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Abstract: This paper presents a set-based output energy measure for constrained polynomial
systems with parameter uncertainties. Output energy is measured in terms of the L2-norm on a
finite-time interval while the initial conditions and parameters are allowed to take values from
a set. By specifying a bound on the output norm, the measure allows further to determine the
set of initial conditions and parameters which lead to satisfaction of this bound. Furthermore,
this set characterizes whether an uncertain system can be estimated by a norm-observer and,
therefore, can be applied for observability analysis. The derivation of the set is based on
recasting a nonlinear program with embedded differential equations into an infinite-dimensional
linear program. This is achieved by reformulating the system dynamics in terms of occupation
measures. The chosen relaxation approach of the linear program generically guarantees that
the obtained outer-approximation converges, for increasing relaxation order, to the true set of
initial conditions and parameters satisfying the specified bound on the output norm.

1. INTRODUCTION

State estimation is in practice as well as theory typically
the first step to control or supervise a plant. A particu-
lar instance of the state estimation problem is to relate
the norm of the output to the norm of the states. This
builds the foundation for controller design methods based
on the output-to-state stability concept, see e. g. (Astolfi
and Praly, 2006; Sontag and Wang, 1997; Hespanha et
al., 2005) and references therein. Other applications of
output norms are observability Gramians in observability
analysis. Such Gramians can be used to quantify observ-
ability of linear systems e. g. as needed in model reduction.
Several extensions of Gramians have been proposed in the
literature, i. a. (Ionescu and Scherpen, 2009; Lall et al.,
2002; Hahn et al., 2003; Streif et al., 2006) for nonlinear
systems and (Petersen, 2002; Sastry and Desoer, 1982;
Wang and Michel, 1994; Sojoudi et al., 2009) for uncertain
linear systems.

This work investigates an output energy measure using
the L2-norm of the output similar to (Gray and Mesko,
1999), however, for a finite-time horizon and uncertain
polynomial systems. By posing a bound on this measure
it is then possible to determine the set of initial conditions
and parameters that lead to an output energy smaller than
the posed bound. This is equivalent to a norm-observer.
To derive this set of initial conditions and parameters,
we formulate a polynomial program with embedded dif-
ferential equations. Instead of directly employing dynamic
optimization, we employ the concept of occupation mea-
sures to derive an infinite-dimensional linear program, see
e. g. (Lasserre et al., 2008; Lasserre, 2010). This program
can then be addressed by a hierarchy of LMI relaxations,

which can be solved efficiently. This approach generically
guarantees that the estimated initial condition/parameter
set converges for increasing relaxation order to the true set
of initial conditions for which the observability measure
is bounded. Further, it is shown that this measure can
be employed in observability analysis in the sense that
in a special case a norm-observer does not provide any
information on the initial states.

This contribution is structured as follows. We formally
state the problem of output energy quantification for poly-
nomial systems in Sec. 2. The nonconvex and nonlinear
optimization problem with embedded differential equa-
tions is stated and reformulated using occupation measures
in Sec. 3. Sec. 4 illustrates how the connection between
output energy and initial conditions can be employed for
observability analysis. The approach is illustrated consid-
ering two examples in Sec. 5 and discussed in Sec. 6. Note
that the presented approach also allows the quantification
of parameter identifiability due to a simple reformulation
of the nonlinear dynamics.

Notation: Sets and function spaces are denoted by cal-
ligraphic letters, e. g. X and P. In particular, the space
of continuous functions in variable x is denoted by C (x)
and the space of continuously differentiable functions by
C 1(x). R[x] denotes the ring of polynomials in variables
(x1, . . . , xnx

) with coefficients from R. Σ[x] ⊂ R[x] denotes
the convex cone of polynomials that are sum of squares
(SOS) of polynomials and Σr[x] ⊂ Σ[x] its subcone of
SOS polynomials with degree at most 2r. The symbol T
denotes transposition of matrices and vectors. We denote
the dimension of a variable x with nx ∈ N. State and
output trajectories starting at the initial condition x0 ∈ R
are denoted by x(t|x0) and y(t|x0), respectively. The finite-
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time output measure on the time interval [0, T ] is denoted
by MMMT ∈ R.

2. PROBLEM SETUP AND DEFINITION

2.1 Polynomial System and Uncertainty Description

We consider nonlinear systems of the form

˙̃x(t) = f
(
t, x̃(t), p, u(t)

)
,

ỹ(t) = h
(
t, x̃(t), p, u(t)

)
,

(1)

with states x̃ ∈ Rnx̃ , time-invariant parameters p ∈ Rnp ,
outputs ỹ ∈ Rnỹ , and inputs u ∈ Rnu . We assume f, h to
be polynomials, i. e. f, h ∈ R[t, x̃, p, u].

To simplify the notation, we combine the parameter and
the state vector to x = [x̃T, p]T ∈ Rnx . Thus, (1) becomes

ẋ(t) = f
(
t, x(t), u(t)

)
,

y(t) = h
(
t, x(t), u(t)

)
,

(2)

where the time derivatives of states corresponding to
parameters are set to zero. For the subsequent analysis,
we assume given inputs u(t) = us(t), where us ∈ R[t].

This work assumes constraints on the states and initial
conditions (including the parameters) as given, e. g., from
physical insight or a-priori knowledge of admissible values
of uncertain parameters, or controller constraints. Note
that in principle, the bounds can be rather large for states
not representing parameters, while they might be tight
for some well known parameters. Such uncertainties are
also commonly referred to as unknown-but-bounded or
error-in-variables uncertainties. We assume that these con-
straints are given as compact sets defined by polynomial
inequalities gi(·) ≥ 0, gi ∈ R[x], i. e.

X :=
{
x : gx,i

(
x
)
≥ 0, ∀ i = 1, . . . ,mx

}
⊂ Rnx , (3a)

X0 :=
{
x : gx0,i

(
x
)
≥ 0, ∀ i = 1, . . . ,mx0

}
⊆ X . (3b)

That is, x(0) ∈ X0 and x(t) ∈ X ,∀ t ∈ (0, T ]. It is
important to note that the presented approach implicitly
considers only trajectories that are staying within X over
the time interval [0, T ]. However, these constraints on the
trajectory can be relaxed, i. e. allowing for trajectories
leaving X , but this results in a more involved interpre-
tation of the derived measures and some of the conver-
gence results hold only under additional assumptions, e. g.
convexity of f, g, and h (Jeyakumar et al., 2013b) or an
extended Archimedean quadratic module (Jeyakumar et
al., 2013a).

2.2 Output Energy

We quantify the energy visible at the output y(t|x0)
starting from a specific initial condition using the L2-norm.
The goal is now to link an initial condition to the output
energy, in the sense that the norm of the output is used
to derive bounds on the initial condition similar to the
concept of norm-observability, see e. g. (Hespanha et al.,
2005). This work considers the output energy over a finite-
time interval as defined next.

Definition 1. (Finite-Time Output Energy Measure).
The output energy measure MMMT (x0) of an initial
condition x0 ∈ Rnx depends on the resulting output

trajectory y(t|x0) ∈ Rny of (2) on the finite-time interval
[0, T ], T > 0 by

MMMT (x0) :=

∫ T

0

‖y(t|x0)‖2 dt. �

In (Gray and Mesko, 1996) an equivalent infinite-time
measure is is used for observability analysis for linear
systems and systems for which the so-called zero-state
assumption holds. Note that Def. 1 only allows to quantify
the output energy of a single initial condition.

If there are no uncertainties, the quantification of the en-
ergy could be determined by deriving the initial condition
x0 that maximizes the L2-norm.

Problem 1. (Initial Condition with Highest/Lowest Out-
put Energy). Determine the initial condition x0 ∈ X0,
including parameter values, for which MMMT (·) is minimized
or maximized to give MMMmin

T or MMMmax
T , respectively. �

In case of uncertainties, however, MMMmin
T and MMMmax

T do not
provide much insight, as typically uniqueness of the optima
is lost resulting in entire sets of initial conditions that lead
to the same output energy. In addition, a system that is
unobservable in the classical sense might still have a high
output energy.

For this reason, consider the subsequent problem more
suitable for the considered problem setup.

Problem 2. (Initial Conditions with Bounded Output En-
ergy Measure). For a given mmm ∈ R. Determine the set
of initial conditions X ∗0 for which every initial condition
x0 ∈ X ∗0 satisfies MMMT (x0) ≤mmm. �

In the following, a computational approach is proposed to
determine the set X ∗0 for a given bound mmm.

3. OPTIMIZATION-BASED FINITE-TIME OUTPUT
ENERGY MEASURE

This section addresses Prob. 1 and Prob. 2 and derives
an optimization-based method to determine the set of
initial conditions with bounded output energy measure
employing occupation measures.

Prob. 1 can be directly translated into a nonlinear mini-
mization problem to obtain the lower bound:

MMMmin
T := min

x0

∫ T

0

‖y(t|x0)‖2 dt
s.t. ẋ(t) = f(t, x(t), us(t)),

y(t) = h(t, x(t), us(t)),
x0 ∈ X0,
x(t) ∈ X , ∀ t ∈ (0, T ] .

(4)

Note that this problem can be solved by the methods pre-
sented in (Henrion et al., 2008). As stated before, Prob. 1 is
inapplicable in case of uncertainties. We therefore modify
(4) to address Prob. 2 as follows.

X ∗0 := find x0
s.t. ẋ(t) = f(t, x(t), us(t)),

y(t) = h(t, x(t), us(t)),∫ T

0

‖y(t|x0)‖2 dt ≤mmm,
x0 ∈ X0,
x(t) ∈ X , ∀ t ∈ (0, T ] .

(5)
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With (5), we aim to find initial conditions/parameter
values x0 which lead to a L2-norm of the output that is
bounded by m, thus solving Prob. 2. Clearly, addressing
(5) is difficult due to the present nonconvexity. Also the
embedded differential equation has to be taken care of. The
purpose of the subsequent sections is to derive a convex
optimization problem that directly takes the dynamics into
account and considers entire sets of parameters and initial
conditions, thus solving Prob. 2.

The crucial idea we employ in this work is to reformu-
late the nonlinear optimization problem with embedded
differential equation in terms of occupation measures (see
e. g. (Lasserre, 2010; Savorgnan et al., 2009; Henrion et
al., 2008)). The occupation measures contain information
about the initial condition and parameter values of the sys-
tem, as well as the nonlinear dynamics (i. e. trajectories) of
the system. The main advantage of this reformulation is
the resulting linear relationship between the occupation
measures. This gives rise to a convex problem, albeit
infinite-dimensional, which can be solved efficiently by a
LMI relaxation hierarchy as shown in the following.

3.1 Reformulation of the System Dynamics

We give a short overview of the steps necessary to refor-
mulate the above nonlinear optimization problem in terms
of an infinite dimensional linear program, for more details
we refer to (Henrion et al., 2008; Savorgnan et al., 2009;
Lasserre, 2010). The employed procedure is based on a
reformulation of the dynamics in terms of Borel measures.
The main idea here is to derive constraints such a measure
has to fulfill and that provide a direct connection to the
nonlinear dynamics. For this purpose, we introduce the
following notation. We denote the space of finite Borel
measures supported on the set A with B(A). From duality
it follows that each element of this space corresponds to
a linear bounded functional in the dual space C (A)′. We
call measures µ which are nonnegative and fulfill µ(A) = 1,
probability measures and the corresponding space of prob-
ability measures is denoted by P(A). Note that although
the following derivations are using probability measures
the end product is deterministic.

We define the following measure

µ(A× B) :=

∫
T

∫
X
IA×B(t, x(t|x0))µ0(dx0) dt (6)

for all subsets A × B in the Borel σ-algebra of subsets of
T × X , where T := [0, T ]. Here, IA(x) is the indicator
function of the set A, which is equal to one if x ∈ A,
and zero otherwise. The probability measure µ0 ∈ P(X )
describes the distribution of the random initial condition
x0. Note that µ0 is not assumed to be known.

We refer to µ ∈ P(T × X ) as an occupation measure,
whereas this term is motivated by the observation that the
value

∫
T µ(dt,B) = µ(T × B) is equal to the total time a

trajectory spends in the set B ⊂ X . In addition, note that
µ encodes the system trajectories, in the sense that for a
scalar valued smooth function v ∈ C∞(T × X ;R) and µ0

being the Dirac measure at x0, i. e. µ0 = δx0
, integration

of v w.r.t. µ amounts to time integration along the system
trajectory starting at x0:

∫
T

∫
X
v(t, x)µ(dt, dx) =

∫
T
v
(
t, x(t|x0)

)
dt.

With these notations, for all sufficiently regular test func-
tions v ∈ C 1(T × X ;R), it holds that∫

X
v(T, x)µT (dx)−

∫
X
v(0, x)µ0(dx) =∫

T

∫
X

d

dt
v
(
t, x(t|x0)

)
µ0(dx0),

(7)

which corresponds to the evolution of all trajectories along
v starting from an initial condition x0 as specified by the
distribution µ0. The right-hand-side of the above equation
can be rewritten as∫

T

∫
X

(
∂

∂t
v
(
t, x(t|x0)

)
+

grad v
(
t, x(t|x0)

)
·f
(
t, x(t|x0)

))
µ0(dx0) dt

=

∫
T

∫
X

(
∂

∂t
v(t, x) + grad v(t, x) · f(t, x)

)
µ(dt, dx).

To simplify notation, we introduce the Liouville operator
L : C 1(T × X ) → C (T × X ) as Lv := ∂v

∂t + grad v · f
and its adjoint L′ : C (T × X )′ → C 1(T × X )′ such
that for the bilinear form 〈Lv, µ〉 = 〈v,L′µ〉 holds for all

v ∈ C 1(T × X ), i. e. L′µ := −∂µ∂t − div(µf).

With these notations, we write (7) concisely as

〈Lv, µ〉 = 〈v, δTµT 〉 − 〈v, δ0µ0〉 (8)

for all v ∈ C 1(T ×X ), where δ0 and δT refers to t = 0 and
t = T , respectively. Equivalently, we can write

L′µ = δTµT − δ0µ0.

3.2 Reformulation of the Output Norm

To link the L2-norm of the output to the introduced
measures, consider the mapping H that maps the output
space to [0,∞] and

H(µ(A)) = µ(h−1(A)) (9)

holds, where h−1(A) := {(t, x) ∈ T × X : h(t, x) ∈ A}.
Note that H is commonly called a pushforward operator
in measure theory as it transports a measure from a
measurable space to another according to function h.

To be able to represent the previous statement also in
terms of continuous functions as needed in the following,
consider the canonical basis of monomials up to degree r:

mr(x) := (1, x1, . . . , xnx
, x21, x1x2, . . . , x

r−1
1 x2, . . . , x

r
nx

)T

and the Riesz functionals

z0 :=

∫
X
mr(x)µ0(dx), zT :=

∫
X
mr(x)µT (dx),

z :=

∫
T ×X
mr(x)µ(dt, dx), z̄ :=

∫
T ×X
mr(x) ◦mr(x)µ(dt, dx),

where ◦ is the Hadamard product. Then we can simply
define a vector c ∈ Rnmr such that h(t, x, us) = cTmr(x)
and

∫
T h(t, x, us) =

∫
T ×X c

Tz̄µ(dt, dx).

3.3 Infinite-Dimensional Linear Program and Relaxation

By applying the results presented in the previous sections
to (5), we obtain the infinite-dimensional linear program
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in the positive cone of the space of finite signed Borel
measures:

sup
µ0

〈1, µ0〉

s.t. δTµT − L′µ = δ0µ0,
mmm−H(µ) ≥ 0,
µ0 + µ̂0 = λ,
µ0, µT , µ, µ̂0 ≥ 0,
suppµ0, suppµT , suppµ̂0 ⊂ X ,
suppµ ⊂ [0, T ]×X ,
µ0, µT ∈P(X ), µ ∈P([0, T ]×X ).

(10)

To derive a meaningful problem, we additionally impose
the bound µ0 + µ̂0 = λ, where µ̂0 is a slack variable (or
complementary measure). This bound ensures that the
derived measure is dominated by the Lebesque measure
λ. In practice that is not a restriction as one still searches
for the infimum in the infinite dimensional measure space;
however, it is advantageous from a computational perspec-
tive since Lebesque moments of sets are readily available,
see also (Henrion and Korda, 2013).

The optimization (10) describes basically the hyper-
volume of X ∗0 . To derive an exact, explicit description
of X ∗0 we represent (10) as its infinite dimensional dual
problem over the space of continuous functions in terms of
nonnegative polynomials as

inf
w
〈w(x), λ〉

s.t. w(x)− v(0, x, us) ≥ 1,∀x ∈ X ,
−Lv(t, x, us)− h2(t, x, us) +mmm ≥ 0,

∀x ∈ [0, T ]×X ,
v(T, x, us), w(x) ≥ 0,∀x ∈ X ,
w(x) ∈ C(X ), v ∈ C1([0, T ]×X .

(11)

As both LPs are infinite-dimensional they cannot be
solved directly. We employ here Lasserre’s hierarchy (e. g.
(Lasserre, 2010)) to derive a solution.

By replacing the measures in (10) with the canonical basis
mr(x) we obtain the standard primal moment relaxation

sup
z0

(z0)1

s.t. AT zT −Az = A0z0,
−cTz̄ +mmm ≥ 0,
Mr(zT ) � 0, Lr−d(gx,izT ) � 0,

∀ i = 1, . . . ,mx,
Mr(z) � 0, Lr−max(d,deg(t2−t))(gx,i, z) � 0,

∀ i = 1, . . . ,mx,

(12)

where Mr and Lr−d denote the moment matrix and the
localizing matrix of degree r (d is the degree of the
respective constraint gxi

), respectively. The vector c is
defined as before and the matrices AT , A0, A are derived by
comparing the coefficients of (8) and the Riesz functionals
with the system dynamics.

Deriving the standard dual of (12) and then deriving a
sum-of-squares strengthening of this dual leads to

inf
wc,r

wT
c,rl

s.t. wr(x) = v(0, x) + 1 + r0(x)+

+
∑mx

i=1
r0,i(x)gx,i(x),

−Lv(t, x)− h2(t, x, us) +mmm = p(t, x)

+q0(t, x)t(T − t) +
∑mx

i=1
qi(t, x)gx,i(x),

wr(x) = p0(x) +
∑mx

i=1
q0,i(x)gx,i(x),

v(1, x) = p1(x) +
∑mxk

i=1
q1,i(x)gx,i(x),

(13)

where l is the vector of Lebesgue moments over X indexed
in the same basis in which the polynomial wr(x) with
coefficients wc,r is expressed. The minimum is over poly-
nomials v(t, x) and wr(x), and polynomial sum-of-squares
p(t, x), q0(t, x), qi(t, x), p0(x) ∈ Σr[t, x], q0,i(x), p1(x),
r0(x), r0,i(x) ∈ Σr[x],∀ i = 1, . . . ,mx and q1,i(x),∀ i =
1, . . . ,mxk

of appropriate degrees. The constraints that
polynomials are sum-of-squares can be written explicitly
as LMI constraints, and the objective is linear in the co-
efficients of the polynomial wr(x). Therefore, Prob. 2 can
be formulated as an semi-definite program. Furthermore,
the set Wr := {x : wr(x) ≥ 1} is an outer-approximation
of X ∗0 , i. e. X ∗0 ⊆ Wr, and the Lebesque measure of Wr

converges to the Lebesque measure of X ∗0 for r → ∞, see
(Henrion and Korda, 2013, Thm. 5).

In the next section, it is illustrated how X ∗0 can be applied
in observability analysis.

4. APPLICATION TO OBSERVABILITY ANALYSIS

This section illustrates that the set X ∗0 can contain more
information on the initial conditions than the original set
X0. In particular, if the set X ∗0 is not contained in the
interior of X0 then X ∗0 does not provide any additional
information on the location of possible initial conditions.
Therefore, to strengthen the expressiveness of X ∗0 the
following additional requirement is defined.

Definition 2. (Set-Observability). A state xi of system (2)
with initial conditions in the set X0 is said to be set-
observable if the projection of X ∗0 onto xi has a smaller
Lebesque measure λ than the projection of X0 onto xi,
i. e. λ(⊥xi X ∗0 ) < λ(⊥xi X0). System (2) is said to be set-
observable if this condition holds for all i = 1, . . . , nx. �

The idea behind set-observability is to compare the length
of the projections of X0 and X ∗0 onto different state direc-
tions. If the former length is larger than the latter then this
means that the bound on the output energy can be used
to reduce the initially present uncertainties. According to
Def. 2 the observability of a system corresponds, therefore,
not only to the output energy but also to the shape and
size of X ∗0 . Prob. 2 then becomes the following

Problem 3. (Set-observable Initial Conditions).
Determine the set X ∗0 and determine which states
are set-observable w.r.t. Def. 2 for a given bound mmm. �

With the help of (13) we can solve Prob. 3. Moreover,
it allows us to analyze the set-observability of system (2)
according to Def. 2. We can state the following result:

Theorem 1. (Sufficient Condition for Set-Observability).
Given an outer-approximation Wr. Assuming X ∗0 6= ∅,
then the following statements are equivalent.
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(1) The system is set-observable.
(2) ∃r ∈ R ∪ {∞} and ∃mmm ∈ R such that λ(⊥xj

X ∗0 ) ≤
λ(⊥xj

Wr) < λ(⊥xj
X0), ∀xj . �

Proof: Follows the same lines as the proof of (Henrion and
Korda, 2013, Thm. 6). In the case of finite convergence the
same argumentation as provided in the following can be
employed by replacing∞ with a sufficiently large constant
R ∈ R. From the convergence of the relaxation it follows
that wr converges to the indicator function IX∗

0
of the

set X ∗0 . Furthermore, at every relaxation order r we have
X ∗0 ⊂ Wr, i. e. wr ≥ IWr

≥ IX∗
0

. Therefore, we have

λ(⊥xj
X ∗0 ) =

∫
X
⊥xj

IX∗
0
dλ

= lim
r→∞

∫
X
⊥xj wrdλ ≥ lim

r→∞

∫
X
⊥xjWrdλ = λ(⊥xj Wr).

As X ∗0 ⊂ Wr, it follows that λ(⊥xj
X ∗0 ) ≤ λ(⊥xj

Wr).
Therefore, λ(⊥xj

X ∗0 ) = λ(⊥xj
Wr) must hold, which

concludes the proof. �

Note that there are certain similarities of the proposed
concept of set-observability and norm-observability intro-
duced in (Hespanha et al., 2005, 2002). A system is small-
time initial-state norm-observable (SINO), if ∀ τ there
exists γ ∈ K∞ such that the Euclidean norm of the initial
state is upper bounded by the infinity norm of the output,
i. e. |x(0)| ≤ γ(||y||∞,[0,τ ]), see (Hespanha et al., 2005). It
is obvious that set-observability and SINO are related in
the case that parameters are not unknown-but-bounded.
The main difference derives from the fact that this work
considers only bounded state space regions, therefore, a
strict relationship exists only for mmm = 0. In this case, if
a system is not set-observable (∀ r) it follows that no γ
exists on X .

5. EXAMPLES

Two-Tank Example: We consider the polynomial model
of a two-tank as derived in (Labibi et al., 2009). The
process consists of two water tanks and one pump modeled
by:

ẋ1 = 0.073x21 − 1.6x1 − 0.047x22 + 0.2x2,

ẋ2 = 0.33x22 − 1.4x2,

y = h(x1, x2),

(14)

where h(x1, x2) is either x1 or x2, state constraints are
X =X0 =[0, 1]× [0, 1] and the end-time T is set to one.

For given bounds m ∈ {0, 0.01, . . . , 0.1, 0.2, 0.3} on the
output energy measure, the set of initial conditions is
derived with (13), cf. Fig. 1. Furthermore, the results show
that the system is set-observable for h(x1, x2) = x1 and
not set-observable for h(x1, x2) = x2 according to Thm. 1
as Wr is up to numerical optimality equal to X0.

Mass-Spring Example: We consider a mass-spring system
with a softening spring (for details see (Khalil, 2002))
scaled to the unit box:

ẋ1 = (x2 − 0.5),

ẋ2 = −(p+ 1)(x1 − 0.5)− 0.5(x2 − 0.5)

+ 4(p+ 1)(x1 − 0.5)3,

y = x2.

(15)

a) b)

Fig. 1. Two-Tank example: a) set-observable for y = x1,
b) set-unobservable for y = x2. Computation time
∼1min with MOSEK 7.0/YALMIP (for each case).
Relaxation order r = 5.

The state constraints are X = X0 = [0, 1]× [0, 1], p ∈ [0, 1]
and the end-time T is set to one.

Instead of varying m as in the previous example we
modified (13) such that we can consider a lower and
an upper bound on the L2-norm of the output, namely
m1 = 0.6 ≤

∫
T ||y(t|x0)||2dt ≤ m2 = 1.2. In this case,

the output energy measure shows that the states are set-
observable and the parameter is not set-observable w.r.t.
mmm as only the projections of X ∗0 onto the axes of x1, x2
have a smaller Lebesque measure than the projections of
X0 (see also Thm. 1) as illustrated by Fig. 2.

Fig. 2. Mass-spring example: Projections of the computed
initial conditions (indicated by dotted lines) show the
system is partially set-unobservable. Full red lines
correspond to the projections onto the x1 and x2 axis,
respectively. Computation time ∼30s with MOSEK
7.0/YALMIP. Relaxation order r = 5. Dots represent
consistent initial conditions obtained by Monte-Carlo
sampling.

6. DISCUSSION AND CONCLUSIONS

This work presented a computational approach to de-
termine sets of initial conditions and parameters which
satisfy a given bound on the L2-norm of the output.
This was achieved by constructing a polynomial program
with embedded differential equations which was recast
into an infinite-dimensional linear program with the help
of occupation measures. The linear program was solved
by a converging hierarchy of LMI problems (Lasserre,
2010). This approach guarantees that the obtained outer-
approximation of the initial conditions and parameters
converges, for increasing relaxation order, to the true set
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of initial conditions and parameters satisfying the given
bound on the output norm.

Further advantages of the presented approach, besides
convergence, are that no sampling is required to find ap-
propriate initial condition/parameter regions. Moreover,
as the dynamic optimization is reformulated in terms of
occupation measures no integration or numerical approxi-
mation of the nonlinear dynamics is needed.

Furthermore, it was shown that the introduced mea-
sure can be applied to observability analysis for uncer-
tain systems. However, to derive more rigorous state-
ments and linking the measure to classical observabil-
ity/identifiability analysis will be subject of future re-
search.

At the moment the presented approach is limited to
moderately sized systems as the complexity to solve the
LMIs grows polynomially in the number of variables and
the relaxation order. However, semidefinite programming
is a highly active research field and computational as well
as algorithmic improvements are to be expected in the
future as suggested by e. g. Permenter and Parrilo (2012);
Seiler et al. (2013).
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