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Abstract: This paper addresses the coordinated control problem of underactuated thrust-
propelled vehicles in the presence of irregular communication delays under a directed commu-
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robust with respect to varying communication delays, which can be discontinuous with unknown
upper bounds. Simulations are provided to illustrate the effectiveness of the proposed control
algorithm.
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1. INTRODUCTION

We consider the coordinated control problem of a class of
thrust-propelled vehicles evolving in the special Euclidean
group SE(3). This class includes autonomous underwater
vehicles (AUVs) and vertical take-off and landing (VTOL)
unmanned aerial vehicles (UAVs), such as classical heli-
copters as well as ducted fan and multi-rotor drones. By
construction, these vehicles have fully-actuated attitude
dynamics and underactuated translational dynamics; the
translational motion is controlled by a thrust force along
a single body-fixed axis. The control of thrust-propelled
vehicles has been widely addressed in the literature from
different perspectives [See, for instance, Frazzoli et al.,
2000, Madani and Benallegue, 2006, Aguiar and Hespanha,
2007, Do and Pan, 2009, Hua et al., 2009, Abdessameud
and Tayebi, 2010a, Roberts and Tayebi, 2011, Hua et al.,
2013, Roberts and Tayebi, 2013, and references therein].
In contrast, only few works address the cooperative and
coordinated control of teams of these vehicles. In fact,
in addition to the under-actuation of the systems, coor-
dinated control design faces increased difficulty due to
several constraints related to the interconnection topology
between vehicles and communication-delays that are gen-
erally unknown, time-varying and possibly discontinuous.

In Børhaug et al. [2011], the nonlinear cascaded sys-
tems theory is used to design a control law guaranteeing
straight-line path following for surface vessels intercon-
nected according to a directed graph with a globally reach-
able node. This scheme is applicable for planar motion
with no communication delays. In Lee [2012], a backstep-
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ping design is proposed for the coordination of thrust-
propelled vehicles over a directed and balanced graph. The
work of Madani and Benallegue [2006] has been extended
in Wang et al. [2013] to solve the consensus problem of a
team of quadrotors under a directed communication topol-
ogy with a spanning tree. In Lee [2012] and Wang et al.
[2013], ideal communication between the systems is consid-
ered and the applied thrust for the vehicles is assumed to
be always strictly positive, which might not be guaranteed,
at least globally, by the proposed control schemes. This
assumption is not required in Abdessameud and Tayebi
[2009, 2010b], where formation control schemes for VTOL
UAVs are proposed under an undirected graph with and
without linear-velocity measurements. The latter results
have been further extended in Abdessameud and Tayebi
[2013] to the case of a directed graph containing a spanning
tree and, in addition, in the presence of constant commu-
nication delays. The case of time-varying communication
delays, with known upper bounds, has been addressed in
Abdessameud and Tayebi [2011, 2013], where formation
control schemes for a class of thrust-propelled vehicles have
been proposed, yet under an undirected communication
graph.

In this paper, we propose a distributed coordinated control
scheme for thrust-propelled vehicles in the presence of
irregular communication delays. The control objective is
to achieve a prescribed formation for a team of vehicles
interconnected according to a directed graph that contains
a spanning tree. The small-gain framework is used to show
that formation is achieved under some conditions on the
communication delays. These conditions are easily realiz-
able via an appropriate choice of the control gains without
imposing additional constraints on the upper bounds of
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the possibly discontinuous communication delays. The ef-
fectiveness of the proposed approach is shown through a
numerical example of a team of VTOL UAVs. It should be
mentioned that a similar, although not identical, approach
has been proposed in Abdessameud et al. [2014] for fully-
actuated networked Euler-Lagrange systems whose exten-
sion to the case of under-actuated thrust-propelled vehicles
requires additional considerations addressed in this paper.

Notations: Throughout the paper, we use |x| to denote
the Euclidean norm of a vector x ∈ R

m. We also use I to
denote the inertial frame rigidly attached to a position on
the Earth (assumed flat) in North-East-Down coordinates.
The orthonormal (right-handed) basis associated to I is
denoted by {x̂, ŷ, ẑ}. Also, Bi denotes the reference frame
rigidly attached to the center of gravity of the ith-vehicle.
The orthonormal basis of Bi is denoted by {x̂bi , ŷbi , ẑbi},
where x̂bi is directed towards the front of the vehicle,
ŷbi is taken towards the right side, and ẑbi is directed
downwards.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 System Model

We consider a team of n thrust-propelled vehicles modeled
as

ṗi = vi,

v̇i = gẑ − Ti
mi

R(Qi)
⊤ẑ,

Q̇i =
1

2
T(Qi)ωi,

Jiω̇i = Γi − S(ωi)Jiωi,

(1)

where pi and vi denote, respectively, the position and
linear-velocity of the i-th system expressed in I, the
system’s mass and gravitational acceleration are denoted
by mi and g, respectively, the vector ẑ := (0, 0, 1)⊤,
Ji ∈ R

3×3 is the symmetric positive definite constant
inertia matrix of the i-th system with respect to Bi. The
scalar Ti and the vector Γi ∈ R

3 represent, respectively,
the magnitude of the thrust applied to the i-th system in
the direction of ẑbi , and the external torque applied to the
system expressed in Bi. The vector ωi denotes the angular
velocity of the i−th vehicle with respect to I expressed
in Bi. The orientation of each system is represented by
the four-elements vector Qi, called unit-quaternion, which
evolves in the unit three-sphere embedded in R

4; S
3 =

{Q ∈ R
4|QTQ = 1}. For any Qi := (q⊤

i , ηi)
⊤, with qi ∈

R
3, the rotation matrix related toQi, that brings I into Bi,

is given by R(Qi) ∈ SO(3) := {R|R⊤R = I3, det(R) = 1}
with R : S

3 → SO(3) and

R(Qi) = (η2i − q⊤
i qi)I3 + 2qiq

⊤
i − 2ηiS(qi),

where Im denotes the identity matrix of dimension m and
S(x) is the skew-symmetric matrix such that S(x1)x2 =
x1 × x2 for any vectors x1 ∈ R

3 and x2 ∈ R
3, with ‘×’

denoting the vector cross product. Also, T(Qi) is defined
such that T : S3 → R4×3 with

T(Q) =

(

η I3 + S(q)
−q⊤

)

, (2)

for any unit-quaternion Q := (q⊤, η)⊤.

2.2 Problem Formulation

We assume that the vehicles in the team transmit some
of their state information according the interconnection
topology described by the directed communication graph
G = (N , E ,A). The set N is the set of nodes or vertices,
describing the set of thrust-propelled vehicles in the net-
work, E ∈ N × N is the set of ordered pairs of nodes,
called edges, and A = {aij} ∈ R

n×n is the weighted
adjacency matrix. An edge (i, j) indicates that vehicle j
can receive information from vehicle i, but not necessarily
vice-versa. The weighted adjacency matrix is defined such
that aii := 0, aij > 0 if (j, i) ∈ E , and aij = 0 if (j, i) /∈ E .
A directed path is a sequence of edges in a directed graph
of the form (i1, i2), (i2, i3), ..., where il ∈ N . A directed
graph is said to contain a directed spanning tree if there
exists at least one node having a directed path to all the
other nodes. The Laplacian matrix L := [lij ] ∈ R

n×n of
the directed graph G is defined such that: lii =

∑n

j=1 aij ,
and lij = −aij for i 6= j.

In addition, the communication between the vehicles in
the team is delayed by τij(t), for each (j, i) ∈ E , which
satisfy the following assumption.

Assumption 1. For each (j, i) ∈ E , the communication
delay τij : R+ → R+ can be decomposed into the sum of
two terms,

τij(t) = τsij(t) + τrij(t), (3)

where the components τsij(·) and τrij(·) have the following
properties:

i) There exists a function τ∗ : R+ → R+ such that
τ∗(t2) − τ∗(t1) ≤ t2 − t1 for all t1, t2 ∈ R+, and
∣

∣τsij(t)
∣

∣ ≤ τ∗(t) holds for all t ≥ 0.
ii) The function τsij(t) satisfies: t − τsij(t) → +∞ as

t→ +∞.
iii) There exists Υij ≥ 0 such that the inequality:

∣

∣τsij(t2)− τsij(t1)
∣

∣ ≤ Υij · |t2 − t1| holds for almost all
t2, t1 ∈ R+, with t2 ≥ t1.

iv) There exists ∆τ
ij ≥ 0 such that:

∣

∣τrij(t)
∣

∣ ≤ ∆τ
ij holds

for almost all t ≥ 0.

Assumption 1 implies that the communication delays
contain smooth and irregular components, indicated by
subscripts s and r, respectively. The smooth component,
τsij(·), is assumed to be upper bounded by a possibly time-
varying unbounded function, given by τ∗(·), that does not
grow faster than the time itself. Also, the time-derivative
of this component dτsij(t)/dt is well-defined for almost all
t ≥ 0 and is bounded by Υij where defined. The irregular
component, τrij(·), is only assumed to be bounded. It is
clear that Assumption 1 does not impose an upper bound
on the communication delays τij(t), and only Υij and ∆τ

ij

are assumed to be known, which can be easily satisfied.

Our objective in this work is to design the thrust and
torque inputs in (1) such that all vehicles converge to a
prescribed stationary geometric formation in the presence
of time-varying communication delays. Formally, we aim
to guarantee that

vi(t) → 0 and (pi(t)− pj(t)) → dij , (4)

as t → +∞ for i, j ∈ N , where dij ∈ R
3, satisfying

dij = −dji, defines the desired formation pattern.
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2.3 Preliminary results

Consider an affine nonlinear system of the form

ẋ = f(x) + g1(x)u1 + . . .+ gp(x)up,
y1 = h1(x),
...
...
...

yq = hq(x),

(5)

where x ∈ R
N , ui ∈ R

m̃i for i ∈ Np := {1, . . . , p},
yj ∈ R

m̄j for j ∈ Nq := {1, . . . , q}, and f(·), gi(·), for
i ∈ Np, and hj(·), for j ∈ Nq, are locally Lipschitz
functions of the corresponding dimensions, f(0) = 0,
h(0) = 0. Suppose that for any initial condition x(t0) and
any inputs u1(t), . . . , up(t) that are uniformly essentially
bounded on [t0, t1), the corresponding solution x(t) is well
defined for all t ∈ [t0, t1].

The convergence analysis in this work is based on the
following small gain theorem.

Theorem 1. Consider a system of the form (5). Suppose
the system is input-to-output stable 1 (IOS) with linear
IOS gains γ0ij ≥ 0. Suppose also that each input uj(·),
j ∈ Np, is a Lebesgue measurable function satisfying

uj(t) ≡ 0 for t < 0, (6)

and

|uj(t)| ≤
∑

i∈Nq

µji · sup
s∈[t−ϑji(t),t]

|yi(s)|+ |δj(t)|, (7)

for almost all t ≥ 0, where µji ≥ 0, all ϑji(t) satisfy
Assumption 1, and δj(t) is a uniformly essentially bounded
signal that satisfy |δj(t)| → 0 at t → +∞. Let Γ := Γ0 ·
M ∈ R

q×q, where Γ0 :=
{

γ0ij
}

, M := {µji}, i ∈ Nq,

j ∈ Np. If ρ (Γ) < 1, where ρ (Γ) is the spectral radius
of the matrix Γ, then the trajectories of the system (5)
with input-output constraints (6)-(7) are well defined for
all t ≥ 0 and such that all the outputs yi(t), i ∈ Nq, and
all the inputs uj(·), j ∈ Np, are uniformly bounded and
satisfy |yi(t)| → 0, |uj(t)| → 0 as t→ +∞. �

Theorem 1 is a special case of a more general result given
in Polushin et al. [2013], and the proof follows similar lines
as the proof of Theorem 1 in Abdessameud et al. [2014],
and is omitted due to space limitations.

3. CONTROL DESIGN

Consider the linear acceleration of each vehicle in (1),
which can be rewritten as

v̇i = Fi −
Ti
mi

(

R(Qi)
⊤ −R(Qdi

)⊤
)

ẑ, (8)

with

Fi := gẑ − Ti
mi

R(Qdi
)⊤ẑ, (9)

where the variable Fi ∈ R
3 is an intermediary control

input to be designed later, and Qdi
:= (q⊤

di
, ηdi

)⊤ is
the unit quaternion representing a desired orientation of
the ith vehicle. Note that, for a given Fi, one possible
solution for the necessary thrust and desired attitude can
be obtained from (9) as

Ti = mi|gẑ − Fi|, (10)

1 The definitions of input-to-state stability (ISS) and input-to-
output stability (IOS) of multiple inputs multiple outputs systems
can be found in [Sontag, 2008].

ηdi
=

√

Ti +mi(g − ẑ⊤Fi)

2Ti
, qdi

=
mi

2Tiηdi

S(Fi)ẑ, (11)

from which one can verify that, under the sufficient con-
dition

ẑ⊤Fi < g, (12)
the thrust input (10) is strictly positive and the desired at-
titude (11) is nonsingular (See Lemma 5.1 in Abdessameud
and Tayebi [2013] for more details).

We consider the following intermediary control input

Fi = −Kp
i χ(θi)−Kd

i χ(θ̇i), θ̈i = Fi − φi, (13)

where Kp
i and Kd

i are diagonal positive definite gain
matrices and the function χ(·) is defined as

χ(̺) = (σ(x), σ(y), σ(z))⊤ ∈ R
3, (14)

for any vector ̺ = (x, y, z)⊤ ∈ R
3, and σ : R → R is

a strictly increasing continuously differentiable function
satisfying the following properties: i) σ(0) = 0 and

xσ(x) > 0 for x 6= 0, ii) |σ(x)| ≤ σb, for σb > 0, iii) dσ(x)
dx

is bounded.
Also, the vector φi ∈ R

3 is given as

φi = −kri (ξ̇i − ζi) + ζ̇i, (15)

with

ξi := pi − θi, (16)

ζ̇i = −Liζi − λi(κiξi −
n
∑

j=1

aijdij −ψi), (17)

ψ̇i = −ψi +
n
∑

j=1

aijξj(t− τij(t)), (18)

where kri , Li and λi are strictly positive scalar gains,
aij ≥ 0 is the (i, j)th element of the adjacency matrix
of the directed graph G, and κi :=

∑n

j=1 aij .

It is straightforward to verify from (13) and (14) that
|ẑ⊤Fi| ≤ σb(K

p
i + Kd

i )ẑ, which indicates that condition
(12) can be satisfied if

σb(K
p
i +Kd

i )ẑ < g. (19)

This guarantees a nonsingular solution for the desired
attitude for the i-th vehicle that can be used as a reference
input for the rotational dynamics to achieve the desired
motion of the vehicle. In addition, the input thrust (10)
satisfies

0 < Ti ≤ mi(g + σb
√
3(kpi,max + kdi,max)), (20)

for i ∈ N , where kpi,max and kdi,max are the maximum

eigenvalues of Kp
i and Kd

i , respectively.

To design the input torque for the rotational dynamics,
let Q̃i := (q̃⊤

i , η̃i)
⊤ denote the attitude tracking error,

describing the discrepancy between the vehicle’s attitude
and the extracted desired attitude, defined as: Q̃i =
(

(ηdi
qi − ηiqdi

− S(qdi
)qi)

⊤ , ηiηdi
− q⊤

i qdi

)⊤
, and sat-

isfies the following dynamics

˙̃
Qi =

1

2
T(Q̃i)ω̃i, ω̃i = ωi −R(Q̃i) ωdi

, (21)

where ω̃i is the angular velocity tracking error vector,
R(Q̃i) = R(Qi)R(Qdi

)⊤, and ωdi
is the desired an-

gular velocity for the ith vehicle, which is related to
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Qdi
by: ωdi

= 2T(Qdi
)⊤Q̇di

. Note that attitude track-

ing is achieved when Qi coincides with Qdi
, or Q̃i =

(0, 0, 0,±1)⊤. Also, since Qdi
in (11) is time-varying, the

desired angular velocity and its time derivative can be
parameterised as [Abdessameud and Tayebi, 2013]

ωdi
=Ξ(Fi)Ḟi, (22)

ω̇di
= Ξ̄(Fi, Ḟi)Ḟi + Ξ(Fi)F̈i, (23)

where the matrices Ξ(Fi) and Ξ̄(Fi, Ḟi) can be easily
derived. In addition, in view of (13), we have

Ḟi =−Kp
i h(θi)θ̇i −Kd

i h(θ̇i)θ̈i, (24)

F̈i =−Kp
i ḣ(θi)θ̇i −

(

Kp
i h(θi) +Kd

i ḣ(θ̇i)
)

θ̈i

−Kd
i h(θ̇i)(Ḟi − φ̇i), (25)

where h(̺) := diag
(

∂σ(x)
∂x

,
∂σ(y)
∂y

,
∂σ(z)
∂z

)

, for ̺ = (x, y, z)⊤ ∈
R

3, and ḣ(·) is the time-derivative of h(·).
We propose the following individual torque input

Γi =Hi + Jiβ̇i − kqi q̃i − kΩi (ω̃i − βi), (26)

βi =− kβi q̃i +
Ti

kqimi

Π⊤
i (ξ̇i − ζi), (27)

where Hi = S(ωi)Jiωi−JiS(ω̃i)R(Q̃i)ωdi
+JiR(Q̃i)ω̇di

,

kqi , k
Ω
i and kβi are positive scalar gains, ξi and ζi are

defined in (16) and (17), respectively, q̃i is the vector

part of Q̃i, ωdi
is given in (22)-(25), and Πi satisfies

[Abdessameud and Tayebi, 2010a]
(

R(Qi)
⊤ −R(Qdi

)⊤
)

ẑ = Πiq̃i. (28)

It should be noted, from (23) and (25), that due to the
underactuation of the vehicles, the successive two time-
derivatives of the intermediary control input Fi are used
in the attitude tracking control law (26). Since the input
Fi is designed using the auxiliary variables θi, ζi and ψi,

the signals Ḟi and F̈i, with

φ̇i = −kri (φi−ζ̇i−
Ti
mi

Πiq̃i)−Liζ̇i−λi
(

κi(vi − θ̇i)− ψ̇i

)

,

can be explicitly computed using available signals, and
are well defined. This simplifies the torque input design
knowing that the received positions from neighbors can be
discontinuous due to the irregular communication delays.
Another advantage from the introduction of the auxiliary
systems (13) and (17)-(18) can be seen from the facts
that the upper bound of the input thrust Ti can be
determined a priori and condition (12) can be satisfied
with a suitable choice of the control gains independently
from the interconnection topology between the vehicles.
Furthermore, as will become clear later, the system (17)-
(18) will play an important role in achieving our objectives
under easily checkable sufficient conditions on the delays.

4. CONVERGENCE ANALYSIS

Our result is given in the following theorem.

Theorem 2. Consider the network of n thrust-propelled
vehicles described by (1), where the interconnection be-
tween the vehicles is described by the directed communi-
cation graph G and suppose Assumption 1 holds. Let the
thrust input for each vehicle be defined in (10) using the

intermediary input (13) with (15)-(18) under restriction
(19), and the torque input be given in (26)-(27). Let the
control gains for each vehicle that receives information
from at least one other vehicle, i.e., having κi 6= 0, satisfy 2

n
∑

j=1

aij
µi

(

1 + Υij + 2 ·∆τ
ij

)

< 1, (29)

where µi = −max (Re(µi,1),Re(µi,2)) and µi,1, µi,2 are
the roots of p2 + Lip + λiκi = 0. Then starting from
any initial conditions, the signals vi,

∑n

j=1 aij(pi−pj(t−
τij(t))) and ω̃i are uniformly bounded and vi(t) → 0,
∑n

j=1 aij(pi(t) − pj(t − τij(t)) − dij) → 0, q̃i(t) → 0,

and ω̃i(t) → 0, as t → +∞ for all i ∈ N . Furthermore,
if the directed communication graph contains a span-
ning tree and τ∗(t) in Assumption 1, point i), satisfies
lim sup
t→+∞

τ∗(t) < ∞, then
∑n

j=1 aij(pi − pj) is uniformly

bounded and (pi(t) − pj(t)) → dij , as t → +∞ for all
i, j ∈ N . ✷

Proof.

let us first define the error variables ri = (ξ̇i − ζi) and
Ωi = (ω̃i − βi), which, using (26)-(27), satisfy

ṙi =−kri ri −
Ti
mi

Πiq̃i, (30)

JiΩ̇i =−kqi q̃i − kΩi Ωi. (31)

We can show from (30)-(31), in view of (21) and (27),

that ri, Ωi, q̃i ∈ L2 ∩ L∞, and ṙi, βi, ˙̃qi, Ω̇i ∈ L∞.
This can be verified using the Lyapunov-like function:

V =
∑n

i=1

(

1
2r

⊤
i ri +

1
2Ω

⊤
i JiΩi + kqi Q̄

⊤
i Q̄i

)

, where Q̄i =

(q̃⊤
i , (1 − η̃i))

⊤. Then, by virtue of Barbălat Lemma, one
can conclude that ri(t) → 0, Ωi(t) → 0, q̃i(t) → 0,
βi(t) → 0 and ω̃i(t) → 0, as t→ +∞ for i ∈ N .

Next, let ξ̃i = κiξi −
∑n

j=1 aijdij − ψi, ψ̃i = ψi −
∑n

j=1 aijξj(t − τsij(t)), where τ
s
ij(t) is defined in Assump-

tion 1. The dynamic systems (17)-(18), for i ∈ N , can be
shown to be equivalent to

ζ̇i =−Liζi − λiξ̃i, (32)

˙̃
ξi = κiζi + ψ̃i + νi1 , (33)

˙̃
ψi =−ψ̃i − νi1 + νi2 , (34)

for i ∈ N , where

νi1 =

n
∑

j=1

aij
(

ri − ξj(t− τij(t)) + ξj(t− τsij(t))
)

, (35)

νi2 =

n
∑

j=1

aij

(

ri −
(

1−
dτsij(t)

dt

)

ξ̇j(t− τsij)

)

. (36)

Since the communication graph is directed and is assumed
to contain a spanning tree, there might exist at most one
system, denoted by l, that does not receive information
from any other system in the team. In this case, system
(32)-(34) reduces to

ζ̇l = −Llζl + λlψl, ψ̇l = −ψl, (37)

2 Condition (29) is not imposed on the vehicles that do not receive
information from any other vehicle in the network.
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with κl = 0, ξ̃l = −ψl = −ψ̃l, νl1 = νl2 = 0.

Now, following similar steps as in the proof of [Ab-
dessameud et al., 2014, Theorem 2], we can show that
the system (32)-(34), for i ∈ N , is ISS with respect to
its inputs νi1 and νi2 . We can also verify that the overall
system consisting of all the systems (32)-(36), for i ∈ N ,
and having n outputs, given by yi = ζi, i ∈ N , and 2n
inputs, ordered as: u2i := νi1 , u2i−1 := νi2 , for i ∈ N , is
IOS with IOS gain matrix Γ0 :=

{

γ0ij
}

∈ R
n×2n given as

follows:

γ0il =







1/µi if l = 2i− 1, i ∈ N , κi 6= 0,

2/µi if l = 2i, i ∈ N , κi 6= 0,

0 otherwise.

On the other hand, using Assumption 1 and ξ̇i = (ri+ζi),
the following estimates of the above defined inputs |u2i−1|
and |u2i|, i ∈ N , can be derived as

|u2i(t)| ≤
n
∑

j=1

aij∆
τ
ij ·
(

sup
σ∈[t1,t2]

|yj(σ)|
)

+ δ2i(t),

|u2i−1(t)| ≤
n
∑

j=1

aij (1 + Υij)
∣

∣yj
(

t− τsij(t)
)
∣

∣ + δ2i−1(t),

where, we used the notation t1 := (t−max{τij(t), τsij(t)}),
t2 := (t−min{τij(t), τsij(t)}) and

δ2i = κi|ri|+
n
∑

j=1

aij∆
τ
ij ·
(

sup
σ∈[t1,t2]

|ri(σ)|
)

,

δ2i−1 = κi|ri|+
n
∑

j=1

aij (1 + Υij)
∣

∣ri
(

t− τsij(t)
)
∣

∣ .

(38)

Consequently, one can conclude that the input vectors uj ,
j ∈ {1, . . . , 2n}, satisfy the conditions of Theorem 1 with
the elements of the interconnection matrix M := {µlj} ∈
R

2n×n are obtained as

µlj =

{

aij (1 + Υij) if l = 2i− 1, j ∈ N , i ∈ N ,
aij ·∆τ

ij if l = 2i, j ∈ N , i ∈ N ,

and where δj(t), j ∈ {1, . . . , 2n}, given in (38), are
uniformly bounded and satisfy δj(t) → 0, as t → +∞,
since Assumption 1 implies that t1 → +∞ and t2 → +∞
as t → +∞. As a result, the elements of the gain matrix
Γ := Γ0 · M = {γ̄ij} ∈ R

n×n in Theorem 1 are obtained
as follows

γ̄ij :=
n
∑

l=1

γ0il·µlj =

{ aij
µi

(

1 + Υij + 2 ·∆τ
ij

)

, if κi 6= 0,

0 otherwise.

Note that the diagonal elements of Γ are all zeros, i.e.,
γ̄ii = 0 for all i ∈ N , and one can apply Geršgorin disc
theorem [Horn and Johnson, 1985] to verify that ρ (Γ) < 1
if
∑n

j=1 γ̄ij < 1 for all i ∈ N , which is satisfied by (29).
As a result, the conditions of Theorem 1 are verified, and
one can conclude that ζi, νi1 and νi2 , for i ∈ N , are
uniformly bounded and ζi(t) → 0, νi1(t) → 0, νi2(t) → 0
as t → +∞, for i ∈ N . This, with the ISS property of
(32)-(34), imply that ξ̃i, ψ̃i are uniformly bounded and

ξ̃i(t) → 0, ψ̃i(t) → 0, ξ̇i(t) → 0 as t → +∞, for i ∈ N .
As a result, we conclude that

∑n
j=1 aij(ξi − ξj(t− τij(t)))

is uniformly bounded and
∑n

j=1 aij(ξi − ξj(t − τij(t)) −
dij) → 0 as t→ +∞, for i ∈ N .

Now, one can see that the dynamics of the auxiliary
vector θi in (13) can be rewritten, in view of (13), as:

θ̈i = −Kp
i χ(θi)−Kd

i χ(θ̇i)−φi, where φi is given in (15),
which, in view of the above results, is uniformly bounded
and satisfies φi(t) → 0, for i ∈ N , as t→ +∞. Therefore,
the result in [Abdessameud and Tayebi, 2013, Lemma 2.9],

leads to the conclusion that θi, θ̇i are uniformly bounded
and θi(t) → 0, θ̇i(t) → 0, as t→ +∞ for i ∈ N . Therefore,
one can conclude, that vi,

∑n

j=1 aij(pi−pj(t−τij(t))) are
uniformly bounded and vi(t) → 0 and

∑n

j=1 aij(pi−pj(t−
τij(t))− dij) → 0, as t→ +∞ for i ∈ N .

Furthermore, since vi(t) → 0, as t → +∞, we can verify,
using parts i) and iv) of Assumption 1 and lim sup

t→+∞

τ∗(t) <

∞, that

(pj − pj(t− τij(t))) :=

∫ t

t−τij(t)

vj(s)ds→ 0,

as t→ +∞. Consequently, we conclude that
∑n

j=1 aij(pi−
pj) is uniformly bounded and

∑n

j=1 aij(pi(t) − pj(t) −
dij) → 0 as t→ +∞, for i ∈ N , which is equivalent to

(L⊗ I3)P̄(t) → 0,

as t → +∞, where L is the Laplacian matrix of the
communication graph G, ⊗ is the Kronecker product,
P̄ ∈ R

3n is the vector containing all p̄i := (pi − di),
for i ∈ N , and the constant vector di can be seen as
the desired position of the i-th vehicle with respect to the
center of the formation, and satisfies dij = (di−dj). With
the condition that the communication graph contains a
spanning tree, we know that (L ⊗ Im)P̄ = 0 implies that
p̄1 = . . . = p̄n [Ren and Beard, 2005]. As a result, (pi(t)−
pj(t)) → dij as t→ +∞ for all i, j ∈ N . ✷

Remark 1. Note that condition (29) is met if the control
gains satisfy µi

κi
> maxj∈Ni

(1+Υij+2∆τ
ij), with Ni = {j :

(j, i) ∈ E}, from which it is clear that the control gains can
be easily selected to achieve our control objectives.

5. SIMULATION RESULTS

In this section, we provide simulation results to demon-
strate the effectiveness of the proposed control schemes.
We consider a group of four VTOL aircraft modeled as in
(1), with mi = 3 kg, Ji =diag(0.13, 0.13, 0.04) kg.m2, for
i ∈ N := {1, . . . , 4}. The control objective is to guarantee
that the four aircraft maintain a pre-defined formation
pattern, described by a square parallel to the universal
x − y plane. The information flow between aircraft is
represented by the directed graph G = (N , E ,A) that con-
tains a spanning tree with: E = {(1, 2), (1, 4), (2, 3), (3, 1)},
and the adjacency matrix A = {aij}, with aij = 0.5 for
(i, j) ∈ E and zero otherwise. The function σ(·) = tanh(·),
with σb = 1, is considered in (14).

We implement the control law in Theorem 2, with
the control gains Kp

i = diag(kpi ), Kd
i = diag(kdi ),

(kpi , k
d
i , k

r
i , λi, k

β
i , k

q
i , k

Ω
i ) = (2, 6, 1, 1, 50, 20, 20), for i ∈ N ,

Li =
√
λiκi, where κi are obtained from the adjacency

matrix A. The time-varying communication delays are
taken as: τij(t) = τ̃ij (1− cos(0.25t+ 1) + 0.25r(t)) sec,
with τ̃1i = 0.1, τ̃2i = 0.15, τ̃3i = τ̃4i = 0.2, for i ∈ N , and
r(t) ∈ [0, 1] is a uniform random function. Note that the
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selected control gains satisfy condition (29). The obtained
results are given in Fig. 1 and Fig. 2, which illustrate the
aircraft linear velocities vi and relative positions p1i =
(p1 − pi + d1i), for i = 2, 3, 4. It can be seen from these
figures that all aircraft stabilize to the desired formation in
the presence of unknown irregular communication delays.
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Fig. 1. Linear velocity vectors.
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Fig. 2. Relative positions.

6. CONCLUDING REMARKS

We proposed a coordinated control scheme for multiple
thrust-propelled vehicles in the presence of time-varying
communication delays. To deal with the underactuation
of the systems, we considered a design method presented
in Abdessameud and Tayebi [2013] that enables an almost
separate design for the translational and rotational dy-
namics of the systems. Based on the small-gain frame-
work, we showed that the proposed distributed control
scheme solves the formation control problem under the
weak assumption that the directed communication graph
contains a spanning tree. In addition, the control objective
is achieved under sufficient conditions on the communica-
tion process – conditions that can be easily satisfied with
an appropriate choice of the control gains.
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