is stated in terms of the JSR of a
set of matrices.

Theorem 8. (Blondel and Canterini [2003], Blondel and
Tsitsiklis [2000]) The problem of determining, given a set
of matrices Σ, if ρ(Σ) ≤ 1 is Turing-undecidable. This
result remains true even if Σ contains only two matrices
with nonnegative rational entries of size 47× 47.

We now show that this result implies Theorem 7. The
main ingredient is Tarski’s quantifier elimination theory,
which gives a finite time procedure for checking certain
quantified polynomial inequalities. The rest is a technical
transformation of the problem “ρ ≤ 1?” to the existence
of a degree d polynomial Lyapunov function.

In Blondel and Tsitsiklis [2000], the authors note that
Theorem 8 implies the following result:

Corollary 3. (Blondel and Tsitsiklis [2000]) There is no
effectively computable function 7 t(Σ), which takes an
arbitrary set of matrices with rational entries Σ, and
returns in finite time a natural number such that

ρ(Σ) = max
t′≤t(Σ)

max
A∈Σ

ρ(A).

The same corollary can be derived concerning the degree
of a Lyapunov function.

Corollary 4. There is no effectively computable function
d(Σ), which takes an arbitrary set of matrices with rational

7 See (Blondel and Tsitsiklis [2000]) for a definition.

entries Σ, and returns in finite time a natural number
such that if ρ(Σ) < 1, there exists a polynomial Lyapunov
function of degree less than d.

Next, we show a similar result, which does not focus on the
fixed size of the matrices in the family, but somehow on
the complexity of the real numbers defining the entries of
the matrices. Namely, we show that such negative results
also hold essentially for sets of binary matrices (that is,
matrices with only 0/1 entries). In fact, the very question
ρ ≤ 1 is easy to answer in this case (see Jungers et al.
[2008]), so, one cannot hope to have strong negative results
stated in terms of binary matrices. However, it turns out
that for an arbitrary integer K the question ρ ≤ K for
binary matrices is as hard as the question ρ ≤ 1 for rational
matrices. More precisely, we have the following theorem:

Theorem 9. (Jungers and Blondel [2008b]) Given a set
of m nonnegative rational matrices Σ, it is possible to
build a set of m binary matrices Σ′ (possibly of larger
dimension), together with a natural number K such that
for any product A = Ai1 . . . Ait ∈ Σt, the corresponding
product A′i1 . . . A

′
it
∈ Σ′t has numerical values in its entries

that are exactly equal to zero, or to entries in the product
A multiplied by Kt. Moreover, for any entry in the product
A, there is an entry in the product A′ with the same value
multiplied by Kt.

Theorem 8 together with Theorem 9 allows us to prove an-
other negative result on the degree of Lyapunov functions
restricted to matrices with entries all equal to a same num-
ber 1/K, K ∈ Q. Remark that the fact that the parameter
K ∈ Q has unbounded denominator and numerator is
unavoidable in such an undecidability theorem, since for
bounded values, there is a finite number of matrices with
all entries in the range, and this rules out a result as the
one in the theorem below.

Theorem 10. There is no function d : N→ N such that for
any set of matrices of dimension n with entries all equal to
a same number 1 or K, K ∈ Q, the set is AAS if and only
if there exists a (strict) polynomial Lyapunov function of
degree d(n).

The point of our last theorem was to show that in high
dimensions, “bad” families of matrices that necessitate
arbitrarily complex Lyapunov functions can have very
simple and structured entries.

5. CONCLUSION

In this paper, we leveraged results related to non-
algebraicity, undecidability, and the finiteness property of
the joint spectral radius to demonstrate that commonly
used Lyapunov functions for switched linear systems can
be arbitrarily complex, even in fixed dimension, or for
matrices with lots of structure.

If these negative results are bad news for the practitioner,
it is worth mentioning that in practice the different Lya-
punov functions often have complementary performance.
So while there certainly exist instances which make all
methods fail (as we have shown), one can hope that in
practice, at least one of the different Lyapunov methods
would be able to certify stability. In light of this, we believe
it is important to (i) understand systematically how the
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different methods compare to each other, and (ii) iden-
tify subclasses of matrices that if stable, are guaranteed
to admit “simple” Lyapunov functions. While the latter
objective has been reasonably achieved for quadratic Lya-
punov functions, results of similar nature are lacking for
even slightly more complicated Lyapunov functions (say,
polynomials of degree 4, or piecewise quadratics with 2
pieces).
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