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Abstract: This work is devoted to the investigation of oscillations in a drilling system using
an induction motor with wound rotor as a drive. It is motivated by the problems of drilling rig
failures in the oil and gas industry. The study is based on a modified version of the mathematical
model of a drilling rig proposed by scientists from the Eindhoven University of Technology. The
model of drilling rig developed in this work takes into account full description of the rotor
geometry of induction motor. It is shown that such complex effects as hidden oscillations may
appear in this kind of systems. To damper these oscillations a control strategy based on changing
the external additional resistance in the rotor circuit is suggested.
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1. INTRODUCTION

Drilling systems are widely used for oil and gas exploration
and production. The breakdowns of drilling rigs quite often
occur while drilling. They lead to considerable time and
costs. In order to reduce the number of breakdowns it
is important to study oscillations appearing in drilling
systems during the drilling process.

A schematic view of a typical drilling rig is shown in Fig. 1.
The main constructive elements of drilling rig are hoisting
system, motor, rotary table, and drill-string. The drill-
string consists of three parts, namely, drill pipe, drill collar,
and drill bit. The drilling system creates a borehole by the
bit containing a cutting tool at the free end. The torque
driving the drill bit is produced at the surface by a motor
which is connected to the rotary table via transmission. 1

During the drilling operations the drill-string undergoes
different types of vibrations, which are classified depending
on the direction they occur: torsional (rotational), ax-
ial (longitudinal), and lateral (bending) vibrations. Many
researches are devoted to vibrations in drill-string sys-
tems (see, e.g., Brett (1992); Germay (2002); Jansen
and Van den Steen (1995); Kreuzer and Kust (1996a,b);
Keuzer and Kust (1997); Kust (1998); Kyllingstad and

1 There are three types of rotating drilling systems (see Short (1983);
Baker (2001)) The bit can be rotated with a rotary table, a top drive
or by a slim downhole motor. The type of drilling rig with rotary table
considered in this article is widely used nowadays since it makes it
possible to have a greater torque on a drill bit than in other types
of rigs. Nowadays the length of the drill-pipe in drilling rigs used
in the oil and gas industry is usually varied from 1 to 8 km, while
the diameter of the drill-pipe is several tens of centimeters (Baker
(2001); Mihajlovic (2005)).

Fig. 1. Schematic view of drilling rig: 1 – hoisting system,
2 – rotary table, 3 – motor, 4 – drill pipe, 5 – drill
collar, 6 – drill bit

Halsey (1988); Jansen (1991); Leine (2000); Leine and van
Campen (2002); Mihajlovic et al. (2005, 2004a,b); Van den
Steen (1997)). In this work only torsional vibrations of the
drill-string are considered, since they are regarded as the
most damaging type of vibrations appearing in drilling
system (Omojuwa et al. (2011); Rajnauth (2003)). They
may cause failures of the drill-string or even the drilling
system itself that lead to unacceptably high cost and time
losses for the drilling industry.

To study the torsional dynamics, various mathematical
models of drilling systems have been proposed and stud-
ied by many researchers (see, e.g., Germay et al. (2009);
Palmov et al. (1995); Khulief et al. (2007); de Bruin et al.
(2009); Mihajlovic et al. (2004a, 2006); Mihajlovic (2005)).
The most analytically and numerically studied model and
its modifications were developed in the works of de Bruin
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et al. (2009); Mihajlovic et al. (2004a, 2006); Mihajlovic
(2005). A simple mathematical model of drilling system
driven by DC motor was constructed and numerical analy-
sis of this model was carried out in the works of Mihajlovic
et al. (2004a); de Bruin et al. (2009). However DC motors
require power sources of constant current and contain com-
pound constructive elements (for example, collector), for
which additional maintenance is necessary. The induction
motors do not have these disadvantages, therefore, they are
often used as the drivers in drilling rigs (see, for example,
Hild (1934); Staege (1936); Hall and Shumway (2009)). It
allows one to improve the reliability of the system.

In this article a drilling rig driven by an induction motor
with wound rotor is studied. It is a modified version of
the model suggested by researchers from the Eindhoven
University of Technology (see de Bruin et al. (2009);
Mihajlovic et al. (2006); Mihajlovic (2005)). The use of the
induction motor with wound rotor as a drive in the drilling
rig allows one to introduce the rheostat (variable external
resistance) in the rotor circuit. In this case a control
strategy by means of changing the external resistance is
suggested in order to avoid hidden oscillations 2 .

2. INDUCTION MOTOR WITH A WOUND ROTOR

Let us develop a mathematical model of induction motor
for describing the drive part of drilling system. Unlike
well-known mathematical models of induction machines
(see, for example, (White and Woodson, 1968; Leonhard,
2001; Khalil and Grizzle, 2002; Marino et al., 2010)), the
obtained below model completely takes into account rotor
geometry (rotor winding configuration).

Induction machines have two main parts: stationary stator
and rotating rotor. The windings are placed in the stator
and rotor slots. The stator winding connected to the
alternate current supply produces a rotating magnetic
field.

Consider an induction motor with a wound rotor shown in
Fig. 2. In the simplest case a wound rotor winding consists
2 An oscillation in a dynamical system can be easily localized nu-
merically if initial conditions from its open neighborhood lead to
long-time behavior that approaches the oscillation. Thus, from a
computational point of view it is natural to suggest the following
classification of attractors, based on the simplicity of finding basin of
attraction in the phase space: an attractor is called a hidden attractor
if its basin of attraction does not intersect with small neighborhoods
of equilibria, otherwise it is called a self-excited attractor (Leonov
and Kuznetsov, 2011; Leonov et al., 2011; Leonov and Kuznetsov,
2013). Self-excited attractors can be localized numerically by stan-
dard computational procedure, in which after a transient process a
trajectory, started from a point of unstable manifold in a neighbor-
hood of equilibrium, traces the state of oscillation and therefore it can
be easily identified. In contrast, for numerical localization of hidden
attractors it is necessary to develop special analytical-numerical
procedures that allow one to determine the initial data from the basin
of attraction for numerical procedure. For example, hidden attractors
are attractors in the systems with no-equilibria or with the only
stable equilibrium (a special case of multistability and coexistence
of attractors); they arise in the study of well-known fundamental
problems such as 16th Hilbert problem, Aizerman & Kalman con-
jectures and in applied research of Chua circuits, phase-locked loop
based circuits, aircraft control systems and others (Kuznetsov et al.,
2010; Bragin et al., 2011; Leonov et al., 2012; Kuznetsov et al., 2013;
Andrievsky et al., 2013; Leonov and Kuznetsov, 2013).

of three coils. Each coil contains several turns of insulated
wire. Some ends of coils a, b, c (Fig. 3) are connected to the
rotor itself at one point o. Another free ends of coils a′, b′, c′

are connected to slip rings, mounted on the rotor shaft and
isolated from it and each other. The brushes are resting
on slip rings. The brushes, sliding over the surfaces of
rotor rings, always have an electric contact with them and
are connected, thus, with the rotor windings. The rotor
winding can be either short-circuited or connected with
other external devices through the brushes. Such devices
are often used for a speed control of induction motors with
wound rotor. Furthermore, the rotor winding is connected
to a rheostat, which acts as a variable resistance in this
case (Fig. 2).

Fig. 2. Wound rotor with rheostat: 1 – rotor core, 2 – first
coil with current i1, 3 – second coil with current i2, 4
– third coil with current i3, 5 – slip rings, 6 – brashes,
7 – shaft, 8 – rheostat

a

Fig. 3. Winding of wound rotor with slip rings

The classical derivation of the expressions for currents
in the rotor winding and the electromagnetic torque of
induction motor are based on the following simplifying as-
sumptions (see Popescu (2000); Leonhard (2001); Skubov
and Khodzhaev (2008)):

(1) It is assumed that the magnetic permeability of stator
and rotor steel 3 is equal to infinity. This assumption
makes it possible to use the principle of superposition
for the determination of magnetic field, generated by
stator;

(2) one may neglect energy losses in electrical steel, i.e.,
motor heat losses, magnetic hysteresis losses, and
eddy-current losses;

(3) the saturation of rotor steel is not taken into account,
i.e. the current of any force can run in rotor winding;

(4) one may neglect the effects, arising at the ends of
rotor winding and in rotor slots, i.e., one may assume
that a magnetic field is distributed uniformly along a
circumference of rotor.

3 Usually both stator and rotor are made of laminated electrical
steel.
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Let us make an additional assumption: 4

(5) stator windings are fed from a powerful source of
sinusoidal voltage.

Then, following the works of Adkins (1957); White and
Woodson (1968); Skubov and Khodzhaev (2008), by the
latter assumption, the effect of rotor currents on stator
currents may be ignored. Thus, the stator produces a
uniformly rotating magnetic field with a constant in mag-
nitude induction. So, it can be assumed that the magnetic
induction vector B is constant in magnitude and rotates
with a constant angular velocity n1. This assumption goes
back to the classical ideas of N. Tesla and G. Ferraris and
allows one to consider the dynamics of induction motor
from the point of view of its rotor dynamics (Leonov
(2006)).

Introduce the uniformly rotating coordinates, rigidly con-
nected with the magnetic induction vector B, and consider
the motion of wound rotor in this coordinate system.
Using the approach suggested in the works Leonov (2006);
Leonov et al. (2013, 2014), we obtain the system of differ-
ential equations of wound rotor induction motor with the
rheostat in the rotor circuit:

Jθ̈ = nBS

3∑
k=1

ik sin
(
θ +

2(k − 1)π

3

)
−Ml,

Li̇1 + (R+ r)i1 = −nBSθ̇ sin θ,

Li̇2 + (R+ r)i2 = −nBSθ̇ sin
(
θ +

2π

3

)
,

Li̇3 + (R+ r)i3 = −nBSθ̇ sin
(
θ +

4π

3

)
.

(1)

where n – the number of turns in each coil; B – an
induction of magnetic field; S – the area of one turn of
the coil, θ – mechanical angle of rotation of rotor; ik –
currents in coils; R – the resistance of each coil; r – variable
external resistance; L – the inductance of each coil; J – the
moment of inertia of the rotor; Ml – load torque. Detailed
derivation of (1) can be found in Leonov et al. (2014).

In the work of Leonov et al. (2013) the analysis of equa-
tions (1) is performed. The case of constant load torque
is considered. A region of initial data, under which the
induction motor with wound rotor pulls in synchronism,
is obtained by Lyapunov functions and the modified non-
local reduction method. Numerical analysis showed that
in the case of constant load torque outside this region
the system has no oscillating solutions. Further it will be
shown that the hidden oscillations appearing in drilling rig
used an induction motor with wound rotor as a drive can
be eliminated by regulation of the external resistance.

3. DRILLING SYSTEM

In the works of Mihajlovic et al. (2004a); de Bruin et al.
(2009) a double-mass mathematical model of drilling sys-
tem is studied by researchers from the Eindhoven Univer-
sity of Technology. The mathematical model is based on
an experimental setup. It consists of upper and lower discs
connected with each other by a steel string. The upper disc
4 Without this assumption it is necessary to consider a stator,
what leads to a more complicated derivation of equations and more
complicated equations themselves, which are difficult for analytical
and numerical analyzing.

is actuated by a DC motor and there is also a brake device
which is used for modeling of the friction force acting on
the lower disc (see Fig. 4). This model is described by the
following differential equations

Juθ̈u + kθ(θu − θl) + b(θ̇u − θ̇l) + Tfu(θ̇u)− kmv = 0,

Jlθ̈l − kθ(θu − θl)− b(θ̇u − θ̇l) + Tfl(θ̇l) = 0.
(2)

Here θu and θl – angular displacements of upper and lower
discs, Ju and Jl – constant inertia torques, b – rotational
friction (damping), kθ – torsional spring stiffness, km –

the motor constant, v – a constant input voltage, Tfu(θ̇u)

and Tfl(θ̇l) – friction torques acting on the upper and the

lower discs. The torque Tfl(θ̇l) appears due to the friction
between the drill bit (lower disc) and the bedrock to be

drilled. Tfu(θ̇u) − kmv is a result of influence of driving
part on the drill-string.

Friction torque

θl

θu

Drive part

Upper disc

Lower disc

Fig. 4. Drilling system actuated by induction motor

The driving part of the model, considered above, is a
linear combination of constant input voltage and friction
torque Tfu(θ̇u) acting on the upper disc, which is built
according to computational experiments. Following the
patents of Hild (1934); Staege (1936); Hall and Shumway
(2009), let us extend this model, introducing the equations
of induction motor with wound rotor described above
(Leonov et al. (2014); Kiseleva (2013)). Note that later
on it is convenient to assume that θu and θl are angular
displacements of the upper and lower discs relative to
the magnetic field, which rotates with the speed ω. This
allows one to obtain a system of equations (using the
equations (2) and (1)), which takes into account more
detailed dynamics of motor, namely

Juθ̈u + kθ
(
θu − θl

)
+ b
(
θ̇u − θ̇l

)
−

− nBS
3∑
k=1

ik sin
(
θu +

2(k − 1)π

3

)
= 0,

Jlθ̈l − kθ(θu − θl)− b(θ̇u − θ̇l) + Tfl(ω + θ̇l) = 0,

Li̇1 + (R+ r)i1 = −nBSθ̇u sin θu,

Li̇2 + (R+ r)i2 = −nBSθ̇u sin(θu +
2π

3
),

Li̇3 + (R+ r)i3 = −nBSθ̇u sin(θu +
4π

3
).

(3)

Let us introduce the friction model suggested by the
researchers from Eindhoven University of Technology (see
Fig. 5, Mihajlovic et al. (2004a); de Bruin et al. (2009)):
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Tfl(ω + θ̇l) ∈
{
Tcl(ω + θ̇l)sign(ω + θ̇l), ω + θ̇l 6= 0

[−T0, T0] , ω + θ̇l = 0,
(4)

where

Tcl(ω + θ̇l) =
T0
Tsl

(Tpl + (Tsl − Tpl)e−|
ω+θ̇l
ωsl
|δsl

+ bl|ω + θ̇l|).
(5)

Here T0, Tsl, Tpl, ωsl, δsl, and bl – nonnegative coeffi-
cients. T0 is an additional parameter for changing drilling
medium. Note that by replacing in (3)

−nBS
3∑
k=1

ik sin

(
θu +

2(k − 1)π

3

)
with

kmv − Tfu(ω + θ̇u) and T0 = Tsl
we will obtain the drilling system described in Mihajlovic
et al. (2004a); de Bruin et al. (2009).

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.2

−0.1

0

0.1

0.2

0.3

θl

Tfl

.

Fig. 5. Friction torque Tfl

Transform system (3) to more convenient form. Introduce
the following nonsingular transformation of coordinates:

ωu = −θ̇u, ωl = −θ̇l, θ = θu − θl,

x = −2

3

L

nSB

3∑
k=1

ik sin
(
θu +

2(k − 1)π

3

)
,

y = −2

3

L

nSB

3∑
k=1

ik sin
(
θu +

2(k − 1)π

3

)
,

z = i1 − i2 + i3.

Then system (3) can be transformed to the following form

ẏ = −cy − ωu − xωu, ẋ = −cx+ yωu, ż = −cz,
θ̇ = ωl − ωu,

ω̇u =
k

Ju
θ +

b

Ju
(ωl − ωu) +

a

Ju
y,

ω̇l = − k
Jl
θ − b

Jl
(ωl − ωu) +

1

Jl
Tfl(ω − ωl),

(6)

where a = 3(nSB)2

2L , c = R+r
L , k = kθ.

Thus, the mathematical model of drilling rig is described
by high order differential equations (6) with complicated
discontinuous nonlinearity Tfl(ω−ωl). These equations are
quite hard to study by analytical methods, therefore, here
numerical modeling 5 is done in the next section.
5 The model studied in this work is described by equations with
discontinuous right hand-sides, therefore, a special method for nu-
merical computation of their solutions is required. Here the modified
event-driven method based on Filippov definition (see Piiroinen and
Kuznetsov (2008)) is used for numerical modeling.

4. NUMERICAL STUDIES AND RESULTS

The common technique of spud-in is to run the drill-string
through the rotary table which is driven by an induction
motor. The drill-string then rotates the bit. Then the bit is
lowered into the hole to drill the bedrock. At this moment
the drilling system is in idle mode, i.e. there is no friction
torque Tfl in (6). This system has one stable equilibrium
state y = x = z = θ = ωu = ωl = 0, which corresponds to
rotation of both upper and lower discs with the same speed
ω without angular displacement. When the teeth on the bit
abut the bedrock, the initial load-on occurs. It means that
in certain moment friction torque Tfl suddenly appears.
In this case the following behaviours of the drilling rig are
possible: the drilling rig pulls in a new operating mode, it
starts oscillating, or it may just get stuck.

Operating mode of the system corresponds to a stable
equilibrium state and means that upper and lower disc
rotate with the same speed and constant angular displace-
ment. Since the bedrock type is usually changing during
the drilling, it is necessary to understand how the drilling
rig behaves after such a change. In order for the system to
pass from one operating mode into a new operating mode
it is necessary that the solution of system (6) with the
initial data, corresponding to the previous stable equilib-
rium state (i.e. previous operation mode), tends to a new
stable equilibrium state. However instead of new operating
mode hidden stick-slip oscillations may appear during the
sudden bedrock change. Fig. 7 illustrates that system (6)
has one stable equilibrium and one stable limit cycle. Here
the limit cycle represents so-called hidden oscillations since
it cannot be detected by the standard simulation, i.e. after
the transient processes which starts in the neighborhood
of a stable equilibrium.

0 0.5 1 1.5 2 2.5 30
0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

ω
l

ωu

Fig. 6. Stable equilibrium in the mathematical model of
drilling system actuated by induction motor without
regulation – projection onto (θ, ωu, ωl), T0 = 0.25,
c = 10

The stick-slip oscillations are determined by rotor vibra-
tions in the drilling rig drive or currents in the rotor circuit.
To avoid such oscillations the following strategy is offered.
Using the rheostat we reduce the external additional re-
sistance up to motion stabilization. After that the value
of external additional resistance is returned to the initial
one. In Fig. 8 the trajectory of system (6), falling into the
attraction domain of stable limit cycle, is stabilized by sug-
gested strategy. Dashed curve segment A1A2 corresponds
to the slow change of c from 10 to 1 (motion stabilization).
Curve segment A2A3 corresponds to the increase of c back
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ωu

θ

ω
l

Stable equilibrium Stable limit cycle

Fig. 7. Hidden oscillations and stable equilibrium in the
drilling system actuated by induction motor without
regulation – projection onto (θ, ωu, ωl), T0 = 0.65,
c = 10

to the value 10. The same technique can be applied if the
drilling system does not go into operating mode during the
initial load-on.

−2 0 2 4 6 8 10 12 14
−5

0
5

10

−8
−6
−4
−2

0
2
4
6
8

10

θ

A1

A2

A3

Stable equilibrium Stable limit cycle

ωu

ω
l

Fig. 8. Stabilization of drilling system actuated by induc-
tion motor with regulation – projection onto (θ, ωu,
ωl), T0 = 0.65, c ∈ [1, 10]

For modeling the following parameters were used: ω = 8,
Ju = 0.4765, Jl = 0.035, k = 0.075, a = 2.1, b = 0,
Tsl = 0.26, Tpl = 0.05, ωsl = 2.2, δsl = 1.5, bl = 0.009. 6

5. CONCLUSION

Drilling string failure is one of the most common problems
arising during the drilling processes in the oil and gas
industry. Despite a great number of researches devoted
to study of drilling rigs, the problem of failure prevention
of drilling system still remains unsolved. In this work the
mathematical model of a drilling rig driven by an induction
motor is presented. During the numerical modeling there
were found the so-called hidden oscillations, which may

6 In real drilling rigs the speed of rotation of the bit varies between
50 and 300 revolutions per minute (see Short (1983)). The speed
of rotation of the bit in idle mode coincide with the synchronous
speed of the rotating magnetic field ω, which is defined as 2πf/p,
where f is the motor supply frequency, p is the number of pairs of
poles (induction motors usually have not less than 8 pairs of poles)
(Leonhard, 2001). In our simulation ω is equal to 8 rad/s, which is
around 76 resolutions per minute. The speed of rotation of the bit
in the operating mode corresponding to the stable equilibrium state
depicted e.g. on Fig. 7 is about 62 revolutions per minute.

lead to damaging vibrations of the drill-string. Note that
the detection of hidden oscillations is a complex task be-
cause of their small area of attraction and high dimension
of the system. Since such oscillations may lead to drilling
systems failures, it is necessary to develop control methods
for avoiding these oscillations. Here the simple strategy
based on regulation of external additional resistance in the
wound rotor circuit is suggested.
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