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Abstract: The continuously increasing demands in terms of performance, environmental compatibility
and safety motivate the growing interest for optimal control in automotive systems. In practice, however,
these methods are seldom used, one of the reasons being the nonlinear nature of the plant which
makes the computation more difficult. Several nonlinear optimal control methods have been tested
for automotive systems, either starting from the optimization problem in terms of a Hamilton Jacobi
Bellman equation or as a nonlinear extension of well established model predictive approaches. In this
paper, we apply a method which in some sense combines both worlds, the C/GMRES method. In our
implementation, no physical model is used but a nonlinear NARX model is derived from data. The
resulting control law is applied to a production Diesel engine and tested against the production controller,
showing the potential performance of the suggested method but also the design simplicity.

1. INTRODUCTION

Automotive industry is characterized by very high and con-
flicting requirements, e.g. both safety and fuel efficiency are
requested, but most measures for improved safety affect nega-
tively fuel efficiency. Not surprisingly, optimization has been an
important topic for a long time, but has been mostly addressed
empirically, using complex control structures with many de-
grees of freedom and determining the optimal parameter values
with an enormous experimental effort, frequently supported by
specialized tools like CAMEO ! .

Against this background, there has been a substantial interest
in exploring the use of model based optimal techniques to
control automotive systems. In practice, only few industrial
systems have been developed, e.g. by Honeywell (Stewart et al.
(2010)) and Hoerbiger (Angeby et al. (2010), for a special
application), and both of them based on linear model predictive
control, which yields a suboptimal solution, but allows taking
explicitly in account bounds on the inputs and constraints on
the state or output variables. Nonlinear optimal control has not
been considered for long time, mainly because the existing
approaches for the solution of the nonlinear optimal control
problem are limited to a very small number of cases, and
available models hardly fulfill with these conditions.

A way out of this problem may consist in looking for classes
of models which do fulfill the conditions and are still able to
capture the nature of a plant. This prevents, of course, the use of
first principle models. In this paper, we use polynomial models,
which, however, suffer from the problem that the number of
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parameters increases very fast with the order of the model
and the degree of the polynomial expansion, leading to the
well known problems of overparametrization, i.e. to models
which tend to perform poorly in validation. To cope with
these problems, an iterative method has been developed which
exploits design of experiment (DOE) and pruning methods to
derive a simple and well conditioned model of of low order and
degree Hirsch and del Re (2010a). This method has been used
and validated in a variety of applications (see e.g. Stadlbauer
et al. (2012) and Passenbrunner et al. (2014)) in automotive
control. The simple nature of these models is also well suited
as a basis for nonlinear optimal control design. An example of
this combination has been shown in Sassano et al. (2012), in
which such a model has been used for the design of an optimal
control based on a relaxed Hamilton Jacobi Bellman (HJB)
equation, which has been proven to work both in simulation
and practice. However, this optimal control method does not
allow easy consideration of constraints and/or bounds, and at
the end of the day it is not completely clear which cost function
is optimized.

In this paper, we examine the possible use of a different tech-
nique, C/GMRES by Ohtsuka (2004), which also starts from a
general nonlinear optimal control setup, but then combines the
continuation method (see, e.g., Richter and DeCarlo (1983))
and GMRES (generalized minimum residual method) (see,
e.g., Kelley (1995)) to update a time-varying optimal solution
efficiently. Instead of standard Newton’s method for solving
optimality conditions, the continuation method is employed
to derive a differential equation of the time-varying optimal
solution, which can be integrated in real time with no iterative
search. Then, GMRES is applied to solve a linear equation
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for the derivative of the optimal solution with respect to time.
GMRES can be implemented without computing the Jacobian
matrix of the optimality conditions explicitly because it in-
volves only a Jacobian-vector product that can be approximated
by forward difference. This Jacobian-free property of GMRES
reduces computational cost significantly and contrasts with re-
lated methods, e.g., by Diehl et al. (2005) based on the KKT
matrix.

This paper combines the C/GMRES method with the polyno-
mial modelling approach of Hirsch and del Re (2010a) and
shows its viability for a reference automotive application which
is shortly presented in the next section. Then the key elements
of the C/GMRES method are summarized, the adaptation of
the nonlinear discrete time model produced by the procedure
of Hirsch and del Re (2010a) to the continuous time setup of
C/GMRES according to Sassano et al. (2012) explained and
experimental results shown, in which the performance of the
examined method is compared to the behavior of the production
engine control unit (ECU). This comparison confirms that the
approach is a viable alternative to heuristic design, and it can
be performed in a fully systematic way, starting from the data
acquisition and ending at the final measurements.

2. THE TEST SYSTEM

In this work a well studied application, the air path control of
a Diesel engine, is used. The specific setup includes a 2 liter
4 cylinder passenger car turbocharged Diesel engine meeting
the EU5 emission legislation, equipped with a common rail
injection system, a variable geometry turbine turbocharger with
charge air cooling and cooled high pressure exhaust gas recir-
culation and standard production sensors, in particular an air
mass flow sensor (a hot film anemometer), a wideband lambda
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(see figure 1 for a schematic representation of the engine control
setup). The engine is operated on a highly dynamical AVL
testbench which, on one side, guarantees constant operation
conditions - constant ambient temperature independently from
the dissipated heat and constant temperature and humidity of
the intake air, and on the other side connects several additional
lab grade measurement system”. Figure 2 shows the basic
structure.

The control problem to be used here consists of imposing a
given value to the fresh air intake (MAF) coming into the
engine via the compressor from the environment and the intake
manifold pressure (MAP). These two quantities are probably
the most frequently used “leading” quantities of combustion
because the air path dynamics is the dominating time constant
in a Diesel engines and these two quantities are accessible
on all engines. Other choices, for instance using the exhaust
recirculation (EGR) rate, are also possible, but require more
complex model computation as direct measurement is hardly
possible.

The MAP/MAF profile can be imposed in several ways, we
consider here a two inputs/two outputs setup, the inputs being
the turbine vane position (which defines the efficiency of the
compressor and thus directly affect the fresh intake air) and the
EGR valve position, which together with the incoming fresh
air determines the mass flow and chemical/thermal composition

Fig. 2. Photograph of the Dynamical Engine Test Bench

of the gas mixture entering the cylinder prior to injection. Of
course, a balance will setup, as the injected and burnt fuel will
determine the exhaust enthalpy and thus together with the other
setpoint fix the overall operating conditions of the engine.

In this study, as the key interest is the performance of the control
algorithm, we shall assume the injection and speed to be given
and concentrate on the steps of the reference quantities (MAP
and MAF).

3. DATA DRIVEN MODELLING

Air path modelling has been the topic of very many papers,
see e.g. Eriksson and Nielsen (2014) for an updated overview.
There have also been attempts to derive control suited models,
e.g. using LPV methods (Jung and Glover (2003)), but most
of the models are not suitable for nonlinear control. Instead of
first setting up a model and looking for a suitable approxima-
tion, we propose to look directly for a suitable approximation.
The model used in this work was identified using the method

2 Seehttp://desreg.jku.at/newpage/equipment /testbenches/described in Hirsch and del Re (2010a). This method starts by

for details.
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considering a polynomial NARX model defined as
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yk)=[y(k=1) ... y(k—ny)

uz(k—l)

up(k—=1) ... u (k—"lml)

)]
where [ is the maximum degree of the polynomial function,
ny the maximum lag of the autoregressive part, corresponding
to the order of the system, and n,;, i = 1...r the maximum lag
of the input. Since the model is linear in the parameters, these
estimates @ can be computed using standard least squares algo-
rithms minimizing the sum of the squared prediction error over
N measured samples (see e. g. Ljung (1999)). In general such
a model assumption for a polynomial system will contain some
regressors with little relevance leading both to an unnecessary
model complexity and to a poor numerical condition. Hirsch
and del Re (2010a) suggests an iterative procedure in which a
D-Optimal design is used, i.e.

u* (k) =arg max det(M), k=1...N, (2)
u(k)eQ
where Q C RR defines the closed input set that is allowed for
input the design, by maximizing the determinant of M. M is
defined in general as

ME{ 1 i9fl(x(k),9)9fl(X(k)79)}’ &

o2 00 00T

o2

where E{-} indicates the expected value. Finally, for the spe-
cific case, we obtain a polynomial model of second degree and
order two with two control inputs and two measured variables,
whose performance is shown in figure 3. For more details,
see Hirsch and del Re (2010b). In the following, we shall not
consider the dependency on injection mass and speed, because
they are fixed variables in our experiments.
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Fig. 3. Comparison of the measurements and simulation of the
polynomial model used

4. THE C/GMRES METHOD

As much interest has arisen concerning the use of predictive
control in automotive applications (see e.g. del Re et al. (2010)),
it may be sensible to compare the examined method in the MPC
framework. In the nonlinear MPC problem, we assume that the
state equation and equality constraint are described by

g (k—ny2) ur (k=1) ... uy (k—ny,)"

X = f(x(r),u(0)),

C(x(t),u(t)) =0,
with the state vector x(¢f) € R” and the input vector u(r) € R™.
Then, an optimal control problem is solved at each time ¢ as

follows. Regarding x(¢) as the initial state, we consider the
minimization of a performance index

t+T
J=o(x(t+T)) + /l L(x(t),u(1))d,

where T is the horizon length. The prediction horizon is defined
from the current time ¢ X to time ¢ 4 7. Then, the optimal control
input «*(7) for minimizing J is calculated within 7 € [¢,¢ + T7,
and only the initial value of u*(7) is used as the actual control
input u(t) at time 7.

An inequality constraint can either be transformed into an
equality constraint by introducing a dummy input (see Seguchi
and Ohtsuka (2003) for details) or be incorporated by adding a
barrier function in the performance index.

C/GMRES Ohtsuka (2004) combines the continuation method
and GMRES for tracing efficiently a time-varying solution of a
nonlinear algebraic equation with time-dependent parameters.
For details of the continuation method and GMRES, see, e.g.,
Richter and DeCarlo (1983) and Kelley (1995), respectively.
Dividing the horizon into N steps, discretizing the prediction
horizon and calculating the variations, at each time, the optimal
control problem results in a nonlinear algebraic equation

XO(t)au?)(t)vlr(t)vug(t))

FACEIONT SO NONTEIO)

Clay 1 (), uy (1)) 1
where x} (1), A (t), u} (¢) and p*(¢) represent the state of ith step
starting from x(z), the costate, the control input and Lagrange
multiplier associated with the equality constraint, respectively.
Let H denote the Hamiltonian defined by

H(x,u, A, 1) i= L(x,u) + AT f(x,u) + 1 TC(x,u).
A vector U (¢) is defined as

U(r) = [ug" (1) g™ (1) -+ un"y (1) ayy ()]
where only uE‘)T (¢) is used as the actual input to the system. Note

that x7(¢) and A*(¢) in (4) are determined as functions of U ()
and x(¢) by the Euler-Lagrange equations:

Xt (1) = x5 () + £ (x5 (1) (1) A,
xo(t) = x(t),
A (1) = A (1)

T
+(5) OO A0 s,

&)
(6)

T
w0 =(52) o) ®)

where AT := T /N denotes the discretization step of the horizon,
which is not necessarily identical to the sampling period in
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the implementation of MPC. Note that the sequence of the
state over the horizon {x;}¥ , is determined recursively by (5)
starting from (6) and then the sequence of the costate {4} |
is determined backward by (7) starting from (8).

At each time ¢, the nonlinear equation F (U (¢),x(¢),1) = 0 needs
to be solved with respect to U(¢) for the measured state x(¢).
Since such an iterative algorithm as Newton’s method is com-
putationally demanding, we employ the continuation method to
trace the time-varying solution with no iterative search. Note
that F is identically zero if the following conditions hold:

F(U(0),x(0),0) =0, ©)
FU(t),x(t),t) = =CF(U(1),x(t),1) (£>0). (10)
Equation (10) yields the following linear equation for U.

EU__gF_al~_9i
U ox o1

If U(t) is calculated by numerically integrating U to satisfy
(10), no iterative solution method such as Newton’s method
is needed. The linear equation for U is solved efficiently by
GMRES, in which computation of the Jacobian matrix of the
optimality conditions is not necessary because of the forward
difference approximation of a Jacobian-vector product.

(1)

For finding U(0) with a small amount of computation such
that (9) holds, the horizon length T can be chosen to be time-
dependent function 7 (¢) such that 7(0) = 0 and T'(¢) converges
smoothly to a prescribed constant Ty. Then, (9) reduces to an

equation of a small size because x;(0) = --- = x3,(0) = x(0),
Af(0) = -+ 25(0) = (9@/9x)"(x(0)), u5(0) = -+ = uy_;(0),
and pg(0) = --- = uy_,(0) hold for 7(0) = 0.

5. ADAPTATION OF POLYNOMIAL NARX MODEL TO
THE C/GMRES FORMULATION

Since the C/GMRES model has been developed in a con-
tinuous domain framework in the preceding section, here
we shall illustrate the main sufficient steps to transform the
in/output recursive polynomial NARX problem into the state-
input continuous-time description following Sassano et al.
(2012). This includes some steps must be performed. We con-
sider in this paper to the polynomial (second degree) NARX
problems having the multiple output multiple input (MIMO)
as described previously. Hereafter we name respectively as n,
and m,, the dimensions of the observed space y and the input u.
For the sake of clarity, we rewrite the general i-th component

(i=1,...,ny) as:
yi(k) = F’,m( (k=1),u(k—1),y(k—2),u(k—2))) =
—yo+® y(k—1)+Ohu(k—1)+
+y( — D)7 @5y(k—1) +u(k— 1) O y(k— 1)+
+u(k—1)TOLu(k — 1)+ Tiy(k—2) + Thu(k —2)+
+y(k— 2)Trgy(k 2) +u(k—2)"Tiy(k—2)+
+u(k—2)TTu(k —2)

(12)
where yj) € R, @, € M"™, @), I, € M, @} €
My, @4, T € MMy @L T € M™*™u_ Each of previous
matrix parameters is a rearrangement of those in the 6 descrip-
tion (3).

k), i=1,...

As already observed in Sassano et al. (2012) to break the
recoursivity of the model (12) it is sufficient to double the
dimension of the state space representation and to apply the
following transformation. Setting n = 2n, the dimension of

the state space representation we can write for i = 1...n the
following relations:
k) =y (k=2), (k) =y (k= 1) = ¢'(k) (13
where the n, functions ¢' are defined by:
o'(k) :=Ohu(k—2)+u(k—2)T@y(k—2) (14)

+u(k—2)"OLu(k—2)

The cross action of the coefficient of the (k — 1)-delayed sam-
ples on the (k —2) u -depending terms, has the aim of cancelling
the u(k — 1) dependence in the state x(k+ 1). In fact, collect-
ing in two ordered vectors, the subset of odds [x*/~1]i(k) :=
,ny and evens [x>]i(k) :=x%(k),i=1,...,ny
components of x, the explicit expression of (13) evaluated on
(k+1) reduces to:

A k4 1) =yi(k—1) =x%(k) + ¢’ (k) =
=x% (k) +@hu(k —2)+

+u(k—2)T x> (k)+

+u(k—2)TOLu(k —2)+

5)

F2=1 (x(k), u(k—2))
where we have used that y(k —2) = x%/~! (k)
k1) =y (k) —¢'(k+1) =
= [yh+Oly(k— 1)+ Ohu(k —
+y(k—1)T @5y (k —1)+
+u(k—1)T @ y(k— 1)+
+u(k—1)" O5u(k— 1)+
+Ty(k—2) + Thu(k —2)+

+y(k—2) Thy(k—2)+
+u(k—2)TTy(k—2)+
+u(k—2)"Tiu(k—2)] +
— [@u(k—1) +u(k—1)TO@y(k—1) +
+u(k—1)TOLu(k—1)]
= Yo+ Ok —1)+y(k—1)T @k — 1)+
+Ty(k—2) +Thu(k—2)+
+y(k=2)"Thy(k—2)+
+u(k—2) Thy(k—2)+
+u(k—2)TTiu(k —2)
Vi + @ F  (FH-NHTeLF21+
+I %~ (k) + Thu(k — 2)+
+x2 1 (k)T o) (k) +
Hu(k 2)Tr'x21 (k) +
+u(k—2)"Tsu(k—2) =
=t F2(x(k),u(k —2))

(16)

Then formally we can write:

x(k+1) = F(x(k),u(k—2)) a7
where F': R” x R™ — R" and his components are defined by

the last equality in (15) and (16)
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We can imagine to treat the sample u(k —2) as a parameter
or equivalently impose the hypothesis that it does not vary so
much in the interval [fy,#;_,]. Substituting u(k —2) = v the (17)
can be rewritten this way:

x(k+1) =F(x(k),v) (18)
and by approximating X with his relative Explicit-Euler T-
discrete approximation x ~ (x(k+ 1) —x(k))/T, x(k) ~ x(t)
it is possible to identify the following differential equation:

£(0) = (1) + Fx(0)v)

Finally, according to the preceding observation for which
(u(k) ~u(k—1) ~u(k—2))) we can refix the time-dependence
of the parameter v by v = u(r) and obtain a system in the
C/GMRES desired framework:

i(1) = fr(x(t),u(r)) := %(—HF(XU)»M(I))) :

where the parameter 7" should be taken sufficiently small. Note
that this value is independent from the time horizon considered
by the C/GMRES method.

19)

(20)

6. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed method we
need a reference. As the tested engine is currently in production
and using on several passenger cars, we have chosen to use
the engine control unit (ECU) as a reference and to compare
the performance of the new algorithm with the standard values.
Notice that in practice this is done by having the ECU running
as usual, but using a special software designed by the ECU
provider to the vehicle developer to bypass parts of it. In this
case, ECU computes all values as usual, including the VGT
and EGR references, but these values are overwritten by our
algorithm which runs on a dSpace station. In practice, this
means that the ECU works as usual, but these two outputs are
replaced by our values. Figure 4 shows the experimental results
obtained both the standard production ECU and by C/GMRES
method. Figure 5 shows for better clarity the tracking error of
both methods. The lower part of figure 4 shows the different
way in which actuators are used by the two methods.

In general, C/GMRES performs slightly better than the standard
ECU, and uses the (nonlinear) actuators in a quite different and
more efficient way. The average cumulated square error of the
C/GMRES method is 74% of the error of the ECU for MAP and
89% for MAF. Taking in account the fact that the sampling time
of the C/GMRES control was significantly longer (50 msec
vs. 20 msec) than the ECU, and that the data are transmitted
from dSpace to the ECU output buffers by CAN, they are very
promising.

7. CONCLUSION AND OUTLOOK

The presented results show are based on a first implementa-
tion of C/GMRES but still it already slightly outperforms the
production ECU for the considered steps. Of course the com-
parison is not exhaustive, as several other criteria, like emis-
sions, noise, vibration should be evaluated in order to evaluate
the whole performance. Furthermore, usually the ECU can be
operated using three control quantities (the same two as used
here plus a throttle valve), which, for easiness of comparison
with other results, has not been done here. Still the C/GMRES
based controller is not completely tuned.

However, the very great advantage is the systematic and fast
development procedure - the model can be derived typically in
two hours and the control tuned in a few hours as well. The
comparison with the performance of the ECU - which is tuned
in a long and tedious calibration process - becomes a com-
pletely different flavor, and we do expect similar improvements
in terms of emissions, due to the use of actuators, which could
not be inserted in this draft for lack of time, but will be included
in a possible final version.

In a next step, the use of a discrete time version of this method
will be used to avoid the discrete to continuous transformation
step.
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