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Abstract: The paper deals with the determination of controller parameters for multivariable systems by 

means of parameter optimization. In order to reduce the computational burden, the starting point in the 

optimization is determined through information provided by the feedback controller parameterized using 

the multivariable internal model controller (IMC) computed from the plant’s p/q moment approximant 

and the original plant’s multi-loop controller parameter magnitudes. Thereafter, controller parameter 

optimization proceeds to completion using the MATLAB optimization toolbox which is widely available. 

A potency of this technique is that all performance specifications and stipulated constraints are easily 

accommodated in the problem formulation thus facilitating complete problem solution in one go. The 

technique has been found to be effective for all plants considered so far and generally produces closed 

loop systems with favorable characteristics when compared to systems designed by similar methods. 
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1.  INTRODUCTION 

Effective methods for designing simple controllers for 

multivariable plants which guarantee good performance and 

satisfy stipulated constraints is still a topic of on-going 

research. One reason for this is that the plants usually have 

distinctive complex characteristics and each must usually be 

separately analyzed. Parameter optimization has been used in 

many situations for feedback control system design. One such 

method is the method of inequalities (Zakian and Al-Naib, 

1973 , Taiwo, 1980, Whidborne et al., 1995, Balachandran et 

al., 1997 and Zakian, 2005). This method works by solving a 

set of inequalities and has been found to work in many 

situations, although it is yet to be used to design centralized 

controllers for complex systems involving 4*4 or higher 

transfer function matrices. Recently, Escobar and Trierweler 

(2013) designed PID controllers for large process plants by 

an optimization technique based on frequency response 

approximation. His results are compared to those of the work 

reported here. Other methods of optimizing the performance 

of the closed loop systems are based on genetic algorithms 

and simulated annealing. Although such methods have the 

property of global convergence, they are usually 

computationally intensive and their applications to large 

multivariable plants are scanty. This paper proposes a new 

technique for centralized multivariable controller design. 

Here, the initial controller parameters in the optimization are 

specified by using data from the feedback controller 

parameterized using the p/q moment approximant of the plant 

model and the magnitudes of the multi-loop controller 

parameters giving good closed loop performance for the 

system involving the original plant. The optimization then 

proceeds and is deemed to have been completed when the 

nominal and robust performance of the feedback system 

meets the control objectives. In all cases so far considered, 

the centralized proportional plus integral (PI) controller has 

proved adequate, giving favourable performance in most 

situations. A merit of this method is that MATLAB 

optimization toolbox, which is widely available, has been 

used. Another advantage of this method is that various 

constraints such as bounds on structured singular values, 

internal variable magnitudes or their rates of change  can be 

directly handled during optimization. The paper is arranged 

as follows. In section 2, the new method is described. 

Applications of the new method to large multivariable 

systems is considered in section 3. A discussion of the results 

and conclusions from the work are considered in section 4. 

2. DESCRIPTION OF THE NEW METHOD 

The new method computes the centralized feedback 

controller of simple structures (typically PI, proportional plus 

integral controller) using parameter optimization. In order to 

reduce computational burden, it is recommended that a good 

starting point for optimization be used. This is done by 

studying information from the feedback controller 

parameterized using the IMC controller computed for, 

typically, the 0/1 moment approximant of the plant as well as 

the magnitudes of the parameters of the multi-loop PI feed-

back controller designed for the original plant. 

 Computation of p/q moment approximant 

If it is desired to use the new method to design a simple 

feedback controller for the plant then its p/q moment 

approximant should be computed. This is undertaken as 

follows: Expand the plant model G(s) (assumed 

asymptotically stable) in infinite series: 
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Here, without loss of generality, we elect to express its 

reduced model R(s) in the right matrix fraction form: 

R(s) = )(,
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R(s) is a p/q moment approximant at s=0 if R(s) is 

asymptotically stable and 
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In (3) and (4), Gµ = 0, µ  0. A unique solution exists and 

R(s) = G(s) + 0(s
p+q+1

)    (5) 

where the notation means that the power series expansion on 

both sides exist and agree up to terms of degree (p+q) 

inclusive. However, if expansion about s=0 does not furnish a 

stable p/q moment approximant, Taiwo and Krebs (1995) 

have shown how, generically, a stable approximant may be 

obtained by resorting to matching moments about more than 

the single point s=0. All the controllers designed in this work 

were based on parameterizing a classical feedback controller 

from the IMC controller computed from the 0/1 moment 

approximant of the original complex plant. Consequently, for 

space economy, we limit discussion to this case in the sequel. 

Assume that the PI controller is desired, then the 0/1 reduced 

model R(s) given by 

R s = Vo Is + To 
−1    (6) 

will be computed. In order to obtain the IMC controller Q , 

invert (6), giving,  

Q = R−1 =  Is + To Vo
−1    (7) 

also, Q = Q f where f is the filter given by  

f = 1/(λs + 1)     (8) 

The conventional feedback controller Co(s) is given by  

Co s = Q f I − fI −1    (9) 

For illustration purposes, suppose G(s) is 3*3 and Q f =

 qij /(λs + 1), (9) simplifies to 

Co(s) =
1

λs
 

q11 q12 q13

q21 q22 q23

q31 q32 q33

    (10) 

where qij = V oij s + G oij     (11) 

and V oij , G oij  respectively denotes the (i,j)th element of 

Vo
−1  and Go

−1.  

The next issue is the choice of λ. One way to determine a 

preliminary value is to compute the multi-loop controllers for 

the original plant. The order of magnitude observed here 

should be used to estimate the starting value of λ in order to 

optimize the parameters of the feedback controller, C(s). 

Usually it is advisable to start with a λ which gives a closed 

loop stable system. A detailed exposition of this procedure 

will be given in the next Section. If it is desired to use a PID 

controller, then either a ½ or 0/2 moment approximant would 

be used for controller parameterization. 

3. ILLUSTRATIVE EXAMPLES 

3.1 Example 1: Depropanizer column 

The process is a depropanizer column used to separate 

propane from the feed that comes from a de-ethanizer column 

(Wang, 2003) and its transfer function is given by 

 

G s =

 

 
 

−0.26978 e−27s

97.5s+1

1.978e−53.5s

118.5s+1

0.07724 e−56s

97.5s+1

0.4881 e−117 s

56s+1

−5.26e−26.5s

58.5s+1

0.19996e−35s

51s+1

0.6e−16.5s

40.5s+1

5.5e−15.5s

19.5s+1

−0.5e−17s

18s+1  

 
 

 (12) 

The following steps should be taken in designing a controller 

for the plant G(s): 

Step 1: Assuming a centralized controller having PI elements 

is to be designed, then an 0/1 approximant of (12) should be 

computed and the controller C(s) should be calculated. In this 

example, V0
−1 and G0

−1 are given respectively as 

 

𝑉0
−1 =  

567.308936 371.82068 161.84048
102.65397 31.06735 17.22488
1756.6934 738.70682 285.76937

  (13) 

 

𝐺0
−1 =  

2.01784 1.86435 1.057307
0.480027 0.116762 0.12085

7.7017 3.5216 0.59812
  (14) 

 

Step 2 is to estimate the value of 𝜆. The computation of a 

multiloop PI controller for the plant will assist here. The 

relative gain array is given by 

RGA = 
−0.5444 0.9495 0.595

0.91 −0.6142 0.704
0.634 0.6647 −0.299

   (15) 

By simultaneously computing the Niederlinski index, it was 

found that the best control structure is as follows: 𝑢2 → 𝑦1,  

𝑢3 → 𝑦2 , and 𝑢1 → 𝑦3 , where ui and yi are respectively the 

controlled and manipulated variables. On computing the 

controller dictated by this structure, it was found that the 

values of the proportional and integral gains in (13) and (14) 

would have the same order of magnitude as those of the 

multi-loop controller elements if 𝜆 ≈ 1000. Consequently, 

λ=1000 was used in (10). Hence with starting value 

 

Co s =
1

1000
 Vo

−1 +
Go

−1

s     (16) 
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and the performance index chosen as the integral of the 

absolute error (IAE) for step responses to unit step changes in 

the reference at time zero and simultaneous disturbance 

inputs of size 0.1 at time 2000, MATLAB optimization 

toolbox function fmin was used to compute 

 

C s =  
0.6316 1.2807 0.2981
0.2757 −0.5333 0.1389
3.4248 −4.7539 −0.1580

  

 

+
1

s
 
0.0040 0.0181 0.0051
0.0026 −0.005 0.0022
0.0313 −0.0205 −0.0391

   (17) 

 

Although the IAE associated with this controller is 

acceptable, the value of a robust performance metric, the  

structured singular value is greater than unity. Further 

computation was therefore done and the computed set of 

parameters (17) were used as starting point with a constraint 

that µRP <1, where µRP denotes structured singular value for 

robust performance. Here the MATLAB optimization toolbox 

function fmincon was used. The final controller computed is 

     

C s =  
0.7351 1.0706 0.5431
0.2776 −0.4192 −0.0131
3.5645 −3.6019 −1.6202

   

 

+
1

s
 
0.0047 0.0119 0.0134
0.0025 −0.0029 −0.0003
0.0308 −0.0079 −0.0528

   (18) 

 

Note that to determine the robustness of the designed 

controllers the input uncertainty weight used by Garrido et al. 

(2012), W𝐮 =
0.009s+0.15

0.0045 s+1
 which permits up to 15% uncertainty 

at low frequencies and 200% uncertainty at high frequencies 

attaining 100% uncertainty at a frequency of about 15 

rad/min, was used. The performance weight was also chosen 

as in Garrido et al. (2012), namely, Wp =
s 2.75 +0.00075

s
. 

The responses of the closed loop system with the controller 

are displayed in fig.1. The characteristics of the feedback 

systems are compared with those of the closed loop system 

designed by Garrido et al. (2012) (fig.2) in Table I. It is found 

that the overall characteristics of the system designed in this 

work are superior to those of Garrido et al. (2012). Note in 

this work that 𝜇𝑅𝑆  and 𝜇𝑁𝑃  respectively denotes structured 

singular value for robust stability and nominal performance. 

 

Table 1: Performance and robustness indices for the 

depropanizer 

 Proposed Garrido et al. 

IAE for a step in y1 396.1 888.9 

IAE for a step in y2 307.2 811.8 

IAE for a step in y3 194.7 701.4 

TOTAL IAE 898.0 2402.0 

𝜇𝑅𝑃  0.9735 0.7262 

𝜇𝑅𝑆  0.1504 0.0399 

𝜇𝑁𝑃  0.8131 0.6443 

 
Fig.1: Depropanizer closed-loop response, this work 

 

 

Fig.2: Depropanizer closed-loop response, Garrido et al. 

3.2 Example 2: Heat integrated distillation column 

Ding and Luyben (1990) presented the transfer function 

model for a Low-Purity heat integrated distillation column as  

 

𝑋𝐵1

𝑋𝐷2

𝑋𝑆2

𝑋𝐵2

 =  

𝑔11 𝑔12 𝑔13 𝑔14

𝑔21 𝑔22 𝑔23 𝑔24

𝑔31 𝑔32 𝑔33 𝑔34

𝑔41 𝑔42 𝑔43 𝑔44

  

𝑄1

𝑅2

𝑆2

𝑄2

 +  

𝑔𝑑11
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𝑔𝑑22

𝑔𝑑31
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where,  g11 =
−7.39e−s

 11s+1  s+1 
, g12 = g13 = g14 = 0 

g21 =
−0.11 200s+1 e−5s

 20s+1 3 , g22 =
10.1e−s

 28s+1  4s+1 
 

g23 =
1.18e−11s

 31s+1  6s+1 
, g24 =

−18.3e−s

 28s+1  5s+1 
 

g31 =
1.9e−2s

 4s+1 2, g32 =
1.7 200s+1 e−1.4s

 108s+1  s+1 2 , 

g33 =
−3.15e−s

 3s+1  0.3s+1 
, g34 =

−1.27 188s+1 e−s

 68s+1  s+1 
 

g41 =
4.9e−1.6s

 40s+1  3s+1 
, g42 =

−8.21e−2.5s

 24s+1  3s+1 
 

g43 =
12e−s

 29s+1  3s+1 
, g44 =

−19.4e−s

 26s+1  3s+1 
 

gd11
= gd12

= 0 

gd21
=

2.42e−5s

 3s+1  26s+1 2, gd22
=

−2.47e−5s

 3s+1  22s+1 2 

gd31
=

0.592e−5s

 7s+1 2 , gd32
=

1.83e−6s

 25s+1  2s+1 
 

gd41
=

−1.51e−19s

 45s+1  5s+1 2, gd42
=

−4.52e−8s

 50s+1  7s+1 2 

 

Steps 1 and 2 are similar to those in the previous example 

except that RGA indicates a diagonal structure D s =
diag(d11 , d22 , d33 , d44 ), which was tuned to give  

d11 = −0.259 − 0.0226/s, d22 = 0.248 + 0.008/s 

d33 = −0.217 − 0.069/s, d44 = 0.142 + 0.005/s. 

Hence in choosing C0(s), the values of these diagonal 

parameters were retained while every other element in V0
−1 

and G0
−1 was divided by 10. In other words, λ≅10 was used 

for this example. Additionally, note that all the elements in 

row and column 1 of V0
-1

  and G0
-1

  apart from element (1,1) 

were zero. Upon applying the optimization toolbox in 

MATLAB, the eventual controller giving a system with 

acceptable servo and regulator characteristics is given by 

C(s) =  

−0.3374
0
0
0

  

0
0.2854
0.3014
−0.0237

  

0
−0.0860
−0.2001
−0.0122

  

0
0.3356
0.2616
0.1962

  

 

+
1

s
 

−0.0285
0
0
0

  

0
0.0108
0.0072
0.0008

  

0
0.0825
−0.0145
0.0442

  

0
0.0032
0.0096
0.0023

   (19) 

 

The adequacy of this controller in following reference 

changes and rejecting disturbance changes of 5% in Z1 and Z2 

can be verified from figures 3 and 5 respectively. This is 

compared with controller C1(s), with PID elements, in 

Escobar and Trierweiler (2013) as shown in figs.4 and 5. The 

other attractive characteristics of the closed loop system are 

tabulated in Tables II and III. The uncertainty weight used for 

robustness analysis was chosen as 𝑊𝒖 =
𝑠+0.15

0.5𝑠+1
.This permits 

up to 15% uncertainty at low frequency and 200% at high 

frequency attaining 100% uncertainty at a frequency of about 

1rad/min. The performance weight was chosen as 𝑊𝑝 =
𝑠 2.25 +0.04

𝑠
. Here, we have specified peak sensitivity, Ms=2.25 

(with an implication that GM ≥1.8 and PM ≥ 25.68
0
) and  

zero steady state error. Note that the Escobar and Trierweiler 

controller lacks performance robustness. 

 

 

 
 

Fig.3: Servo performance for the Ding and Luyben column 

 
 

Fig.4: Servo performance for the Ding and Luyben column 

 

Table III:Regulatory performance indices 

 Proposed Escobar & 

Trierweller 

Total IAE for a step in Z1 47.33 31.50 

Total IAE for a step in Z2 55.16 36.38 
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Fig.5: Regulatory performance for the Ding and Luyben 

column (z1 and z2 of size 5%). 

Table II: Performance and robustness indices for the Ding 

and Luyben column 

 Proposed Escobar & 

Trierweler 

IAE for a step in XB1 13.24 12.99 

IAE for a step in XD 14.94 12.65 

IAE for a step in XS 10.24 9.67 

IAE for a step in XB4 11.26 13.90 

TOTAL IAE 49.68 49.21 

𝜇𝑅𝑃  0.9648 1.8016 

𝜇𝑅𝑆  0.2144 0.2034 

𝜇𝑁𝑃  0.8749 1.1305 

 

 

3.3 Example 3: Alatiqi distillation column 

The Alatiqi column system used here is taken from Garrrido 

et al. (2012). It is a 4 by 4 system modelled by the transfer 

function matrix: 

G =  

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

 ,  where 

g11 =
2.22e−2.5s

 36s+1  25s+1 
, g12 =

−2.94(7.9s+1)e−0.05s

 23.7s+1 2  

g13 =
0.017e−0.2s

 31.6s+1  7s+1 
, g14 =

−0.64e−20s

 29s+1 2 , g21 =
−2.33e−5s

 35s+1 2 , 

g22 =
3.46e−1.01s

32s+1
, g23 =

−0.51e−7.5s

 32s+1 2 , g24 =
1.68e−2s

 28s+1 2 

g31 =
−1.06e−22s

 17s+1 2 , g32 =
3.511e−13s

 12s+1 2 ,  g33 =
4.41e−1.01s

16.2s+1
, 

g34 =
−5.38e−0.5s

17s+1
, g41 =

5.73e−2.5s

 8s+1  50s+1 
, g42 =

4.32(25s+1)e−0.01s

 50s+1  5s+1 
 

g43 =
−1.25e−2.8s

 43.6s+1  9s+1 
, g44 =

4.78e−1.15s

 48s+1  5s+1 
 

 

Steps 1 and 2 are similar to those of the preceding examples. 

A good starting point in this case was found by retaining the 

exact value of the diagonal controller for the multiloop 

structure. For the off-diagonal elements of the centralized 

controller, a value of λ of approximately 18 or greater was 

used, yielding 

𝐶𝑜 𝑠 =  

0.5200
−0.6000
1.1500
0.7500

  

0.7000
0.4500

−0.37500
−0.3650

  

−0.1500
−0.06500

0.6000
−0.1500

  

−0.3500
−0.1500
0.5500
0.5300

  

 

        +
1

𝑠
 

0.0100
0.0100
0.1000
0.0800

  

0.0500
0.0300
−0.0450
0.0450

 

0.0040
0.0015
0.0350
0.0100

  

−0.0050
−0.0050
0.0150
0.0100

  (20) 

 

Upon using the fmin function, the controller in (21) was 

computed which gives a system with satisfactory nominal 

and robust performance. 

 

𝐶 𝑠 =  

0.8050
−0.1109
1.5406
1.3153

  

1.3115
0.4034
0.0430
0.2395

  

0.1698
0.0415
1.8670
−0.0700

  

−0.9105
0.0936
1.5954
1.4410

  

 

        +
1

𝑠
 

0.0098
−0.0117
0.0384
0.0341

  

0.0521
0.0266
0.0553
0.0538

  

−0.0002
0.0002
0.1393
0.0082

  

−0.0119
−0.0137
0.0221
0.0302

  (21) 

The responses of the system with this controller are given in 

fig.(6) and some of the dynamic properties are listed in Table 

IV. Again, it is observed that the system obtained in this 

work is superior to the one in Garrido et al. (2012) displayed 

in fig.7. One observation is that we have used a more realistic 

uncertainty weight here rather than the one given by Garrido 

et al (2012). This is because among other considerations, we 

believe that uncertainty usually increases with frequency 

rather than the contrary impression given in their uncertainty 

weight. It is worth noting that our computed controller meets 

the required constraint µRP<1 even when their original 

weight is used. The new uncertainty weight used for the 

robust analysis is given by W𝐮 = 0.15
5s+1

0.5s+1
. However, the 

same performance weight as theirs is used, namely, Wp =
s 2.6 +0.001

s
. 

 

Table IV: Performance and robustness indices for the Alatiqi 

column 

 Proposed Garrido et al. 

IAE for a step in y1 59.95 47.62 

IAE for a step in y2 51.16 77.44 

IAE for a step in y3 8.67 14.32 

IAE for a step in y4 28.55 32.56 

TOTAL IAE 148.3 172.0 

𝜇𝑅𝑃  0.9728 3.4457 

𝜇𝑅𝑆  0.2615 0.2890 

𝜇𝑁𝑃  0.7486 1.6601 
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Fig.6:Servo responses for the Alatiqi column 

 

 
Fig.7: Servo responses for the Alatiqi column 

4. DISCUSSION AND CONCLUSION 

Simple centralized controllers have been computed for three 

benchmark process systems. It is gratifying that in all cases, 

PI elements suffice in producing closed-loop systems 

meeting desired performance and constraints. A novel 

technique for estimating the starting values of the controller 

parameters ensures that the starting closed-loop system is 

stable as well as substantially reduce computational burden. It 

also helps in determining the signs of the controller elements. 

Although optimization can be done in the Simulink 

environment, results in this work were obtained using the 

MATLAB environment and IMN approximants  (Zakian, 

1975) (M=14, N=22) was used to compute system responses 

during optimization. The final results were confirmed by 

simulation using Simulink.   

The design of simple feedback controllers through an initial 

IMC parameterization using a moment approximant is novel 

and has worked effectively for all the plants considered so far 

with many of the plants being matrices of orders 3 or 4. 

These are the highest transfer function matrix dimensions of 

plants we found in the current literature. 

During controller parameter optimization, several 

performance indices were tried. It was found that either the 

integral of the squared error criterion or the integral of the 

absolute error criterion worked well for most examples. The 

integral of time multiplied by the absolute error criterion 

produced closed loop systems with relatively small settling 

times but large overshoots and large transient interactions. 
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