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Abstract: A general approach for approximating the nonlinear dynamics of an aircraft model by
a linear parameter varying (LPV) model of fixed structure (e.g. affine, polynomial, rational,...)
is presented, which is a prerequisite for the application of several LPV based analysis and
synthesis techniques. Starting from a given trim-point in the flight envelope, the approach
tries to maximize the size of the region (flight envelope) around this trim point, for which the
resulting LPV model describes the nonlinear model with sufficient accuracy. For this purpose
the sensitivities of the model error with respect to an expansion of the flight envelope in the
direction of specific parameters are used to get an optimal overall expansion strategy, which
then yields a large validity region for the LPV model.

1. INTRODUCTION

The synthesis of flight control systems is a challenging task
in the presence of various uncertainties in the current flight
conditions and aircraft parameters. Although the flight
dynamic models are in general nonlinear, frequently lin-
ear parameter varying (LPV) approximations [Leith and
Leithead, 2000] can be used to describe the dynamics in a
continuum of equilibrium points. These models can serve
as basis for the synthesis of robust controllers [Magni et al.,
1997, Gahinet and Apkarian, 1994], residual generators for
fault detection and diagnosis (FDD) [Varga et al., 2011,
Henry, 2012], which are aimed to be robust against both
measurable and unmeasurable uncertainties.

An aircraft model is typically described by nonlinear
differential equations

ẋ = f(x, u, p)

y = g(x, u, p)
(1)

with state vector x(t) confined to some operating region
X ⊂ Rn, input vector u and output vector y. This system
depends on a parameter vector p (including, e.g. mass m,
longitudinal position of center of gravity Xcg, altitude h
and calibrated airspeed Vcas) which is either not exactly
known (i.e., uncertain) or is time-varying and belongs to
an admissible parameter value set Π, i.e., p ∈ Π.

The nonlinear model (1) is usually approximated by an
LPV model of the form

ẋ = A(δ)x+B(δ)u

y = C(δ)x+D(δ)u,
, with S(δ) =

[
A(δ) B(δ)
C(δ) D(δ)

]
(2)

where the matrices A(δ), B(δ), C(δ), D(δ) depend ra-
tionally on δ and x, u, y denote deviations of x, u, y
from certain trim conditions of the aircraft dynamics. The
artificial parameter vector δ may also depend on state
variables, which allows to cover state dependent nonlin-
earities [Leith and Leithead, 2000] in the representation
given by (2). Finally, (2) can be transformed into a Linear
Fractional Representation (LFR) [Zhou and Doyle, 1998,

Hecker, 2007, Packard, 1994, Dettori and Scherer, 2000],
which is a standard representation in robust control.

To generate the required LPV models we employ a general
procedure [Pfifer and Hecker, 2011], starting with the gen-
eration of a set of linear, time-invariant (LTI) state-space
systems obtained by linearization of (1) at certain equi-
librium points (trim points). Least-squares multivariable
polynomial fitting is used to interpolate the elements of the
state-space matrices and to find a single LPV model (2)
approximating the whole set of LTI equilibrium models.

There are LPV synthesis techniques that require an LPV
model with affine parametric dependence for the aircraft
model, where

A(δ) = A0 + δ1A1 + . . .+ δNAN ,

B(δ) = B0 + δ1B1 + . . .+ δNBN ,

C(δ) = C0 + δ1C1 + . . .+ δNCN ,

D(δ) = D0 + δ1D1 + . . .+ δNDN ,

(3)

δi, i = 1, ..., N are the elements of the artificial parameter
vector δ. Other methods may allow a polynomial or
rational dependence of the system matrices. Usually, a
simple (e.g. affine) LPV structure does not allow to cover
large regions of the flight envelope with sufficient accuracy.
Therefore a new approach was developed, which starts
from a given trim-point in the flight envelope and generates
an LPV model in a way, such that the region around the
trim-point, in which the LPV model accurately describes
the nonlinear aircraft behavior, is maximized. In several
applications, as for example in fault detection, some fault
scenarios may only be relevant in dedicated regions of the
flight envelope. This approach then allows to use only a
single LPV model during the FDD synthesis process. On
the other hand the approach allows to reduce the number
of LPV models that are required to cover the full flight
envelope as well.

For the generation of an LPV model, efficient polynomial
fitting methods as described in [Pfifer and Hecker, 2008,
2011] can be employed and for a given set of grid-point
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LTI models a LPV model with fixed structure is obtained
very quick. In general, using a set of LTI models as
basis for the LPV model generation may not allow to
accurately describe all relevant nonlinear effects. However,
in industrial projects the partners only have limited access
to confidential, analytic model data and one usual way is to
generate LTI models for many points in the flight envelope
from a highly accurate nonlinear simulation model. This is
especially the case when dealing with aeroelastic aircraft
models, which are usually only available for a set of
mass and center of gravity cases. Nevertheless, successful
projects in the area of flight control [Magni et al., 1997],
clearance of flight control laws [Varga et al., 2012] and
fault detection [Varga et al., 2011] have shown that LPV
modeling based on LTI grid point models is a very useful
approach.

2. GENERATION OF THE FIXED STRUCTURE LPV
MODEL

In this section we will present a general process for generat-
ing a LPV model, where the region of the flight envelope, in
which the model accurately describes the nonlinear aircraft
behavior is maximized. As a first step a very accurate but
more complex (e.g. not affine) LPV model is generated
using existing methods [Pfifer and Hecker, 2011], which
serves as a basis for the generation of the simpler (affine,
polynomial, rational,...) LPV model. The reason for this
’intermediate’ model is that the process for generating the
simple model requires the calculation of a huge set of LTI
grid point models within the flight envelope. With the
original nonlinear aircraft model, generating an LTI grid
point model requires to perform trimming and lineariza-
tion. Using efficient software tools from DLR (German
Aerospace Center), these steps still take several seconds
computation time for each grid point, which obviously
limits the number of grid points that can be calculated
in a reasonable time. On contrary, from the ’intermediate’
LPV model an LTI grid-point model can be obtained
by evaluating (2) at given parameter values, allowing to
generate hundreds of LTI models within seconds.

Of course the final validation of the simple LPV model has
to be performed with the original nonlinear aircraft model,
but a least for the ADDSAFE 1 model the validation
results with the accurate ’intermediate’ LPV model almost
coincided with the results using the original nonlinear
model.

Remark 1. One may criticize that we generate the final
(fixed structure) LPV model from another (intermediate)
LPV model, which is already an approximation of the orig-
inal nonlinear model. In fact one may generate additional
model errors by doing this, however already the nonlinear
model description neglects many real world dynamics and
includes a huge amount of simplifications. The advantage
in terms of computation time for generating LTI models
was more important for us than using the more accurate
model and the results have shown that the final model
is still sufficiently accurate to be used for FDD synthesis
techniques.

1 ADDSAFE is the acronym of the European research project
Advanced Fault Diagnosis for Safer Flight Guidance and Control
– AAT-2008-RTD-233815 (2009-2012).

2.1 Generation of an ’intermediate’ accurate LPV model

The basis for the following steps to generate a fixed struc-
ture LPV model, is a quasi-LPV model S(δ) as in (2),
which can for instance be obtained using the methods
described in [Pfifer and Hecker, 2011] or via a function
substitution technique as introduced by [Tan, 1997]. The
resulting quasi-LPV system (2) usually does not depend
polynomially on the parameter vector δ, but includes
rational or more general nonlinear functions. More pre-
cisely, there are {si(δ)}q1 elements in S(δ) which need to
be approximated by simpler (e.g. affine or polynomial)
functions, in order to transform S(δ) into a fixed structure

LPV model S̃(δ). In a typical aerospace application the set
{si(δ)}q1 would contain for example the aerodynamic forces
and moments coefficients.

In the following process we will generate a grid of values
si,k for each function si at a set of pre-specified parameter
values. The value si,k represents the ith function evaluated

at the kth point and δ(k) is the corresponding parameter
vector. For each index value k an LTI system with transfer
function Gk(s) := C(δ(k))(sI−A(δ(k)))−1B(δ(k))+D(δ(k))
can be built by evaluating the quasi-LPV model (2) at
δ = δ(k).

Note, that the ’intermediate’ LPV model S(δ) may also
be valid only in some part of the flight envelope. How-
ever, given the same model accuracy, due to the simpler
structure, the validity region of the fixed structure LPV
model will typically be smaller. At least for the ADDSAFE
project, the fault cases were usually specified for a certain
trim-point within the flight envelope and S(δ) could always
be generated such that a very large region of the flight
envelope around this specified trim-point was accurately
covered.

For a given aircraft model δ is the vector of aircraft and
flight condition parameters including e.g. the calibrated
airspeed Vcas, the aircraft altitude h, the aircraft mass m
and the position of the center of gravity Xcg along the
x-axis. In the following we assume that S(δ) is valid in
a parameter region Π = {δ : δi ∈ [δi,min, δi,max], i =
1, ..., N} and without loss of generality we assume that the
parameters are normalized, i.e. δi,min = −1, δi,max = 1.
Furthermore we assume that the nominal value δnom =
(δ1,nom, ..., δN,nom) defining a specific flight case is cen-
tered in the validity region, i.e. δi,nom = 0.

2.2 Grid-point based generation of fixed structure LPV
models and validity regions

For the generation of the fixed structure LPV model S̃(δ),
the first step is to calculate a set of grid-point models
{Sk}m1 by evaluating S(δ) at some pre-specified grid-points

δ(k), k = 1, ...,m. To calculate S̃(δ), again the methods
described in [Pfifer and Hecker, 2011] are employed , where
one can easily force the structure of the resulting LPV
model to be for example affine. Besides the fixed structure
LPV model

S̃(δ) =

[
Ã(δ) B̃(δ)

C̃(δ) D̃(δ)

]
,
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the methods also deliver a measurement of the distance
(error) d between the very accurate LPV model S(δ) and

S̃(δ) at the given grid-points δ(k) with

d = max
k

ν(Gk, G̃k), k = 1, ...,m, (4)

where G̃k(s) = C̃(δ(k))(sI−Ã(δ(k)))−1B̃(δ(k))+D̃(δ(k)) is

the transfer function of S̃(δ) at a given grid point δ = δ(k).
ν denotes the ν-gap metric [Vinnicombe, 1993] and is
chosen as a measurement for the distance between the
two models. The ν-gap metric can take values between
zero and one with zero meaning that two plants match
exactly and one that they are far apart. The ν-gap metric
has a decisive advantage over other system norms, though,
as an error measurement for LPV model generation: It is
also defined for unstable systems. Since in many practical
cases the plant may be at least slightly unstable (e.g., the
phugoid mode) in the admissible parameter set, special
care has to be taken when choosing other system norms.

For a given set of m grid-point LTI models the calculation

of S̃(δ) and the distance d is straightforward and can be
done very quickly. However, the main question is how to
choose the grid-points or more importantly how to add

new grid-points, such that the size of the region Π̃ = {δ :

δi ∈ [δ̃i,min, δ̃i,max], i = 1, ..., q} ⊂ Π of the flight envelope,

where S̃(δ) accurately describes S(δ) - and therefore also
the original nonlinear aircraft model - is maximized.

For each parameter interval δi ∈ [δ̃i,min, δ̃i,max] we have
mi grid-points and we assume that the numbers mi are
sufficiently large to accurately describe the aircraft model

dynamics in Π̃. The overall number of grid-points m is
given by the product of the numbers mi, i = 1, ..., q of
grid-points for each parameter, i.e. m = m1 ·m2 · ... ·mq. Of
course the choice ofmi and also the placement (equidistant
or not) of the mi grid-points within a parameter interval
highly depends on the nonlinear model and can usually
be done only with a very good knowledge of the model.
At the beginning we will usually start with mi = 1 and

Π̃ = δnom = 0, i.e. our initial validity region is given by
the nominal flight point.

2.3 Calculation of sensitivities

For each parameter δi, i = 1, ..., q, we can now define the

validity regions Π̃εi , where for example

Π̃ε1 = {δ :δ1 ∈ [δ̃1,min, δ̃1,max + ε],

δi ∈ [δ̃i,min, δ̃i,max], i = 2, ..., q},

i.e. Π̃ε1 is obtained from Π̃ by increasing the parameter
interval for δ1 by a small amount ε. In terms of grid-

points the region Π̃ε1 is described by adding the grid-point

δ1 = δ̃1,max + ε to the m1 already existing grid-points for
δ1 resulting in an overall number of mε1 = (m1 +1) · ... ·mq

grid-points for the description of Π̃ε1 .

Fixed structure LPV models S̃εi , i = 1, ..., q and distances

dεi can then be calculated for the regions Π̃εi described by
the corresponding mεi grid-points. Based on this data we
can calculate

∆i = dεi − d, (5)

as an approximation of the sensitivity of the model error
d with respect to an expansion of the validity interval of a
single parameter δi.

The values ∆i are a good indicator of the importance and
nonlinearity of a parameter in describing the behavior of
the nonlinear model and a large value of ∆i will yield a
’large’ loss of model accuracy, when expanding the validity

region Π̃ in this direction.

2.4 Sensitivity-based expansion of validity region

The goal is now to find a fixed structure LPV model
that represents the nonlinear model accurately within a
validity region of maximum size. In our case, the size V of
the validity region is defined by the volume of the hyper-
rectangular given as

V :=

q∏
i=1

(δ̃i,max − δ̃i,min), (6)

and V will be expanded in an optimal way until the
distance d reaches a pre-defined maximum value dmax,
guaranteeing a desired accuracy of the affine model.

Starting from an initial validity region Π̃ = δnom = 0, with

δ̃i,min = δ̃i,max = 0, i = 1, ..., q and mi = 1, a usual way
is to equally expand the validity region by a small amount
l in all positive and negative parameter directions, which
can be described by the following steps:

(1) Add two grid-points (to the already existing mi grid-

points for each parameter) with values δ̃i,min − l and

δ̃i,max + l for each parameter, such that the new
validity region is given by

Π̃ = {δ : δi ∈ [δ̃i,min − l, δ̃i,max + l], i = 1, ..., q}.
(2) Calculate S̃(δ) and d for the expanded validity region.
(3) If d ≥ dmax then stop, else go to step 1.

The resulting LPV model is then valid within a region,

where all parameter intervals [δ̃i,min, δ̃i,max], i = 1, ..., q
are of equal size, which usually does not yield the max-
imum size V for the validity region. To maximize V we
propose a sensitivity based expansion of the validity region
described by the following steps:

(1) For each parameter δi calculate the sensitivities ∆i as
described in section 2.3.

(2) Add two grid-points with values δ̃i,min − l/∆i and

δ̃i,max + l/∆i for each parameter, such that the new
validity region is given by

Π̃ =

{
δ : δi ∈

[
δ̃i,min −

l

∆i
, δ̃i,max +

l

∆i

]
,

i = 1, ..., q} .

(3) Calculate S̃(δ) and d for the expanded validity region.
(4) If d ≥ dmax then stop, else go to step 1.

Sketch of a proof : For a model with parameters
δ1, . . . , δN it is shown that the sensitivity based expansion
yields a maximum size V . Starting from the nominal flight

point (Π̃ = 0) and given the sensitivities ∆1, . . . ,∆N , the
size V after one expansion step will be V = 2N · l1 · . . . · lN ,
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where li, i = 1, ..., N are the expansions for the parameter
intervals yielding

Π̃ = {δ : δi ∈ [−li , li].}
For small values li it is assumed that the distance d after
one expansion step is given by

d = 2 ·
N∑
i=1

∆i · li = 2 · df , (7)

where 2 ·df is a fixed distance that should be reached after
one expansion step. The question is to find optimal values
li such that V is maximized after this expansion step. For
this purpose one can solve (7) for l1 yielding

l1 =
df −

∑N
i=2(∆i · li)
∆1

and with

L =

N∏
i=2

li

the size V is given as

V =
2N

∆1
·

(
df · L−

N∑
i=2

(li ·∆i · L)

)
. (8)

Differentiating (8) with respect to lj , j = 2, ..., N yields

∂V

∂lj
=

2N

∆1
·

df · L
lj
− 2 · L ·∆j −

N∑
i 6=j,i=2

(
L

lj
· li ·∆i

) ,

which is zero for li = l
∆i
, i = 2, ..., N with l = df/N .

One can easily show that this is the solution for the global
maximum of V and with (7) this also yields l1 = l

∆1
,

such that all li, i = 1, ..., N correspond to the expansion
strategy proposed above.

Example 1. Consider the two parametric system with

A(δ) =

[
0 1

−c/m −d/m

]
, B(δ) =

[
0

1/m

]
,

C = [ 1 0 ] , D = 0,

(9)

which may represent a spring, mass, damper system with
stiffness c = 2 + δ1, mass m = 2 + δ2 and damping
coefficient d = 1. This system depends rationally on the
parameters δ1 and δ2. Approximating (9) with an affine
LPV system with maximum error dmax = 0.14 yields a
validity region

Π̃ = {δ : δ1 ∈ [−0.49 , 0.49], δ2 ∈ [−0.49 , 0.49]}
when using the equal expansion and

Π̃ = {δ : δ1 ∈ [−0.86 , 0.86], δ2 ∈ [−0.35 , 0.35]}
using the sensitivity based expansion. The sizes of the
validity regions are given by 0.982 = 0.9604 and 0.7 ·
1.72 = 1.204 and the second one is around 25% larger. For
the calculation of the sensitivities ε = 0.1 was used and
during all expansion steps the sensitivities with respect to
δ2 were between 2 and 3 times larger than the sensitivities
for δ1, thus yielding a larger interval for δ1.

2.5 Implementation aspects

An open question when implementing the sensitivity based
expansion strategy is the choice of l. In case of four

parameters δi and assuming that l is small, the distance
d after one expansion step is approximately given by

d = 2
(∑N

i=1 ∆i · l/∆i

)
= 2 · N · l. Given a maximum

allowable distance dmax as the final required accuracy of
the (affine) fixed structure LPV model, at least for the
ADDSAFE model a good choice was l = dmax/(8 · N),
i.e. it requires about 4 expansion steps until the maximum
allowable distance dmax is reached. The overall number of
grid points will then be 8N for the generation of the final
LPV model. In case of four parameters this will be 4096
grid points, which could still be solved within seconds.
However, due to this exponential growth of the number
of grid points the method may be restricted to a small
number of parameters.

Using the proposed strategy it may happen that the final
parameter intervals for parameters with large sensitivities
are small, i.e. the fixed structure LPV model only covers a
very small region for this parameter in the flight envelope.
In order to enforce the expansion in these directions one
may easily introduce weighting parameters wi such that
the validity region after one expansion step is given by

Π̃ =

{
δ : δi ∈

[
δ̃i,min −

l · wi
∆i

, δ̃i,max +
l · wi
∆i

]
,

i = 1, ..., q} .
Choosing a value wi > 1 will then yield a larger validity re-
gion for the parameter δi for the final fixed structure LPV
model. As a consequence the other parameter intervals will
then be smaller and it requires some trials to choose the wi
in order to form the resulting validity region in a desired
way.

3. RESULTS

The proposed sensitivity based expansion was applied
for various flight cases of the ADDSAFE benchmark
model. To show the advantage of the proposed method we
generated an affine LPV model for the complete aircraft
dynamics with two parameters, the aircraft mass m and
the x position of the center of gravity Xcg. We started
with an initial validity region (gray area) as shown on top
of Figure 1. Choosing the strategy of equally expanding
the validity region with respect to m and Xcg, we reached
a given distance dmax of the affine LPV model for the
validity region as shown in the middle part of Figure 1.
When choosing the sensitivity-based expansion, the same
distance dmax was reached for the validity region as shown
in the lower part of Figure 1. Comparing the area of the
two regions, the second one is around 50% larger, i.e.
the sensitivity based expansion allows to obtain an affine
LPV model that is valid in a larger region of the weight
and balance domain of the aircraft. This shows that for
this region, the dependence of the nonlinear model on
Xcg can be better approximated with an affine parameter
dependence than the dependence on m. This results in
a larger sensitivity for m and therefore in a smaller
expansion, when using the sensitivity based strategy.

For all the considered flight cases within the ADDSAFE
project the sensitivity based expansion strategy always
allowed to obtain larger validity regions compared to an
equal expansion strategy. In average the validity regions
were around 25% larger. For the full model with four
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Fig. 1. Achieved validity regions

parameters, the largest sensitivities (and smallest validity
intervals) were usually obtained for the calibrated airspeed
Vcas and the altitude h.

As maximum allowable distance we have usually chosen
dmax = 0.2, and all the resulting affine LPV models were
also validated using simulation. Therefore a small (20-
30) random set of trim-points was chosen for which the
nonlinear model was compared to the LPV model using
elevator, rudder and aileron step inputs. Figure 2 shows
one example of such a simulation, were the green lines
correspond to the nonlinear model and the blue lines show

-5 0 5 10 15 20

-0.1

0

al
ph

a

-5 0 5 10 15 20
-0.1

0

q

Fig. 2. Simulation: elevator step input

the angle of attack α and the pith rate q for an elevator
step input of the affine LPV model.

4. CONCLUSION

For the full aircraft dynamics of the ADDSAFE model the
requirement was to develop an affine LPV model that is
valid for a certain flight case (trim-point) and if possible
also in a (large) flight domain around this trim-point.
For this purpose we developed a strategy that allows to
generate a LPV model of fixed structure, such that the
validity region around a certain nominal trim-point in
which the LPV model accurately represents the nonlinear
aircraft dynamics is maximized. The strategy is based on
the sensitivities of the model error with respect to the
direction in which the validity region is expanded and
allowed to obtain validity regions that were in average
around 25% larger than regions obtained with a standard
strategy.
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