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Abstract:
GPS data are available from a large amount of sources. Individuals and vehicles carry their
receivers and are often willing to share their locations. These GPS traces are inexpensive
compared to dedicated collection techniques. Therefore, using GPS traces in map extraction
has attracted a number of researchers in the past decade. In the case of mobile machines,
dedicated collection of GPS data is usually even impossible, so one has to confine to the data
collected by the machine itself. This paper introduces an algorithm for extracting a map-like
graph from mobile machine GPS traces with large uncertainties. The result is a topological map
with intersections and route segments. It can be used for operator support instead of displaying
the raw GPS traces, or information interchange between operators. In the future, even automatic
route optimization is possible with the help of a graph like this.
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1. INTRODUCTION

Mobile machines become more and more common in many
applications throughout the Earth - and even in space.
Examples of widely used mobile machines include harbour
cranes, submarines, mine vehicles, and also ordinary cars.
Somewhat more exotic applications involve autonomous
aerial vehicles and Mars rovers. Some of these machines
are unmanned, but a human operator is still needed
in a variety of machines. In some applications, such as
remotely controlled robots, the machine handles the low-
level movement autonomously while a human operator
performs localization and cognition activities (Siegwart
et al., 2011).

GPS receivers are inexpensive and are thus used almost
everywhere. Individuals carry GPS devices in their mobile
phones or as separate devices and are often willing to share
their location for free. Few vehicles lack GPS any more.
Hence, a flood of geographical information is available from
people and machines. This information can be used for
creating maps. Collecting mapping data with dedicated
personnel and vehicles is expensive – yet accurate – but
using freely available GPS traces provides another effective
way to refine maps.

In the past decade, a number of studies have been pub-
lished that aim at automatically generating maps. Mobile
robot research has yielded approaches using mainly other
than GPS data, see (Bonin-Font et al., 2008) for a sur-
vey. GPS data then dominate in road traffic and other
environments with good satellite coverage. The problem
can be viewed as image processing, where the data are
first converted to a bitmap (Shi et al., 2009; Fathi and

Krumm, 2010). Another approach is to model the traces
geometrically (Castro et al., 2006). Many papers, including
this one, use some form of clustering to reduce the amount
of data (Kasemsuppakorn and Karimi, 2013; Worrall and
Nebot, 2007; Schroedl et al., 2004). Usually the mapping
procedure results in a topological map with road crossings
and sections between them.

In this paper, the mobile machine is a forest machine.
In the cut-to-length method prevailing in European forest
harvesting, two types of machines are used. First, a har-
vester fells trees, cuts them to desired length, and leaves
the logs in small piles along its path. Then, a forwarder
collects the logs and transfers them to a loading site along
a road. The harvester usually creates its own paths, and
the forwarder can only use paths created by the harvester.
The operation of both machines is an extremely compli-
cated optimization problem where several targets and con-
straints should be met. Automation helps in some low-level
tasks but in general the productivity of harvesting depends
highly on the operator skills. Different wood species and
timber products, varying and mostly unknown terrain, and
mechanical characteristics of the machine are some of the
factors. The landowner interest and nature preservation
aspects require that no excessive paths be created in the
forest, which is also important from the mapping point of
view. (Palmroth et al., 2009; Tervo et al., 2010)

Both harvester and forwarder have GPS receivers and
store their locations at regular intervals. The accuracy of
the data depends on trees, weather, and terrain and is
often rather weak. The data collection is somewhat similar
to collection from roads and streets by individuals: the
data can be considered free, since it comes as a byproduct
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Fig. 1. A forwarder. (John Deere)

of other activities. Yet in the forest, existing maps are
seldom useful because they do not contain the paths
created by the harvester. Also, using a dedicated vehicle
for mapping a forest is not possible.

This paper presents an algorithm to extract a map from
the unclear and uncertain GPS traces of forest machines.
The result is a graph-like structure that can be used for
operator support and information interchange between
operators.

Section 2 of this paper introduces the GPS data, which
makes it easier to understand the rest of the study. Section
3 gives a detailed description of the algorithm itself.
Section 4 visualizes results and discusses the meaning of
the only parameter of the algorithm. Finally, Section 5
concludes the paper and takes a look at the possibilities
to use the algorithm.

2. GPS DATA

The GPS traces were obtained from John Deere forwarders
(Figure 1) as part of a large amount of other measurement
data. Figure 3 shows a typical trace: the forwarder has
moved along some roughly parallel paths along which the
harvester has left the logs.

A location point with latitude, longitude, and time stamp
was stored whenever the forwarder moved 10 metres or
stood still for 30 seconds. As the GPS location suffers
from rather large uncertainties, particularly the standing
or slowly moving machine makes the trace rather messy
(see Figure 3a).

All figures of this paper are plotted in metres instead of
coordinates. This is done both to enhance readability and
to maintain confidentiality. Each figure covers one working
day. Splitting the data daily is not a necessary choice; it
would also be possible to analyze traces of a shorter or
longer period at once.

3. METHODS

The route extraction algorithm consists of clustering and
connecting the clusters. In this section, the algorithm is
described in detail. Figure 2 illustrates some of the phases.

Fig. 2. Illustration of the mobile machine route extraction
algorithm. a) Original GPS traces. b) Clustered GPS
points and cluster centers. c) The final graph of
extracted routes with line widths proportional to path
utilization rate.

As a data-driven counterpart, also Figure 3 is referred to
in the description.

The data come in as latitudes and longitudes, thus the first
step is to convert coordinates to metres. As the felling area
is only a few square kilometres at most, the question of
using great circles instead of Euclidean distances is mainly
of academic interest.

The clustering algorithm used in the next step needs initial
clusters. The initialization is done with a simple sequen-
tial clustering algorithm (Theodoridis and Koutroumbas,
2008):
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Fig. 3. Data-driven illustration of the mobile machine
route extraction algorithm, cf. Figure 2. a) Original
GPS traces. b) Original clusters obtained from se-
quential clustering (red crosses) and K-means tuned
clusters (red circles). c) The final graph of extracted
routes (red lines) with line widths proportional to
path utilization rate.

(1) Follow the trace and add each point to the nearest
cluster.

(2) If the distance to the nearest cluster is more than c,
designate this point as a new cluster.

The initialization presented above results in a set of cluster
centers on the trace. The clusters can and must be tuned
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Fig. 4. Route extraction results from a forwarder.

with another clustering algorithm. K-means is adopted
here mainly because of its simplicity. K-means has also the
feature that each data point belongs to exactly one cluster,
which is necessary for this application. The interested
reader can find details of K-means clustering from e.g. (Xu
and Wunsch II, 2009).

Figure 3b shows an example of some initial clusters ob-
tained from sequential clustering as well as clusters tuned
with K-means. Only cluster centers are shown, though
each and every data point belongs to the closest cluster
and to exactly one cluster. The initial cluster centers lie on
the trace that was created first among the nearby traces,
while the tuned clusters represent better the average of
nearby traces and are not located exactly on any trace.

Now each GPS point belongs to a cluster, and cluster
centers represent the clusters. Next, the clusters should
be connected by lines so that the result be a graph of
cluster centers and lines connecting them. A line is drawn
from cluster i to cluster j if there exists a trace from any
point of cluster i to any point of cluster j. If more than
one connection exist between clusters i and j, the line can
be drawn thicker (see Figures 2c and 3c).

There is only one parameter in the algorithm: The distance
c decides whether a data point should form a cluster of its
own in the initialization phase. The parameter ensures that
after the initialization no two clusters exist closer than c
units apart. In the tuning phase, the clusters move slightly
but still c can be considered a rough estimate of minimum
cluster distance.

4. RESULTS

Some successful results of the extraction algorithm were
already presented in Figure 3c. The red routes form a
network that is much more readable than the original
traces. In the following, some more results from other data
files are presented.

Some typical results are presented in Figure 4. The ma-
chine has moved widely in two fairly separate areas. The
algorithm successfully describes the main paths of both
areas with thick lines. Between the areas, there is a transfer
path that the machine has used only twice, probably once
in each direction. The algorithm lumps these two traces
together and shows one thin line instead.

Next, let us illustrate how deviations in GPS data may
lead to faulty connections between clusters, see Figure 5.
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Fig. 5. How deviation in GPS data leads to a faulty
connection. Original GPS data in blue, extracted
routes in red. Note that the illustration is a simplified
version and does not fully correspond to true data and
clustering.

Because of GPS uncertainty, data point x is slightly closer
to cluster A than cluster B. Therefore, it gets clustered
to cluster A although it should belong to the route going
through cluster B. Now there is a trace from point x in
cluster A to point y in cluster B, and the algorithm draws
an erroneous connection between A and B.

The results so far were generated with c = 20 (metres).
Figure 6 explains the effect of c with three different values.
The underlying traces in the figure form a back-and-forth
pattern that the forwarder has used when collecting a
given area. There are no connections between parallel
paths, so the extraction algorithm should not add such
connections. Yet, the apparently erroneous deviations in
the original GPS traces makes it almost impossible not to
make errors in the clustering.

In the top plot of Figure 6, c = 15. This means that
cluster centers are relatively close to each other, the
number of clusters is larger and the size of clusters smaller.
Accordingly, the algorithm can follow smaller turns in the
original traces. The smaller clusters result in more accurate
connections, thus there are only a few faulty connections
(one of them is marked in the figure with a black ellipse).
On the other hand, attempting to create too fine-grained
connections causes too many red lines where only one
would suffice. The readability of the figure suffers from
the small c value in the densest region of traces.

Choosing c = 20 causes more errors in connecting parallel
paths but then again makes the graph simpler and more
readable. The best choice of the parameter c might be
somewhere between 15 and 20. Moreover, a less dense
pattern of traces would most obviously produce different
results.

The value c = 30 in the lowest plot of Figure 6 is more or
less a disaster. The clusters are too sparse and connections
between them do not follow the original traces. The
northernmost trace does not get a red line at all because
its points are less than 30 metres from the neighbouring
trace.
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Fig. 6. Comparison of extraction results with different
values of minimum cluster distance c.

5. CONCLUSION

This paper presented a method of converting uncertain
GPS data of a mobile machine into a map-like graph. The
resulting graph is extremely useful for the human operator.
When the graph is displayed on the screen of the machine,
the operator can easily see the shape of the area and the
location of the main paths. Furthermore, the graph can
serve as information interchange between operators. Often
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the same machine has several operators, and with the help
of the graph the evening shift operator gets an overview
of what has been done in the morning shift. In the case
of forest machines, the forwarder operator sees where the
harvester has been moving.

One of the premises of the study was that no data other
than GPS traces are available. The true route of the ma-
chine is not known and cannot thus be compared with the
results. Yet using additional information would obviously
improve the results and is a potential topic of further
research. A useful map of the terrain is typically not avail-
able but, for example, sensors could measure slopes that
hinder the moving machine. Information on GPS accuracy
combined with the movement would incorporate a means
of treating uncertainties of the map.

Furthermore, the algorithm could be used as a part of
route optimization. Route optimization of a forest machine
is an extremely complicated problem. The logs should be
cut and delivered out of the forest with least possible
costs. Costs are induced by fuel and time consumption.
Moreover, logs should be collected in an appropriate order
that takes into account the variety of timber products.
Movement of the machine is affected by several features
of the terrain, either known or unknown. The problem
remains largely unsolved, that is why operator skills are
a key resource in harvesting. The main function of data
analysis is to provide the operator assistance and support
in decision making.

The route extraction presented in this paper could be a
part of route optimization of a forwarder. As the forwarder
can only use tracks created by the harvester, the route map
extracted from harvester GPS data would serve as a basis
for optimization.
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Sánchez, J.A. (2006). Geometric modelling of high-
ways using global positioning system (GPS) data and
spline approximation. Transportation Research Part C:
Emerging Technologies, 14(4), 233–243.

Fathi, A. and Krumm, J. (2010). Detecting road intersec-
tions from GPS traces. In S.I. Fabrikant, T. Reichen-
bacher, M. Kreveld, and C. Schlieder (eds.), Geographic
Information Science. 6th International Conference, GI-
Science 2010, Zurich, Switzerland. Proceedings, Lecture
Notes in Computer Science, 56–69. Springer-Verlag.

John Deere (2013). John Deere 1010E -kuormatraktori.
http://www.deere.fi/wps/dcom/fi_FI/products/
equipment/forwarders/1010e/1010e.page. Retrieved
November 11, 2013.

Kasemsuppakorn, P. and Karimi, H.A. (2013). A pedes-
trian network construction algorithm based on multiple
GPS traces. Transportation Research Part C: Emerging
Technologies, 26, 285–300.

Palmroth, L., Tervo, K., and Putkonen, A. (2009). In-
telligent coaching of mobile working machine operators.
In Intelligent Engineering Systems, 2009. INES 2009.
International Conference on, 149–154.

Schroedl, S., Wagstaff, K., Rogers, S., Langley, P., and
Wilson, C. (2004). Mining GPS traces for map refine-
ment. Data Mining and Knowledge Discovery, 9(1), 59–
87.

Shi, W., Shen, S., and Liu, Y. (2009). Automatic genera-
tion of road network map from massive GPS vehicle tra-
jectories. In Intelligent Transportation Systems, 2009.
ITSC ’09. 12th International IEEE Conference on, 48–
53.

Siegwart, R., Nourbakhsh, I.R., and Scaramuzza, D.
(2011). Autonomous Mobile Robots. The MIT Press,
2nd edition.

Tervo, K., Palmroth, L., and Koivo, H. (2010). Skill
evaluation of human operators in partly automated
mobile working machines. Automation Science and
Engineering, IEEE Transactions on, 7(1), 133–142.

Theodoridis, S. and Koutroumbas, K. (2008). Pattern
Recognition. Academic Press, 4th edition.

Worrall, S. and Nebot, E. (2007). Automated process
for generating digitised maps through GPS data com-
pression. In Australasian Conference on Robotics and
Automation.

Xu, R. and Wunsch II, D. (2009). Clustering. Wiley-IEEE
Press.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6354


