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Abstract: This paper presents the equivalence of time-optimal and optimal distance slip-control
approach for purposes of performing antilock braking. A dynamic braking model is developed
encorporating a slip state to facilitate slip tracking. Optimal distance braking is performed with
control constraints on the dynamic slip based braking model. A similar treatment is applied
for time optimal braking on the braking model. The key contribution is the demonstration of
the equivalence of optimal distance and time optimal braking of a vehicle. A generalised none
zero-terminal condition is utilised in the optimal formulations. Simulation results demonstrate
the validity of the approach along with the development of a key optimality condition for the
equivalence approach.
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1. INTRODUCTION

In order to brake a wheeled vehicle, a braking torque is
applied to the wheel leading to a reduction in the wheel’s
angular velocity. The reduced linearised wheel’s angular
velocity in turn leads to the wheel skidding relative to the
road/driving surface. A greater braking torque leads to a
greater wheel angular velocity reduction and so a greater
skidding effect. This skidding is formally called slip and
while braking, slip can vary from a minimum of zero to a
maximum of unity.

The case for zero slip corresponds to when there is no
braking torque is applied so the linearised wheel’s angular
velocity is the same as the car speed relative to the road
surface. The unity or 100% slip case on the opposite
extreme corresponds to the case when the wheel speed is
zero but the car’s speed relative to the road surface is not
zero as the car has not come to rest. The 100% slip case
is also called wheel locking or full-skid. Antilock braking
systems (ABS) are utilised in wheeled vehicles with the
specific aim of avoiding the locking of the wheel. The
effective braking force while braking rises to a maximum
as the slip increases from zero after which the effective
braking force decreases as the slip value approaches 100%
or the locking value. Pacejka models and various works
have demonstrated this explained observation such as
(Ting et al., 2005), (Tsiotras et al., 2000), (Pedro et al,
2009), (Nyandoro et al, 2011a). Hence slip control is
a feature that allows ABS type braking to not only
avoid locking but also to have improved performance by
attempting brake at the best slip value i.e. the slip value
that provides the best braking force for a wheeled vehicle.

The goal of an optimal Anti-lock Braking System (ABS)
is to optimally reduce the speed of a vehicle from an

initial traveling speed towards rest in either the minimum
possible distance, (Nyandoro et al, 2011a; Choi, 2008) or
minimum possible time. Optimal control theory has been
successfully applied to ABS to prove the need for slip
control of ABS for various types of vehicle braking systems
such as pneumatic brakes, electro-pneumatic brakes and
electrical brakes in works such as (Ting et al., 2005), (Tsio-
tras et al., 2000). Various disturbances and ABS uncertain-
ties such as road conditions, initial vehicle speeds, braking
actuator dynamics in (Lin, 2003; Choi et al, 2006), wheel
bearing friction, suspension effects in (Ting et al., 2005)
and wind resistance have also been treated in applying
optimal theory and other controllers to ABS in (Baslamisli
et al, 2007; Austin et al, 2000; Petersen et al, 2003; Lin
et al, 2003), (Tsiotras et al., 2000) with significant degree
of success for ABS which is a typical safety critical system
as highlighted in (Ting et al., 2005),(Pedro et al, 2009).

A major challenge in designing the best controller for
ABS is the analytical evaluation of best performance.
As yet most works such as (Tsiotras et al., 2000) have
utilised minimum braking distance as the measure of
best performance. Yet other measures do exist such as
minimum braking time of ABS. Since ABS only avoids
wheel locking, slip control of ABS allows for a better
braking model allowing for optimal slip control. Yet again
most works such as (Ting et al., 2005; Nyandoro et al,
2011a) have utilised braking models with slip being an
implicit parameter and not explicit slip control. With
different measures of best performance comes the need
to then demonstrate that different evaluations of best
performance lead to the same unique best performance.
The goal of this paper is thus to generate a slip control
model and demonstrate that unique optimal performance
is achieved even via different performance evaluations. An
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optimality condition required to ensure the uniqueness of
optimal slip control is formulated.

The rest of this paper is structured as follows, first a model
for ABS is obtained followed by slip control motivation,
and the major contribution of formulating a stable lin-
earisation approach for the ABS model. Simulation results
for a linearised controller are provided to demonstrate the
effectiveness of the linearising technique.

2. MODELING

2.1 Physical Model
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Fig. 1. Quarter car braking model

The general quarter-car model used in (Ting et al., 2005;
Pedro et al, 2009; Nyandoro et al, 2011a,b) is also utilised
in this paper. Fig. 1 illustrates a quarter-car wheel and
braking system. At any point in time, t, between the
instant of braking commencement t = t0 and final braking
time t = tf the car has a forward longitudinal velocity,
v(t), and the wheel has an angular velocity, ω(t). A braking
force is applied to generate a braking torque τ(t) acting
on the wheel. Typically it is assumed that the weight is
approximately equally distributed on the four wheels of
the vehicle and that each of the four wheels of the car
contribute approximately equally to the car’s total braking
force. Further it is assumed in this quarter-car model that
cornering forces, road roughness and related forces are
negligible.

2.2 Mathematical Model

The car while traveling has brakes applied at an initial
time t = t0 = 0 and comes to a stop at a final time
t = tf . As the brakes are applied the car’s longitudinal
velocity v(t) is initially v(t0) and at t = tf the car’s
velocity will have come to zero i.e. v(tf ) = 0. Newton’s
laws applied to the quarter-car wheel and braking system
shown in Fig.1 gives the governing equations of motion.
The vehicle’s translational dynamics are:

Mv̇ = −µ(γ)Fz − Cxv2 (1)

where M is the quarter-car’s total mass, µ is the longi-
tudinal friction coefficient, Fz is the normal force acting
on the vehicle wheel, and Cx is the vehicle aerodynamic
friction coefficient. For slip control as explained later µ is
a function of the slip ratio γ as detailed later in Fig.2. The
vehicle wheel’s rotational dynamics are:

Iω̇ = µ(γ)Fzr −Bω − τb (2)

where I is the moment of inertia of the wheel, r is the
wheel radius, B is the wheel bearing friction coefficient,

and τb is the input braking torque. An electro-mechanical
set of brakes is used to apply a braking torque, τb, on the
disk/drum brakes. The weight component of the quarter-
car, Fz, is given by:

Fz = Mg (3)

where g is the acceleration due to gravity. By definition
the braking slip ratio γ is:

γ =
v − rω
v

(4)

The typical relationship between µ and γ is given in Fig.2,
and is modeled by the approximate equation, see (Ting
et al., 2005):

µ(γ) = 2µ0
γ0γ

γ20 + γ2
(5)

The peak µ value µ0 occurs at a γ value γ0 and from Fig.2
for a dry asphalt road surface µ0 = 0.8 and γ0 = 0.18
respectively.
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Fig. 2. Typical tire longitudinal friction µ-γ curves

The effects of suspension dynamics via the manipulation
of Fz is dealt in our previous work (Nyandoro et al, 2011a).

The road roughness xr and cornering force FY in Fig.1 are
assumed to be negligible.
Different road surfaces are modeled by different γ0 and
corresponding µ0 values as they are unique for each road
surface. Since the peak friction coefficient µ0 is obtained
when γ has the value γ0, i.e. µ0 = µ(γ0) hence the goal of
slip control is to generate a braking torque τb to maintain
the braking slip value always close or equal to its optimal
value γ0.

2.3 Performance Criteria

Control theory generally attempts to generate a control
input to meet certain desired plant parameter trajectories
at times constrained by time and/or input constraints.
However optimal control is unique among control tech-
niques in identifying a performance measure and specifi-
cally in utilising the performance measure to generate a
control input that maximises/minimises this performance
criteria. Constraints such as input, output, among other
system parameter constraints can be incorporated into the
optimal control formulation. So optimal control theory has
these advantages while uniquely optimising a particular
performance measure thus providing best performance.
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However certain practical performance attributes provide
potentially conflicting optimal control formulations. In
particular for ABS optimal/best braking could be validly
measured via minimum braking distance. The goal of
optimal control would be to formulate the evaluation of
an input braking torque that would minimise the braking
distance of the system in Fig.1. However an equal claim to
best braking would be to minimise the braking time thus
leading to an optimal time control problem. This paper
thus seeks to find the equivalence of both these criteria
namely optimal distance and optimal time ABS braking.
This equivalence is achieved by attempting to formulate
optimal torque for both the performance criteria and if
the two respective optimal torques are the same then the
ABS performances from the equivalent torques would be
the same.

While (Tsiotras et al., 2000) demonstrates optimal dis-
tance ABS braking the formulation utilised claims opti-
mal slip evaluation. However a dynamic ABS model is
utilised with slip the key parameter being an implicit
parameter in the model. Further a number of assumptions
are made in the optimal distance formulation of (Tsiotras
et al., 2000). A key assumption is the requirement for zero
terminal conditions which practically is not necessary to
be met. In this paper an explicit dynamic slip model is
formulated and then utilised in formulating both optimal
distance and also the time optimal control problems for
ABS. Further the zero-terminal condition restriction is
removed thus allowing for non-zero terminal condition of
states and a more practically applicable result as optimal
ABS braking can be applied without enforcing braking to
rest. The equivalence of both optimal controllers is to be
demonstrated and the condition of this equivalence.

3. OPTIMAL CONTROL FORMULATION

3.1 Optimal Control Criteria

Given a plant with dynamics

ẋ = f (x, u, t) (6)

and a scalar performance index J(x):

J (x) =

∫ tf

0

L (x, u, t) (7)

and Hamiltonian H:

H (x, u, λ, t) = L (x, u, t) + λT f (x, u, t) (8)

let

J1 =

∫ tf

0

(
H − λT ẋ

)
dt =

∫ tf

0

[
L+ λT (f − ẋ)

]
dt (9)

from Leibniz’s rule

dJ1 =
(
H − λT ẋ

)
dt|tf −

(
H − λT ẋ

)
dt|0

+

∫ tf

0

[
∂H

∂x

T

δx+
∂H

∂u

T

δu−λT δẋ+

(
∂H

∂λ
− ẋ

)T
δλ

]
dt

(10)

dx(tf ) = δx(tf ) + ẋ(tf )dtf (11)

Hence

dJ1 = −λT dx|tf +Hdt|tf + λT dx|0 −Hdt|0

+

∫ tf

0

[
∂H

∂x

T

δx+
∂H

∂u

T

δu−λT δẋ+

(
∂H

∂λ
− ẋ

)T
δλ

]
dt

(12)

3.2 Optimal Control Evaluation

Hence for optimal control we have plant dynamics (6),
performance index (7) and Hamiltonian (8) thus (12) gives
co-state dynamics

−λ̇ =
∂H

∂x
=
∂f

∂x

T

λ+
∂L

∂x
(13)

with the initial boundary condition x(0) specified and

λT |tf dx(tf ) +H|tf dtf = 0 (14)

The stationarity condition is

∂H

∂u
= 0 =

∂f

∂u

T

λ+
∂L

∂u
(15)

from which the optimal input uopt is obtained. However
numerous cases exist where (15) can not provide uopt e.g.
when a singularity exists and hence evaluation of uopt is
via

uopt = argmin H (x, u, λ, t) (16)

From the total derivative for H

Ḣ =
∂H

∂x

T

ẋ +
∂H

∂u

T

u̇+ λ̇T f (17)

so Ḣ = 0 on the optimal trajectory the Hamiltonian
is constant provided the Hamiltonian is not an explicit
function of time. The foregoing formulations follow from
general optimal control theory from (Lewis, 2012) or other
works such as (Bryson, 1975).

4. OPTIMAL SLIP CONTROL FORMULATION

4.1 Slip Control Model Formulation

From the quarter car model physical equations (1)-(2) the
following simplified state equations are used for the ABS
quarter car model

v̇ =−µFz
M

= fv (18a)

ω̇ =
µFzR

Iw
− τ

Iw
(18b)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7568



v parameters ω parameters γ parameters

v(0) = 120km/hr ω(0) = R ∗ 120000/3600 γ(0) = 0
v(tf ) = 0 ω(tf ) = 0 γ(tf ) = γ0

Table 1. Boundary parameters

This set of state model equations with state vector [v ω]T

does not include the air drag force and the wheel bearing
resistance torque for simplicity of analysis. This can be
partly justified by the practical order of magnitude of the
air drag forces compared to the frictional braking forces
and also relative magnitude of bearing friction torque
relative to the braking torque magnitude.

Transformation of the state model (18) to a slip model
gives the following ABS slip based model (25) where v
state is maintained while the slip state replaces the ω state
to give a new state vector x = [v γ]T .

Since by definition

γ =
v −Rω

v
(19)

and one version of the Magic Formula relates the coeffi-
cient of road friction µ with the slip γ (Austin et al, 2000):

µ =
2µ0γ0γ

γ20 + γ2
(20)

the following useful relations are obtained.

ω =
v

R
(1− γ) (21)

∂γ

∂ω
=−R

v
(22)

∂γ

∂v
=
Rω

v2
=

(1− γ)

v
(23)

∂µ

∂γ
=

2µ0γ0(γ20 − γ2)

γ20 + γ2
(24)

The state transformation xold = [v ω]T to x = [v γ]T

is thus performed to give the transformed ABS state
equation ẋ = [v̇ γ̇]T = f(x, u, t) = [fv fγ ]T :

v̇ =−µFz
M

= fv (25a)

γ̇ =
∂γ

∂v
v̇ +

∂γ

∂ω
ω̇ = −Rω

v2

(
µFz
M
− R

v

µFZR

Iw
− τ

Iw

)
=
−RωµFz
mv2

− µFzR
2

vIw
+

rτ

vIw
= fγ (25b)

4.2 Optimal Distance Torque Formulation

With the ABS model state equation (25) the objective
becomes that of minimising the braking distance Jopt v:

Jopt v =

∫ tf

0

v(τ)dτ (26)

subject to the initial and final conditions in Table 1

where γ0 = 0.18 optimises µ on a µ-slip curve. So the
final-state constraint is

γ − γ0 = 0 (27a)

So the optimal controller is derived by definition from the
Hamiltonian, state equation, co-state/adjoint equation,
stationarity condition, and finally the boundary condition
as formulated above.

The Hamiltonian for the state equation (25) and perfor-
mance index (26) is

H (v, γ, u, t) = v + λvfv + λγfλ (28)

where the co-state vector is λ = [λv λγ ]T with the co-
state state equation defined by

λ̇= [λ̇v λ̇γ ]T = −∂H
∂x

= −∂f
T

∂x
λ− ∂v

∂x
, t ≤ tf (29)

=

[
λ̇v
λ̇γ

]
=

−1− λ1
∂fv
∂v
− λ2

∂fγ
∂v

−λ1
∂fv
∂λ
− λ2

∂fγ
∂λ

 , 0 ≤ t ≤ tf(30)

and

λ̇v =−1 +
∂µ

∂γ

(1− γ)

v

(
λvFz
M

+
λγFz (1− γ)

Mv
+
λγFzR

2

Iwv

)
−2

λγFzµ (1− γ)

Mv2
− λγµFzR

2

Iwv2
+
λγR

Iwv2
τ (31)

λ̇γ =
∂µ

∂γ

(
λvFz
M

+
λγFz (1− γ)

Mv
+
λγFzR

2

Iwv

)
−2

λγFzµ

Mv
− λγµFzR

2

Iwv (1− γ)
+

λγR

Iwv (1− γ)
τ (32)

The final time is not specified but initial system states
v and ω are non zero but both have zero terminal values.
The transformed slip state γ on the other hand is specified
to have a initial zero value and terminal non-zero value
γ(tf ) = γ0. The boundary condition is

(
ψTx λe − λ

)T |tf dx (tf ) +
(
ψTt λe +H

)
|tf dtf = 0 (33)

where λe is a constant co-state. Since at t = tf the
variables v, w and γ have specified fixed values dx (tf ) ≡ 0.
However dtf is not necessarily zero since the final time is
not fixed. Yet

ψTt |tf = γ(t = tf )− γ0|tf = 0

So with an un-fixed final time, since ψTt |tf = 0, so neces-
sarily H|tf = 0. H(t) is not an explicit function of time
hence H(t) = 0 for all braking time i.e 0 ≤ t ≤ tf along
the optimal trajectory.

The optimal stationarity condition gives a singularity

∂H

∂τ
= 0 (34)

Typically braking torque is physically limited by two
extreme values such that

0 ≤ τ ≤ τmax (35)
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So
τopt = argminH (x, λ, τ) (36)

From (15) and (16) obtain a switching function Hγ :

Hγ = −λγ
Iw

(37)

with optimal braking torque as

τoptimal =

{
τmax for Hγ > 0

0 for Hγ < 0
τsing for Hγ ≡ 0

(38)

The optimal control operates with either minimum 0 or
maximum torque. However during braking for any finite−
time a subset of the braking time 0 ≤ t ≤ tf over which
Hγ(t) = 0 yields the singular control τsing in the time
interval of singular torque Hγ(t) = 0. So

Ḣγ = 0 = λ̇γ =
∂µ

∂γ

(
λvFz
M

+
λγFz (1− γ)

Mv
+
λγFzR

2

Iwv

)
−2

λγFzµ

Mv
− λγµFzR

2

Iwv (1− γ)
+

λγR

Iwv (1− γ)
τ (39)

= λv
Fz
M

∂µ

∂γ
(40)

where (40) is obtained from (39) and in turn from (37)
along the singular arc λγ = 0. Since λγ = 0 along the
singular arc, λv 6= 0 in (40) for non-zero co-states on

optimal trajectory. Hence ∂µ
∂γ = 0 in (40). Taking again

a derivative of Ḣγ .

Ḧγ = 0 =
Fz
M

∂µ

∂γ
λ̇v +

Fz
M
λv

d

dt

∂µ

∂γ
(41)

=
Fz
M
λv

d

dt

(
∂µ

∂γ

)
(42)

Again (42) is obtained from (41) because ∂µ
∂γ = 0 and since

λv 6= 0 from (42)

d

dt

∂µ

∂γ
= 0 =

∂2µ

∂γ2
γ̇

=
∂2µ

∂γ2

(
−RωµFz
mv2

− µFzR
2

vIw
+
rτsing
vIw

)
(43)

giving along the singular arc

Rωµ|singFz
mv2

+
µ|singFzR2

vIw
− Rτsing

vIw
= 0 (44)

and

τsing =
Iwωµ|singFz

mv
+ µ|singFzR (45)

=
Iw (1− γ0)µ0Fz

mR
+ µ0FzR (46)

The derivation has been based on the deductions that
along the singular arc, λv 6= 0, and ∂µ

∂γ = 0.

Parameters Parameters Parameters

Iw = 1.6 kgm2 M = 400 kg r = 0.3 m
γ0 = 0.20 µ0 = 0.9 tf = unspecified
v(0) = 120 km/hr γ(0) = 10 rad s�1 v(tf ) = 0 km/hr
γ(tf ) = 10 rad s�1 τmin = 0 Nm τmax = 2950 Nm

Table 2. Quarter-car model simulation param-
eters

4.3 Time Optimal Torque Formulation

The time optimal control perfromance index is

Jopt t =

∫ tf

0

dτ = tf (47)

giving a Hamiltonian

H (v, γ, u, t) = 1 + λvfv + λγfλ (48)

With only the difference in formulations being the Lopt v =
v while Lopt t = 1 the formulation for the optimal con-
trol gives the same switching function Hγ and singular
τsing and same optimal control. The only other differ-
ence besides the Hamiltonian differenes being the co-state
equation λ̇v thus affecting how fast the switching function
activates the singular control. Hence the singular control
is shown to be the same. Additionally if the braking can
be such that singular torque is utilised for the greater part
of the braking time then the braking for both controllers
will be practically equivalent.

4.4 Remarks and Results

Fig. 3. Optimal v and w (left) Optimal slip (right)

Fig. 4. Optimal H (left) Optimal H time zoom (right)

Lastly the optimal torque control in (45) needs to satisfy
the Legendre− Clebsch condition (Tsiotras et al., 2000)

∂

∂τ

(
d2qHγ

dt2q

)
≥ 0 (49)

where q is the order of the singular arc in this case q = 1.
For the Legendre − Clebsch condition on Ḧγ from (41)
gives
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R

vIw
≥ 0 (50)

which is true for all braking time, 0 ≤ t ≤ tf , as long
as v 6= 0, since v(t) is always positive when braking is
initiated at t = 0 until the vehicle comes to rest at t = tf .

Physical constraints are assumed for τsing and in particular
the assumption is that 0 = τmin ≤ τsing ≤ τmax. The
upper limit needs to be observed and typically for most
vehicles the braking system can generate enough braking
torque to lock the wheels thus guaranteeing that indeed
τsing ≤ τmax.

For the Quarter Car Simulation Model with simulation
parameters in Table 2 τsing=977.41Nm which is less than
τmax. The optimal torque is one arc constituted of three
sub arcs firstly an initial very small time interval τmax
that drives the slip γ towards γ0, secondly the constant
singular torque τsing which lasts for practically the total
braking time period albeit except for the initial and final
impulse time intervals, third and lastly the torque may
take another infinitesimally small time interval at the end
of the braking process with torque values either τmin or
τmax.

Hence for practical purposes the optimal torque can be
replaced by two impulses of magnitude τmax at the start
and end of the braking process and also the fixed singular
torque between the two impulses. H is none zero for a very
small time interval at the start of the braking process after
which the Hamiltonian satisfies the switching condition
for singular control for both time optimal and optimal
distance braking. This small time interval is typically
less than 0.05s for both optimal controllersHence for
practical purposes the equivalence is demonstrated albeit
not satisfied for the initial bang time before the switching
condition is satisfied.

4.5 Conclusion

The paper presents a formulation for optimal torque con-
trol via minimisng the braking distance. Optimal torque
for an optimal time control problem is similarly developed.
The optimal control in both cases is found to be predom-
inantly the singular torque which appears after an initial
time before the switching function condition is satisfied
to thus switch to the singular torque. The singular torque
for both optimal distance and optimal braking time is the
same and this is predominant during the braking time.
Simulation results further support formulated equivalence
of multiple optimal criteria torque control for slip based
ABS braking.
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