
Robust Nonlinear Model Predictive Control
with Constraint Satisfaction:
A Relaxation-based Approach

Stefan Streif ∗ Markus Kögel ∗ Tobias Bäthge ∗,∗∗,1
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Abstract: A nonlinear model predictive control scheme guaranteeing robust constraint satis-
faction is presented. The scheme is applicable to polynomial or rational systems and guarantees
that state, terminal, and output constraints are robustly satisfied despite uncertain and bounded
disturbances, parameters, and state measurements or estimates. In addition, for a suitably
chosen terminal set, feasibility of the underlying optimization problem at a time instance
guarantees that the constraints are robustly satisfied for all future time instances. The proposed
scheme utilizes a semi-infinite optimization problem reformulated as a bilevel optimization
problem: The outer program determines an input minimizing a performance index for a nominal
nonlinear system, while several inner programs certify robust constraint satisfaction. We use
convex relaxations to deal with the nonlinear dynamics in the inner programs efficiently. A
simulation example is presented to demonstrate the approach.
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1. INTRODUCTION

An important question about model predictive control
(MPC) is its robustness to model uncertainty and noise,
see e.g. (Bemporad and Morari, 1999). Of particular inter-
est are robust stability, robust performance, and robust
constraint satisfaction. Another issue is that recursive
feasibility can be lost, i.e. the repeated solvability of the
problem, cf. e.g. (Löfberg, 2012).

The problem of robustness in MPC has been considered
extensively and approaches are spanning from robust op-
timization (e.g. (Kerrigan and Mayne, 2002; Houska and
Diehl, 2012)), worst-case or minimax MPC (e.g. (Campo
and Morari, 1987; Löfberg, 2003a,b)), to stochastic (e.g.
(Mesbah et al., 2014; Cannon et al., 2011b) and references
within) and scenario-based approaches (e.g. (Calafiore and
Fagiano, 2013; Lucia and Engell, 2013)). A prominent
approach is tube-MPC, used e.g. by Langson et al. (2004)
and Raković et al. (2010, 2012) for linear systems, by
Mayne and Kerrigan (2007) and Cannon et al. (2011a)
for nonlinear systems, and by Cannon et al. (2011b) for
systems subject to stochasticity. In tube-MPC, the bundle
of perturbed trajectories is bounded by a tube around a
nominal trajectory. Robustness can be achieved by enforc-
ing the cross sections of the tubes to be robust, positively
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invariant. Other approaches to robust MPC are based on
game theory (Chen et al., 1997, 2007), LMIs (Kothare
et al., 1996; Böhm et al., 2010) and reachable sets. Robust
MPC of constrained discrete-time nonlinear systems based
on the concept of reachable sets has for example been
investigated by Bravo et al. (2006) using zonotopes and by
Limon et al. (2005) using interval arithmetics. Robustness
of MPC was also analyzed by e.g. Limon et al. (2009),
Findeisen et al. (2011) and Grimm et al. (2004).

This paper presents a nonlinear MPC scheme for robust
constraint satisfaction of systems with polynomial or ra-
tional dynamics subject to bounded uncertainties and dis-
turbances. In particular, robust satisfaction of state and
output constraints is guaranteed. The robust nonlinear
MPC problem is formulated, similar to tube-MPC, by
considering a nominal trajectory for performance and a
bundle of trajectories for all possible uncertainty realiza-
tions for robust constraint satisfaction (see Sec. 2). The
presented formulation results in an optimization problem
with a bilevel structure. In the outer problem, a nominal
model is used to determine an input sequence minimizing
a performance index. To guarantee robust constraint satis-
faction for an input sequence, a nonlinear model is used in
the inner programs to predict the uncertainty propagation
and to provide certificates that constraints are not violated
(see Sec. 3). For the certificates, the nonlinear dynamics in
the inner programs are relaxed. We propose to use a linear
relaxation with tight bounds on bilinear and higher order
monomials appearing in the system dynamics to provide a
tight yet solvable relaxation. In Sec. 5, we analyze recursive
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feasibility and the approach is illustrated for an example in
Sec. 6. This work builds on a set-based analysis and fault
diagnosis framework for nonlinear systems (Streif et al.,
2013b; Paulson et al., 2014).

2. PROBLEM FORMULATION

Consider the following nonlinear, discrete-time system

xi+1 = f(xi, ui, vi, p)
yi = h(xi, ui, vi, p),

(1)

where i denotes the time index. The time-invariant pa-
rameters are denoted by p ∈ Rnp . xi ∈ Rnx , ui ∈ Rnu ,
vi ∈ Rnv , and yi ∈ Rny denote the states, inputs, time-
variant disturbances, and outputs, respectively. The func-
tions f and h are assumed to be polynomial or rational
functions.

We assume that the states, inputs, and outputs need to be
restricted to convex, compact sets:

ui ∈ U , yi ∈ Y, xi ∈ X . (2)

The system dynamics (1) are subject to the following
uncertainties: The time-invariant parameters p and time-
variant disturbances vi are assumed to take values from
the convex and compact sets P and V, respectively, and
nominal values pn ∈ P, vn ∈ V are available. Additionally,
we allow imprecise measurements or estimates of the state
xi in form of a nominal estimate x̂i and a set Xm

i which
contains x̂i and the real state. The set Xm

i is assumed to
be convex and compact. Note that this formulation also
allows considering exact state measurements by choosing
Xm
i = {x̂i}.

We propose to control the constrained system (1), (2)
using robust nonlinear model predictive control in or-
der to robustly satisfy the constraints and optimize the
nominal closed loop behavior. More precisely, starting at
time instance k and using a control horizon N , we aim
to determine for the current nominal state x̂k ∈ Xm

k an
open-loop input uk, . . . , uk+N−1 such that the behavior
of the nominal system (1) with nominal values pn and
vn is optimized and that the constraints (2) are satisfied
for all possible realizations of the system subject to the
uncertainties. This is denoted as robust constraint satis-
faction which means, in mathematical terms, that for the
given input sequence uk, . . . , uk+N−1 and for all x̃k ∈ Xm

k ,
p̃ ∈ P, ṽk ∈ V, . . . , ṽk+N−1 ∈ V, the predicted state
trajectory x̃k, . . . , x̃k+N−1 and predicted output sequence
ỹk, . . . , ỹk+N−1 satisfy the constraints (2), and that the
predicted terminal state x̃k+N satisfies a possibly present
terminal constraint in X f ⊆ X , see Sec. 5.

The resulting control task can be formally stated as:

Problem 1 (Robust nonlinear MPC): Consider
at each time k the following nonlinear optimal control
problem with quadratic performance index:

minimize
uk,...,uk+N−1

k+N∑
i=k

xTi Qixi +

k+N−1∑
i=k

uTi Riui , (3a)

subject to:

xi+1 = f(xi, ui, v
n, pn) (3b)

xk = x̂k (3c)

ui ∈ U (3d)

and ∀x̃k ∈ Xm
k , ∀p̃ ∈ P, ∀ṽi ∈ V, i = k, . . . , k +N − 1:

x̃i+1 = f(x̃i, ui, ṽi, p̃) (3e)

ỹi = h(x̃i, ui, ṽi, p̃) (3f)

x̃i ∈ X (3g)

x̃k+N ∈ X f (3h)

ỹi ∈ Y, (3i)

where Qi and Ri are symmetric, positive definite weighting
matrices. The solution of (3) provides the input uk, which
is used as feedback uk = uk for the system (1).

Note that the optimization problem (3) depends on the
nominal state estimate x̂k, set estimate Xm

k , and the nom-
inal values of the disturbances and parameters, vn ∈ V
and pn ∈ P, respectively. The optimal input is determined
based on the nominal system (3b). The system (3e)–(3i)
is used to predict (for all possible uncertainties) the state
trajectories and to certify that all constraints are satisfied.

Remark 1 (Choice of nominal system): We assume
that the nominal system is the nonlinear system (1) with
known nominal parameters and uncertainties. Instead and
as discussed in Sec. 4, one can also consider the lineariza-
tion of the nonlinear system or any other system preferred
for computational reasons.

Problem (3) is a nonlinear semi-infinite programming
problem due to the constraints (3e)–(3i) that are required
to hold for all uncertainties P, V, and Xm

k . This type
of problem is challenging to solve (see e.g. (Bard, 1998;
Löfberg, 2003b)). The solution approach in this work is
the reformulation as a bilevel program: the outer program
(corresponding to Eqs. (3b)–(3d)) takes care of the opti-
mization of the performance specification, while the inner
program (corresponding to Eqs. (3a)–(3i)) provides certifi-
cates for robust constraint satisfaction for all trajectories
realizable due to the uncertainties. To efficiently compute
the robustness certificates while not losing guarantees,
we relax the nonlinear inner program using a convex
relaxation framework that leads to a linear program (a
similar approach has been proposed in (Streif et al., 2013a;
Paulson et al., 2014)). The following sections elaborate on
these ideas.

3. ROBUST CONSTRAINT SATISFACTION OF
INPUT SEQUENCES

This section assumes input sequences uk, . . . , uk+N−1 to be
given and aims to derive certificates for the robust satisfac-
tion of the state, output, and terminal constraints despite
the uncertainties P and V. This is achieved by a reformu-
lation of the constraints for the robustness certificates as
illustrated in Fig. 1, and by using convex relaxations that
allow an efficient computation. Based on these certificates,
the main results will be presented in Sec. 4, namely the
robust nonlinear MPC scheme.

In many cases, state, output, and terminal constraints can
be expressed or approximated by convex, compact sets of
the following form:
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Fig. 1. Illustration of the approach in case of parametric uncertainties P. Parametric uncertainties (light gray area P)
in (a) are propagated through the nonlinear dynamics onto the feasible set (light gray area Z) in (b). Certain
parameter combinations may lead to satisfaction (◦) or violation (×) of the constraint set C. To check whether
constraint-violating parameters exist, first (c), the (possibly) non-convex feasible set is convexly outer-approximated
as indicated (white area with dashed outline Zrel); second (d), each facet of the constraint set C is translated by
the corresponding δj , j = 1, 2, 3, until the resulting set Cδ∗ fully contains the (outer-approximated) feasible set Zrel.
The arrows in (b) and (d) point into the increasing direction of δj , and increasing δj move the half-space into the
direction of the arrow, thus relaxing the constraint. Depending on the resulting δjs, the following can be concluded:
If all δ∗j ≤ 0, then Z ⊆ Zrel ⊆ Cδ∗ ⊆ C and no constraint-violating parameters exist.

Assumption 1 (State, output, and terminal con-
straints): State constraints X , output constraints Y, and
terminal constraints X f can be represented by a convex,
compact set constituted by nC half-spaces

C :=
{
ζxy : cTj ζxy ≤ 0, ∀j ∈ JC

}
, (4)

where ζxy :=
[
1, x̃Tk , . . . , x̃

T
k+N , ỹ

T
k , . . . , ỹ

T
k+N−1

]T ∈ Rnxy ,
cj ∈ Rnxy and JC := {1, . . . , nC}. We assume that the
constraint set C is not empty.

What has to be shown is that all state and output values
reachable by the system (for all possible uncertainties) are
contained in the constraint set C. This is addressed next.

3.1 Robust Constraint Satisfaction

For the subsequent purposes, we define the feasible (or
reachable) set Z:

Definition 1 (Feasible set): The feasible set Z of
system (1) is the set of points (in the state-output space)
that can be reached for all possible uncertainties (i.e. Xm

k ,
P, and V) and for the given inputs ui on the time interval
k, . . . , k+N−1. It is given by:

Z :=
{
x̃Tk , . . . , x̃

T
k+N , ỹ

T
k , . . . , ỹ

T
k+N−1 :

x̃i+1 = f(x̃i, ui, ṽi, p̃), ∀i=k, . . . , k+N−1,
ỹi = h(x̃i, ui, ṽi, p̃), ∀i=k, . . . , k+N−1,
∀x̃k ∈ Xm

k ,∀p̃ ∈ P,∀ṽi ∈ V, ∀i=k, . . . , k+N−1}
⊆ Rnxy−1.

Furthermore, a convex outer approximation of Z is de-
noted by Zrel, thus Z ⊆ Zrel.

In the following, the core idea is to check for each con-
straint in (4) whether it is satisfied or not. To this end,
we outer-approximate the feasible set Z by a set Cδ∗ . The
latter set is obtained by reformulating the right-hand side
of each constraint in (4) to obtain cTj ζxy ≤ δ∗j . Depending
on the values of δ∗j , one can then conclude whether Z
is fully contained in C or not. If Z ⊆ C, @p ∈ P and
@vk ∈ V, . . . ,@vk+N−1 ∈ V and @x̃k ∈ Xm

k for which the
system violates a constraint from (4). This idea is stated
in the following Lemma:

Lemma 1 (Robust constraint satisfaction): Assume
the input sequence uk, . . . , uk+N−1 and the feasible set Z
to be given. Furthermore, assume ∀j ∈ JC:

δ∗j := maximize
ζxy,δj

δj

subject to: ζxy ∈ Z
cTj ζxy = δj .

Iff δ∗j ≤ 0 ∀j ∈ JC, then Z ⊆ C.

Proof: Let us define the set

Cδ∗ :=
{
ζxy : cTj ζxy ≤ δ∗j , ∀j ∈ JC

}
.

It trivially follows from the definitions of C and Cδ∗ that
Cδ∗ ⊆ C, iff δ∗j ≤ 0, ∀j ∈ JC. Now assume z ∈ Z and

z 6∈ Cδ∗ . The latter two statements hold, iff ∃δ̂j > δ∗j with

cTj

[
1
z

]
= δ̂j. However, this is a contradiction due to the

maximization of δj. It follows that, iff δ∗j ≤ 0, ∀j ∈ JC,
Z ⊆ Cδ∗ ; consequently Z ⊆ Cδ∗ ⊆ C and Z ⊆ C. �

In general it is difficult to determine the δjs owing to the
non-convexity of the set Z. We therefore use relaxations
to derive a convex outer approximation Zrel of the set Z,
which we then use in Lemma 1. With that, it trivially
follows that Z ⊆ Zrel ⊆ C, iff δ∗j ≤ 0 ∀j ∈ JC, so that we
can guarantee robust constraint satisfaction while being
computationally tractable. The approach is illustrated in
Fig. 1.

3.2 Relaxation-based Certificate

Define the vector ζ :=
[
ζTxy, ṽ

T
k , . . . , ṽ

T
k+N−1, p̃

T,h.o.m.
]T ∈

Rnζ , which contains the constant 1 and all variables
appearing in ζxy and in Eqs. (3e)–(3f), as well as all
higher order monomials (h.o.m.) needed to represent all
polynomial equations in a quadratic form. Note that the
choice of ζ might not be uniquely determined, but we do
not elaborate on this here. Also note that the input is
assumed constant (since it is given by the outer program)
and therefore only affects the coefficients of the matrices
of the following optimization problem.
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To determine δj for the jth constraint in the set Cδ∗ (see
Lemma 1), we can write:

maximize
ζ,δj

δj

subject to: ζTÃ(u)iζ = 0, ∀i ∈ Jeq
ζTB̃(u)iζ ≤ 0, ∀i ∈ Jineq[
cTj 0

]
ζ = δj .

(5)

Here, Ã(u)i and B̃(u)i are input-dependent, symmetric
matrices accounting for the dynamics (3e), output maps
(3f), uncertain initial estimates or measurements x̃k, and

sets P and V. The matrices Ã(u)i and B̃(u)i are obtained
by a quadratic reformulation employing ζ (see (Streif
et al., 2013a) for further details). Jeq := {1, . . . , neq}
and Jineq := {1, . . . , nineq} are index sets with neq and
nineq being the number of equalities and inequalities,
respectively. The row vector of zeros 0 has length nζ−nxy.

We choose the following linear relaxation of the inner
program (details see (Streif et al., 2013a)):

maximize
Z,δj

δj

subject to: trace
(
Ã(u)iZ

)
= 0, ∀i ∈ Jeq

trace
(
B̃(u)iZ

)
≤ 0, ∀i ∈ Jineq

trace
(
D̃(u)iZ

)
≤ 0, ∀i ∈ Jrelax[

cTj 0
]
Ze= δj .

(6)

Here, Z ∈ Rnζ×nζ is a symmetric matrix, e :=

[1, 0, . . . , 0]
T ∈ Rnζ is a unit vector. The relaxation is

obtained by introducing the symmetric and rank-1 matrix
variable Z := ζζT, by rewriting all constraints in terms of
Z, and by dropping the rank-1 constraint on Z. In addition
to the constraints in (5), so-called tightening constraints

(accounted for by the matrices D̃(u)i) are introduced.
These constraints usually correspond to the McCormick
constraints on bilinear and higher order monomials in Z
and are important to reduce the relaxation error (Streif
et al., 2013a).

The resulting linear optimization problem (6) can be
solved efficiently to derive the δ∗j in Lemma 1. Thus,
Lemma 1, together with the convex relaxations, provides
certificates for robust constraint satisfaction for given
input sequences. This result will be used next to determine
an optimal input under robust feasibility, thus solving
Problem 1.

4. DETERMINING SUBOPTIMAL FEASIBLE
INPUTS

In this section, we restate the robust nonlinear MPC
problem 1 as a nonlinear bilevel programming prob-
lem. The idea is the following: The outer program deals
with Eqs. (3b)–(3d) and provides an input sequence
uk, . . . , uk+N−1 to several inner programs which provide
certificates for robust feasibility in terms of the δjs (cf.
Lemma 1). The δjs are restricted to non-positive values
by the outer problem.

To unify the notation, the outer program
can be reformulated in a similar manner as
the inner program (5) using the vector ξ :=[
1, xTk , . . . , x

T
k+N , y

T
k , . . . , y

T
k+N−1, u

T
k , . . . , u

T
k+N−1,h.o.m.

]T
.

Note that ξ in contrast to ζ contains the input variables

as decision variables, but not the parameters and
disturbances, which are treated as constant and accounted
for in the coefficients of the matrices in:

minimize
ξ

ξTJξ

subject to: ξTA(pn, vn)iξ = 0, ∀i ∈ J eq

ξTB(pn, vn)iξ ≤ 0, ∀i ∈ J ineq.

(7)

Here, A(pn, vn)i and B(pn, vn)i are symmetric matrices
accounting for the dynamics (3b), consistency with the
nominal state x̂k (3c), and input constraints (3d). J eq :=

{1, . . . , neq} and J ineq := {1, . . . , nineq} are index sets
with neq and nineq being the number of equalities and
inequalities, respectively. The matrix J in the objective
is a symmetric, positive definite matrix representing the
quadratic objective (3a) in Problem 1.

Using Lemma 1, (6), and (7), the following main result can
be stated:

Theorem 1 (Suboptimal robust nonlinear MPC):
The solution u∗k, . . . , u

∗
k+N−1 of the optimization problem

minimize
ξ

ξTJξ

subject to: ξTA(pn, vn)iξ = 0, ∀i ∈ J eq

ξTB(pn, vn)iξ ≤ 0, ∀i ∈ J ineq

δ∗j ≤ 0, ∀j ∈ JC
δ∗j := maximize

Z,δj
δj

subject to: trace
(
Ã(u)iZ

)
= 0, ∀i ∈ Jeq

trace
(
B̃(u)iZ

)
≤ 0, ∀i ∈ Jineq

trace
(
D̃(u)iZ

)
≤ 0, ∀i ∈ Jrelax[

cTj 0
]
Ze= δj



nC

j=1

(8)
provides a suboptimal, robustly feasible input sequence for
which it is guaranteed that the state X , output Y, input
U , and terminal constraints X f are satisfied ∀p ∈ P and
∀vk ∈ V, . . . ,∀vk+N−1 ∈ V.

Proof: Feasibility, in particular for input constraints, is
guaranteed due to the nonlinear solution strategy of the
outer program. Enforcing δ∗j ≤ 0 ∀j ∈ JC, as provided
by maximization of the δjs in the inner programs, forces
the optimization to choose an input that guarantees robust
feasibility by virtue of Lemma 1. �

Remark 2 (Solution of the bilevel optimization
problem): Note that the optimization problem in The-
orem 1 is of a bilevel structure with a nonlinear outer
problem and convex inner problems. Nonlinear solvers can
deal with the inner convex (linear) program by explicitly
calling e.g. CPLEX. The decision variables δj of the inner
problem provide measures of robustness and can be used
by the nonlinear program solver to find a locally optimal
solution.

Also notice that the optimization problem is in general
non-smooth, because the mapping from Z to the optimal
δjs might not be differentiable everywhere. Therefore, uti-
lizing smooth nonlinear solvers for the outer problem might
be challenging. An alternative is to use non-smooth opti-
mization techniques, cf. (Clarke, 1990; Mäkelä, 2002).
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Remark 3 (Simplifications and convexification of
the outer program): A significant amount of complexity
is due to the nonlinear constraints in the outer problem
of Theorem 1. These constraints are required in order
to account for the dependency of the performance index
on the states. The problem simplifies significantly, if only
optimality of the input is considered. Another possibility
to reduce complexity is by approximating the nonlinear dy-
namics in the outer loop by a linear one; this then yields a
linear outer problem which can be solved efficiently. Robust
feasibility with respect to the nonlinear dynamics is still
guaranteed due to the inner program. Note that the overall
bilevel optimization problem would still not be convex, even
if the outer program were convex (see e.g. (Bard, 1998)).

Another computational simplification would be a
convexification of the outer program (7). However,
nonlinear feasibility in the outer program is then no
longer guaranteed, but the inner program still guarantees
robust feasibility.

In the next section, we analyze recursive feasibility of the
suboptimal robust nonlinear MPC scheme and demon-
strate the suboptimal robust nonlinear MPC scheme in
Sec. 6 considering a simple example system.

5. RECURSIVE FEASIBILITY

In the following, we consider exact state measurements,
i.e. that x̂k = xk, Xm

k = {xk}. We show that the presented
scheme is ultimately recursively feasible, which means
that if the optimization problem (8) is feasible, then it
will be feasible again after at least N steps:

Definition 2 (Ultimate recursive feasibility): A
nonlinear MPC scheme with horizon N is called ultimately
recursively feasible, if feasibility at time instance k
guarantees feasibility after at least N time instances for
any disturbance realizations vk ∈ V, . . . , vk+N−1 ∈ V and
uncertain parameters p ∈ P.

Note that with the concept of ultimate recursive feasibil-
ity, it is not guaranteed that (8) is feasible at the time
instances k + 1, k + 2, . . . , k + N − 1, if (8) is feasible at
time instance k. In this case, since the problem (8) has no
solution, it can not provide the optimal inputs required for
the feedback. One remedy is to use the solution from time
instance k, denoted by u∗k|k, . . . , u

∗
k+N−1|k, as a backup by

utilizing uk+i = u∗k+i|k. Due to the robust feasibility, this

guarantees that all constraints will be robustly satisfied,
including the terminal constraints. In combination with
ultimate recursive feasibility, this will guarantee that fea-
sibility of (8) at time instance k guarantees feasibility for
any further time instance.

In order to guarantee ultimate recursive feasibility, we
make the following robust positive invariance assumption
on the terminal set X f.

Assumption 2 (Terminal set, terminal control law):
The terminal set X f ⊆ X and terminal control laws κi(x),
i = 0, . . . , N − 1, are such that κi(x) ∈ U . Moreover,
for any x ∈ X f, p ∈ P, and vi ∈ V, i = 0, . . . , N − 1,

x̃reli+1 ∈ f rel(x̃reli , κi(x), vi, p), ỹ
rel
i ∈ hrel(x̃reli , κi(x), vi, p),

where x̃rel0 = x, we have ỹreli ∈ Y and x̃relk+N ∈ X f.

The relaxed dynamics and output maps are denoted by
f rel and hrel, respectively. Notice that we require that the
terminal constraint is robustly positive invariant with re-
spect to the relaxation (and consequently also the nominal
system) over N steps. Determining such a terminal set
might be in general challenging. However, for a possible
candidate set, we can verify the above assumptions based
on relaxations.

With the above assumptions, we obtain:

Proposition 1 (Ultimate recursive feasibility): Let
Assumption 2 hold and assume that the state xk is exactly
available. Then, the robust nonlinear MPC scheme (8) is
ultimately recursively feasible.

Proof: We need to show that if (8) is feasible at time
instance k, then (8) is feasible at time instance k + N or
earlier. Consequently, feasibility needs to be guaranteed for
the case that (8) is feasible at k, but not necessarily at any
time instances k + 1, . . . , k +N − 1.

Since (8) is feasible, xk+N ∈ X f. Consider
the choice uk+N+i = κi(xk+N ), xk+N+i+1 =
f(xk+N+i, uk+N+i, v

n, pn), i = 0, . . . , N − 1, where
xk+N = xk+N . Moreover, since xk+N ∈ Xf , it is
guaranteed that uk+N+i ∈ U , compare Assumption
2, i.e. (3d) holds. Further, Assumption 2 guarantees
that for any parameter uncertainty, disturbances, and
for x̃relk+N+i+1 ∈ f rel(x̃k+N+i, κi(xk+N ), ṽi+k+N , p̃),
ỹrk+N+i ∈ hr(x̃k+N , κi(xk+N ), v, p) with x̃k+N = xk+N ,

we have x̃relk+N+1 ∈ X f and ỹrelk+N+1 ∈ Y. �

Remark 4 (Why only ultimate recursive
feasibility?): The above proof relies on the fact
that we can evaluate the terminal control laws κi at time
k + N at a single point xk+N , resulting in an input
sequence uk+N , . . . , uk+2N−1, since xk+N will be known
exactly.

However, at the time instance k + 1, the future state
xk+N is still uncertain. Thus, the terminal control laws
can not be evaluated at a single point (xk+N ). In order to
establish recursive feasibility, one would need to choose a
single input sequence for all possible states xk+N , which
guarantees certain conditions such as positive invariance
of the terminal region. This seems to be only possible
for special cases, e.g. asymptotic stable systems with
u = κ(x) = 0.

6. EXAMPLE

Consider the two-dimensional system

x1,k+1 = x1,k + 0.1
(
x2,k +

(
p+ (1− p)x1,k

)
uk + v1,k

)
x2,k+1 = x2,k + 0.1

(
x1,k +

(
p− 4(1− p)x2,k

)
uk + v2,k

) ,
(9)

which is a discretized version of the example in (Chen and
Allgöwer, 1998) with additional disturbances v1,k and v2,k.
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The states x1,k and x2,k are constrained to [−2, 2] and
the input uk to [−2, 2]. The uncertain parameter p and
time-varying disturbances v1,k, v2,k are assumed to be
uncertain, but bounded to [0.45, 0.55], [−0.05, 0.05], and
[−0.05, 0.05], respectively. The state estimate error is

bounded by [−0.05,−0.05]
T ≤ xk − xk ≤ [0.05, 0.05]

T
.

The proposed predictive control scheme uses pn = 0.5 and
vn1 = vn2 = 0 as nominal values. Moreover, we utilize a
control horizon of N = 10 with a time step ∆t = 0.1 and
the weighting matrices are chosen asQi = I andRi = 0.01.

Fig. 2 presents the proposed scheme for a fixed initial
state and different disturbance realizations. In detail, the
following cases were simulated

a) Nominal case: Correct parameter (p = pn), no estima-
tion error or disturbances (xk = xk, v1,k = v2,k = 0)

b) Erroneous parameter (p = 0.45), no estimation error
or disturbances (xk = xk, v1,k = v2,k = 0)

c) Erroneous parameter (p = 0.55), no estimation error
or disturbances (xk = xk, v1,k = v2,k = 0)

d) Correct parameter (p = pn), no estimation er-
ror (xk = xk), random disturbance v1,k, v2,k ∈
[−0.05, 0.05]

e) Correct parameter (p = pn), uniformly distributed

estimation error ([−0.05,−0.05]
T ≤ xk − xk ≤

[0.05, 0.05]
T

), uniformly distributed random distur-
bance v1,k, v2,k ∈ [−0.05, 0.05]

From the simulation, we observe that state and input
constraints are satisfied. Moreover, without disturbances
or state estimation errors (cases a)–c)), the scheme can
bring the system to the origin from this initial value.

7. CONCLUSION

We presented a nonlinear MPC scheme that guarantees
robust feasibility, exploiting a bilevel problem formula-
tion and relaxation. The proposed algorithm is robust by
construction and by employing relaxations. However, as
typical for robust MPC approaches, the proposed scheme
is conservative, first due to the requirement of robust fea-
sibility for all disturbance realizations, second due to the
relaxation of the nonlinear dynamics and outer approxima-
tion of the reachable sets. To reduce conservatism, a trade-
off can be made between constraints that require guaran-
teed constraint satisfaction (such as safety critical bounds)
and soft constraints. Besides that, the approach is compu-
tationally demanding, particularly due to the nonlinear
dynamics in the outer program. Speed improvements can
be achieved by simplifying or linearizing the dynamics in
the outer program (see Remark 3), by parallelization of
the nC inner programs, or by using more sophisticated
nonlinear numerical methods.

Note that only the generation of open-loop inputs is con-
sidered. To deal with the uncertainty during the predic-
tion, often a combination of closed and open-loop feed-
backs is employed, cf. (Raković et al., 2010, 2012). The
presented approach can be expanded to such a use of closed
and open-loop input combinations.
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x
1

(a) Evolution of the state x1

0 20 40 60 80 100
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x
2

(b) Evolution of the state x2
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(c) Input signal u
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(d) Phase portrait

Fig. 2. Simulation results for the example system, for the

initial state x0 = [−1.5, 1.5]
T

. Blue: case a), black:
case b), green: case c), red: case d), orange: case e).
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S.V. (2011a). Robust tubes in nonlinear model predic-
tive control. IEEE Transactions on Automatic Control,
56(8), 1942–1947.

Cannon, M., Kouvaritakis, B., Raković, S.V., and Cheng,
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Raković, S.V., Kouvaritakis, B., Findeisen, R., and Can-
non, M. (2012). Homothetic tube model predictive
control. Automatica, 48(8), 1631–1638.

Streif, S., Karl, M., and Findeisen, R. (2013a). Outlier
Analysis in Set-based Estimation for Nonlinear Systems
Using Convex Relaxations. In Proc. European Control
Conference (ECC), 2921–2926. Zurich, Switzerland.

Streif, S., Hast, D., Braatz, R.D., and Findeisen, R.
(2013b). Certifying robustness of separating inputs and
outputs in active fault diagnosis for uncertain nonlin-
ear systems. In Proc. 10th Symposium on Dynamics
and Control of Process Systems (DYCOPS), 837–842.
Mumbai, India.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11079


