
A control-inspired iterative algorithm for memory
management in NUMA multicores

Marcello Farina ∗ Davide Zoni ∗∗ William Fornaciari ∗

∗DEIB, Politecnico di Milano, Milano, ITALY
(e-mail: {marcello.farina, william.fornaciari}@polimi.it)

∗∗DEIB, Politecnico di Milano, Milano, ITALY
(e-mail: zoni@elet.polimi.it)

Abstract: The multiprocessor revolution allows to have different processors accessing their local
memory controller and the relative RAM portion, while the possibility for each processor to access
the remote memory on another processor enables the so-called Non-Uniform-Memory-Access (NUMA)
multiprocessor paradigm. This paper discusses a control-inspired iterative algorithm to allocate the
memory requests by different applications in a NUMA systems, trying to maximize the RAM utilization
under the locality requirement. The proposed method is tested in two case studies.

Keywords: Real-time algorithms, memory allocation, multicore systems.

1. INTRODUCTION

Memory management in modern operating systems (OS) ex-
ploits a paging mechanism, where the page is the small unit that
can be allocated and deallocated in the main memory (RAM).
When the number of required pages from all the running tasks
exceeds the available RAM space, a swap-out process takes
place to store the extra pages in the swap area, which is usually
a portion of the hard disk. This mechanism allows the set of
running processes to collectively access more memory than the
available RAM. In particular, the memory management system
is devoted to handling three different components: 1) the kernel
allocator, which is the OS module that allocates and deallocates
pages (eventually swapping them out); 2) the swap space, i.e., a
portion of the hard disk in which to host the pages which exceed
the available RAM; 3) the memory controller, i.e., the hardware
component that manages the communication between the main
memory and the processor.

The multicore revolution, fueled by the need for ever-increasing
performance, forces the integration of multiple cores inside the
same chip. It is worth noticing that the memory management
systems are able to satisfy the memory allocation between mul-
tiple applications, in view of the presence of multitask supports.
However, the use of multiple cores exacerbated the number of
memory requests from tasks, thus single memory controllers
become the bottleneck of the entire system. In this scenario,
the multiprocessor solution emerges as a viable way to deal
with the limited bandwidth imposed by the need to manage
all the memory requests using a single memory controller.
Multiprocessors are composed by multiple processors, where
each processor is a multicore. They allow to split the physical
memory between single processors, each endowed with a mem-
ory controller. For example, Figure 1 reports the Intel Nahalem
multiprocessor, that is a 2 processor architecture, where each
processor has four CPUs and a local Integrated memory Con-
troller (IMC in Figure 1).

An additional issue in the multiprocessor design is imposed by
the applications, which may require to share data, thus forcing

Fig. 1. Eight-core Intel Nahalem Processor (Molka et al., 2009).

the need of a shared memory space. This means that the main
memory is physically split in banks, while it is a single memory
space from the application viewpoint and each application can
access all the banks, i.e. the local and the remote ones. The
access to the remote memory banks is supported by cross-chip
interconnects and the local memory controller of the remote
multicore. Such a shared multiprocessor defines the concept
of Non-Uniform-Access-Memory (NUMA) architectures, since
the time to access a memory region depends on the location
of both the requiring processor and the memory bank. In this
scenario, the major processor design companies developed their
own cross-chip interconnect to fill the NUMA gap, i.e., Intel
QuickPath Interconnect (QPI) (Ziakas et al., 2010) and AMD’s
HyperTransport (AMD, 2002). Figure 1 shows the Intel cross-
chip interconnect for multiprocessor interconnect (QPI in the
figure).

In the NUMA multiprocessor scenario, data locality is a highly
desirable property. Specifically, data should be kept close to
the processor for which they have been allocated. In particular,
the processor should always process data stored on the local

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6117

memory node. However, due to shared memory areas and the
possibility to require for more memory than that available
on a single node, the allocation on remote node support is
mandatory. Last, the memory access on a remote node is faster
than the access to the swap area, since the latter requires a swap-
in process from the hard disk, which is order of magnitude
slower than the access to the RAM.

Memory contention due to multiple running applications rep-
resents a second issue to be addressed. While the total mem-
ory occupation is a system-wide metric, the user experience
is based on the system responsiveness metric. For example,
if a memory-intensive background task is running in parallel
with a user-interactive application, the allocation of a huge
memory space for the former can penalize the second one, due
to excessive swapping action to disk, i.e. the main memory
saturates and the memory manager swaps out according to an
application-agnostic policy. This means that smart allocation
and deallocation policies are required to manage memory, with
particular emphasis on the portion which exceeds the available
RAM space. Moreover, both data locality and the possibility
that some applications can conflict with each other due to un-
balanced memory allocation requests must be considered.

In this paper we adopt a control-inspired methodology to devise
a dynamic iterative algorithm for memory management in the
NUMA multicore scenario. We move a step further with respect
to the state of the art in different directions:

I The proposed solution, based on a dynamic model of mem-
ory allocation, allows to reduce the bank-to-bank mem-
ory exchange and to maximize the local memory alloca-
tions to enhance the performance and minimize the power
consumption. Furthermore, the proposed algorithm is ex-
tremely flexible, in the sense that it can be reconfigured
by simply re-defining the neighboring relationships among
memory banks.

II The inclusion of an invasion/retreat-type strategy in the
control-inspired algorithm to optimally allocate memory
and avoid inter-application memory conflicts. In particular,
the proposal tries to maximize the allocation on local
nodes first, while the memory can be allocated on remote
nodes when the local bank is full. Moreover, the require
for memory by the local processor can force the swap-
out process, i.e. deallocation from main memory, of the
memory store by remote processors.

The paper is organized in four sections. First, the state of the
art related to NUMA multiprocessors is discussed in Section
2. The proposed algorithm is described in details in Section 3,
while Section 4 discusses some simulation results. The future
works and conclusions are presented in Section 5.

2. RELATED WORKS

The virtual memory technology enables the possibility to man-
age the process-allocated memory, where the sum of the mem-
ory required by all processes can be greater than the available
physical RAM. This is possible thanks to the so-called swap
process, which selects some pages from the main memory and
deallocates them to the swap area through the so-called swap-
out operation. In this framework, different solutions have been
proposed to optimally swap-in and -out memory pages exploit-
ing the lower access time for a RAM stored page with respect
to swap stored one. The paper (Jones, 1969) is one of the first

works proposing an on-demand page swapping procedure, i.e.
when a page fault occurs the required page is swapped back
into main memory (RAM). While different schemes mainly
focused on swap-in and -out complete task memory have been
proposed, the solution actually implemented nowadays is quite
similar to the work in (Jones, 1969) proposed in late 1969.
However, the work in (Terraneo and Leva, 2013) presents an
interesting control-based methodology to solve the memory
management considering an active swap-in policy which pro-
gressively swaps back pages from the swap area to the main
memory depending on the available space in RAM without the
need for a page fault. Moreover, a memory quote is associated
to each application which represents the maximum available
memory for the application in case of memory contention.

The works presented up to now are focused on Uniform Mem-
ory Access (UMA) designs and can not be applied to NUMA ar-
chitectures (Blagodurov et al., 2010). In the latter, a discussion
is given about the fact that contention management algorithms
fail to be effective on NUMA systems and may even hurt perfor-
mance relative to a default OS scheduler. In particular, the work
outlines the need for remote memory access as a primary source
for inefficiency. Starting from this observation, in the present
paper we focus on dynamic memory allocation to fit variable
memory requests minimizing the remote memory accesses.

The paper (Zuo et al., 2009) proposes a group-based hardware
design for NUMA cache hierarchy to optimally allocate the
data based on a locality policy. While the proposed solution
exploits the data locality principle, it does not include a invade-
and-retreat policy, which would allow for a flexible managing
of the application memory requests which exceed the available
local memory.

An algorithmic scheduling solution to maximize the data local-
ity is proposed in (Majo and Gross, 2011). The focus of the
work is on the cache and application scheduling to optimize
cache accesses and data migration between different proces-
sors, while data migration represents the most challenging issue
to be addressed to limit the remote access overhead. Conversely,
our proposal focuses on the minimization for interconnect ac-
cesses between processor pairs to access a remote memory
node, while ensuring a flexible memory allocation.

Finally, the work (Dashti et al., 2013) focuses on the memory
controller congestion which hampers the performance. In par-
ticular, modern NUMA systems reduce the remote access time,
while the contention on both memory controllers and intercon-
nect still introduces non-negligible performance penalties. In
this respect, the method proposed in (Dashti et al., 2013) does
not consider the mutual influence on the memory allocation due
to memory-bound tasks, which may force memory swap-out
for different applications. Our proposal accounts for this aspect
and limits the interconnect congestion promoting local memory
placement.

3. PROPOSED METHODOLOGY

In this section we describe a novel iterative allocation (RA)
algorithm proposed for the NUMA scenario. After introduc-
ing the main variables of the model of the memory allocation
system, the underlying rationale of our scheme is presented.
Then, the RA algorithm is described in details and application
aspects are dealt with. In particular, since the RA algorithm
is event-triggered, some comments are due on the hierarchi-

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6118

cal application scheme and, in view of its inherent iterative
structure, we will briefly focus on the underlying communica-
tion/computation load required.

3.1 A model of memory allocation

We consider a NUMA multiprocessor, composed of M pro-
cessors, and a set of tasks running on it. We also assume that
each processor is endowed with a local memory controller and
a memory bank. Therefore, for each processor we define a
memory bank identifier i ∈ {1, . . . ,M}. For example, Figure 1
shows a two-banks NUMA multiprocessor, i.e., with M = 2.
Moreover, we denote with Ti the set of tasks executed the i-th
processor, and with Bi the i-th memory bank, i = 1, . . . ,M. We
denote with variable xi j the memory allocated by the taskset
Tj on bank Bi. Correspondingly, Ni defines the neighborhood
of memory bank Bi, i.e., the set of surrounding banks j (and
therefore excluding i) whose tasks Tj can allocate memory in
Mi. Therefore, xi j is not identically equal to zero if and only
if j is in the neighborhood set of i. We assume that xi j is not
identically equal to zero if and only if x ji is not identically equal
to zero, i.e., j ∈Ni if and only if i ∈N j.

We assume that the memory allocation event is initiated when
memory allocation/deallocation requests are given. For gen-
erality, we assume that multiple requests for memory alloca-
tion/deallocation can reach the operating system (OS) simul-
taneously. Each request is related to a specific running task
and requires a portion of main memory physically located on
a bank. We denote with ri ≥ 0 the memory request from Ti (to
be allocated, if possible, on bank Bi and/or on its neighboring
banks B j, j ∈ N j) and with di j ≥ 0 the request of memory
deallocation of Tj located on bank Bi where di j ≤ xi j for all
i, j = 1, . . . ,M.

We assume that, at a given time instant, each memory bank Bi,
i = 1, . . . ,M allocates for the taskset Tj, j = 1, . . . ,M, a given
memory amount (denoted with x−i j for simplicity of notation)
and that an allocation/deallocation request is given. Our scheme
aims to select the amount of memory to be allocated by each
task on each bank after the request. For simplicity of notation,
we define with x+i j the amount of memory allocated on memory
bank Bi for the taskset Tj after the requests have been processed.
We solve the re-allocation problem using the iterative RA
algorithm described next.

3.2 The iterative allocation algorithm

After the ”allocation/deallocation” event is triggered, the goal
of our multi-core allocation procedure is many-fold:

I) Satisfy all the deallocation requests.
II) Satisfy locally the memory request, if possible. Indeed, if

space is available, it is advisable to allocate ri on bank Bi.
III) If the requests cannot be fully satisfied locally, try to

allocate memory on the neighboring banks.
IV) If the requests cannot be fully satisfied locally and using

the neighboring banks, allocate the required memory in
the swap area.

Other requirements and constraints are also needed to complete
the scenario.

i) The memory allocated on Bi cannot be greater than the
capacity of Bi itself (denoted with xMAX

i), i.e.,

∑
j∈Ni∪{i}

xi j(t)≤ xMAX
i (1)

ii) Priority is given to local memory requests.
iii) To transfer memory load from one bank to another (or

from the swap area to the banks) requires power. In view
of this, if space is available on bank Bi at the end of step
IV), we do not recall memory load from the swap area or
from the neighboring banks. This can be done, in case,
in a smooth and energy-saving fashion, after the results
of the RA algorithm are applied to the system and before
the occurrence of the next event, similarly to the approach
proposed in Terraneo and Leva (2013).

First note that I) can be performed instantaneously (i.e., as soon
as the event is triggered). Secondly, in view of the priority
constraint (ii), in task II) we assume that all the memory
allocated on the local bank Bi by other tasks Tj, i.e., xi j, j 6= i,
must be deallocated, if necessary (i.e., if task Ti needs memory
space).
Task III) is then attained through a suitable negotiation-type
iterative algorithm. Concerning this, and denoting with k the
k-th iteration step of the latter, we define two fundamental
quantities. First, the available memory for external allocation
on bank i, i.e., the residual memory availability on each bank to
host neighbor memory, at step k, is defined as

ei(k) = xMAX
i − xii(k)− ∑

j∈Ni

xi j(k) (2)

In (2), the term xMAX
i − xii(k) is the space in Bi, at iteration

k, which is not used for satisfying local requests. The term
∑ j∈Ni xi j(k), on the other hand, is the space allocated on Bi
by the neighboring tasks to satisfy neighboring requests, at
iteration step k.
Secondly, we define the required memory not yet allocated from
task Ti at iteration step k as

ni(k) = ri− ∑
j∈Ni∪{i}

d ji− (∑
j∈Ni∪{i}

(x ji(k)− x−ji)) (3)

In (3), the term ri −∑ j∈Ni∪{i} d ji is the net memory request
from the taskset Ti, while the terms (x ji(k)− x−ji), for all j ∈
Ni ∪ {i} is the net memory allocated (note that it can be
negative if deallocation requests prevail) on bank j by the
taskset Ti since the beginning of the event.
Finally, the requirement IV) is attained after the latter iterative
distributed algorithm converges to a steady-state.
Now we are in the position to present the RA algorithm.
Algorithm 1. RA
1. Initialization: the algorithm initialization (i.e., step k = 0)

is performed in view of 1) and 2), i.e., for all i = 1, . . . ,M

xii(0) = min(x−ii + ri−dii,xMAX
i) (4a)

xi j(0) = x−i j −di j, j 6= i (4b)

2. For all i, j = 1, . . .M, set

xi j(k+1) = xi j(k)+ui j(k) (5)

where ui j(k) is defined, for all i, j = 1, . . . ,M, in (6).
3. k = k+1.
4. If the termination condition (see (7)) is attained go to step 5,

otherwise and go to step 2.
5. For all i, j = 1, . . .M, set x+i j = xi j(k), while the memory

to be allocated by the swap area by task Ti is ni(k), for all
i = 1, . . . ,M.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6119

A far as the allocation law (5) is concerned, we define ui j as
follows.
First, concerning the case j 6= i, for all i = 1, . . . ,M, two
different update rules are defined, depending on the values of
e j(k) and ni(k) defined in Equations (2) and (3).

• In case e j(k)≥ 0, the update rule is

u ji = λ min
(

max{ni(k),0}
|Ni|

,
e j(k)
|N j|

)
(6a)

where λ ∈ (0,1] is a tuning knob, while |Ni| and |N j|
denote the cardinality of Ni and N j, respectively (i.e.
the number of elements of set Ni and N j). It is worth
noting this case includes the following situations: (a) when
e j(k) = 0, and (b) e j(k) > 0 and ni(k) < 0: both in (a)
and (b) no actions are required (i.e., u ji = 0). In particular,
the case (a) means that no memory in B j is available to
satisfy external requests, while the case (b) corresponds
to the case when no external memory is required by the
taskset Ti.

• In case e j(k) < 0, there is a need to deallocate some
memory from bank B j, regardless of the value of ni(k).
Thus, the update aims to deallocate memory from B j
previously allocated by the neighbors of bank j, i.e.,

u ji =−λ min
(
|e j(k)|
|N j|

,x ji(k)
)
. (6b)

Secondly, concerning the case j = i, for all i = 1, . . . ,M, we
define two alternative choices.

• Choice 1:
uii(k) = 0 (6c)

In this case, no possibility is given for allocating memory
from taskset Ti in bank Bi after the initialization. This is
not particularly critical, since the initialization step 1) (see
equation (4a)) is ”greedy”, in the sense that priority is
given to local allocation. The only drawback of Choice
1 may lie in the fact that, if neighboring banks B j, j ∈Ni
deallocate memory needed by taskset Ti and space is still
available on bank Bi, this memory does not get stored
locally, but is bounded to be allocated in the swap area.
• Choice 2: this choice has been introduced to overcome the

problems arising in the application of Choice 1. Indeed, to
limit as much as possible the memory to allocate in the
swap area, the following alternative rule can be applied:

uii(k) = min{xMAX
i − xii(k), ∑

j∈Ni

|min{u ji(k),0}|} (6d)

The rationale of the previous equation is that, if space in
Bi is available to local allocation (i.e., if xMAX

i − xii(k) >
0), we try to locally allocate on Bi the memory that is
deallocated by the neighboring banks (i.e., represented by
the absolute values of the negative terms u ji computed in
(6b)).

A last point concerns the termination condition. Recall that
all the computations are performed at the OS level. Therefore,
the values of xi j(k), for all i, j = 1, . . . ,M, are available to the
OS at each time step. Therefore, the termination condition is
centralized, and is attained when the algorithm converges to a
steady state. This, in practice, is detected at the step k when the
following inequality is verified

max
i, j=1,...,M

|xi j(k)− xi j(k−1)|< ε (7)

where ε is a suitable threshold level.

time

Request

event

Time required to

compute the new

allocations

(algorithm convergence time)

Application

of the results

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm step k

Fig. 2. Event-triggered algorithm

3.3 Application issues

The main issue arising in the application of the proposed
scheme is related to the fact that the algorithm is event-based,
as sketched in Figure 2. Indeed, after the request reaches the
OS, the execution of the RA algorithm is triggered. Information
about the status of all the involved processors are gathered by
the OS and Algorithm 1 is executed at the OS level. After
convergence is achieved, the results are transmitted to the local
processors.
By definition, the algorithm is iterative, i.e., it requires that
Steps 2.-5. are performed a number of times, until convergence
is attained. It is worth noting that each step requires a min-
imal computational demand (i.e., which basically consists in
the computational load required, by the OS, to compute the
steering term ui j, for all i, j = 1, . . . ,M). Therefore, since the
memory requests are expected to arrive with a coarse grain
granularity in the order of milliseconds, it is estimated that the
memory management algorithm convergence time is negligible
with respect to the granularity of the events, which makes the
proposed approach practically applicable.

4. SIMULATION RESULTS

In this section we test the proposed RA algorithm considering
different multi-processor architectures. In the simulations we
will set λ = 0.9 and xMAX

i = 100, for all i = 1, . . . ,4. We
consider two different experiments.

4.1 Experiment 1

Consider a quad-processor architecture with four tasksets and
four memory banks. Figure 3 depicts a scheme of the processor
and the connections among memory banks. Neighboring sys-
tems are indicated using arrows, and therefore N1 = {2,4},
N2 = {1,3}, N3 = {2,4}, and N4 = {1,3}.
This means each processor can access its local memory bank
and two remote memory banks. Figures 4 and 5 show the
results of application of RA, related to the cases when Choice
1 (see (6c)) and Choice 2 (see (6d)), respectively, are used for
setting uii(k). The total allocated memory for each taskset is
reported in the Figures 4a and 5a where, for each taskset, solid
thick and a thin lines represent the total request and the actual
allocated memory, respectively. Figures 4b and 5b report the
required memory not allocated for each taskset, i.e., the total
swapped memory for each taskset at the end of the memory
allocation process. Last, the allocation level of each bank is
reported in Figures 4c and 5c.

Consider first Figure 4. At instant t = 20 each bank is full due to
previous local requests. The analysis is focused on two different

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6120

Fig. 3. Sketch of the multiprocessor architecture with four
memory banks used in Experiment 1.

40

60

80

100

120

140

160

180

20 25 30 35 40 45 50 55 60

t ask1
t ask2
t ask3
t ask4

(a) Requested and allocated memory for each taskset.

0

10

20

30

40

50

60

70

20 25 30 35 40 45 50 55 60

t ask1
t ask2
t ask3
t ask4

(b) Non allocated memory for each taskset. This is the memory designed to the
swap area when the control law converges.

40

50

60

70

80

90

100

110

20 25 30 35 40 45 50 55 60

bank1
bank2
bank3
bank4

(c) Status of each memory bank.

Fig. 4. Simulation results for Experiment 1, Choice 1.

events, occurring at t = 25 and t = 50. Such events represent
the requests for memory allocation and deallocation from the
running tasksets and trigger the execution of the proposed RA
algorithm. It is worth noticing that the simulation scenario
represents a critical case, where the available memory on the
local nodes is not sufficient to satisfy the task requests.
At time t = 25 the event requests a deallocation of memory for
T2 and T3 below the maximum bank capacity, which provides
free space for external allocation on banks B2 and B3. On the
other hand, both T1 and T4 have a positive net request imposing
a remote memory allocation. As a result, T4 allocates almost all
the required memory using the space on bank B3, while T1 has
a lower external memory allocation on bank B2. The memory
allocation converges at time t = 33, and some memory needed
by T1 and T4 must be allocated in the swap area.
The event at time t = 50 allows additional considerations. Since
T3 has a positive net request, it gives priority to local requests
and rapidly deallocates memory used by task T4. After that, the
allocation due to the positive allocation request in T4 is partly
satisfied by bank B1.
Then, another aspect to be considered is the behavior of T1
starting from time t = 51. After the occurrence of the event,
the required memory is slightly greater than 100 (see blue line
at time t = 51 in Figure 4a). However, the swapped memory for
task T1 after the event at time t = 50 increases. This behavior is
due to the impossibility to recall memory from the swap area. It

is worth noticing this has not to be considered as a negative side
effect. In fact, the swap-in process of memory from the swap
area requires time and energy, and therefore, as discussed, it is
not desirable. Moreover, some memory of T1 is deallocated on
bank B2 to make space for the local memory required by the
local T2, which increased the T1 memory requests at event t =
51. Concerning this point, consider Figure 5, where the results

40

60

80

100

120

140

160

180

20 25 30 35 40 45 50 55 60

t ask1
t ask2
t ask3
t ask4

(a) Requested and allocated memory for each taskset.

0

10

20

30

40

50

60

70

20 25 30 35 40 45 50 55 60

t ask1
t ask2
t ask3
t ask4

(b) Non allocated memory for each taskset. This is the memory designed to the
swap area when the control law converges.

40

50

60

70

80

90

100

110

20 25 30 35 40 45 50 55 60

bank1
bank2
bank3
bank4

(c) Status for each memory bank.

Fig. 5. Simulation results for Experiment 1, Choice 2.

(in the same scenario as in Figure 4) are obtained with equation
(6d). It is worth noticing that the only difference between the
results in Figure 4 and those reported in Figure 5 arise at
t = 51 where the swapped memory of T1 does not increase
due to a reclaim on the local bank. As a net consequence,
part the swapped memory for T4 increases, because bank B1
deallocates some external memory to make space for its local
reclaim and T4 cannot do the same, since its local bank is full
of local memory. Remark, however, that in this example the
two different policies have equivalent results, in term of total
amount of memory to be allocated in the swap area.

Some final comments are in order. First, as expected, the total
allocation level for each memory bank is always lower or equal
to the maximum available bank space at the end of the transient
period (see Figure 4c), i.e., when the resulting allocation levels
are transmitted to the local processors to be implemented.
Secondly, with both policies (equations (6c) and (6d)) the
controller uses all the available memory space on banks to
allocate memory, thus minimizing the swapped memory. Last,
the allocation of the memory for each application on its own
block is satisfied in one step, allocating up to the maximum
available memory of the bank. The behavior is justified by the
proposed scheme, which gives priority to local allocations over
remote ones (see equation (4a)).

4.2 Experiment 2

In order to highlight the advantages of the Choice 2 in the se-
lection of uii(k), consider a two-banks/two-tasksets simulation
example, see Figure 6.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6121

1 2

Fig. 6. Sketch of the multiprocessor architecture with two
memory banks used in Experiment 2.

0
20
40
60
80
100
120

0 5 10 15 20 25 30 35 40

t ask1
t ask2

(a) Requested and allocated memory for each taskset.

0
20
40
60
80
100
120

0 5 10 15 20 25 30 35 40

t ask1
t ask2

(b) Non allocated memory for each taskset. This is the memory designed to the
swap area when the control law converges.

0
20
40
60
80
100
120

0 5 10 15 20 25 30 35 40

bank1
bank2

(c) Status for each memory bank.

Fig. 7. Simulation results for Experiment 2.

Figure 7 presents the simulation results. At t = 0 no memory is
allocated. At t = 1, the request of T2 is greater than the memory
available on B2, and therefore some memory used by T2 is
allocated on bank B1. However, the event at time t = 25 forces
bank B1 to deallocate part of its external memory due to a local
request. At the same time, bank B2 can reclaim such memory
portion (provided that Choice 2 is adopted), since T2 required a
deallocation on bank 2 itself. The net result is an empty swap
area when the control law reaches the steady state.

5. CONCLUSIONS

The multiprocessor revolution allows to have different proces-
sors accessing their local memory controller and the relative
RAM portion, while the possibility for each processor to ac-
cess the remote memory on another processor enables the so-
called Non-Uniform-Memory-Access (NUMA) multiprocessor
paradigm. The use of the so-called swap area represents a com-
mon solution which allows the collectively memory required
by the running processes to be greater than the available RAM.
In this scenario, the RAM access time and energy depend on
the location on both requesting processor and physical memory
bank, while the access the swap area is to be always considered
the worst solution.

This paper discussed a control-inspired policy to allocate the
memory requests by different applications in a NUMA sys-
tems, trying to maximize the RAM utilization under the locality
requirement. Moreover, the possibility to activate and deacti-

vate the reallocation of deallocated memory from neighboring
memory banks represents another feature which pushes the
exploration of the memory management in commercial NUMA
architectures.
The possibility to allocate the memory which cannot be fit in the
local bank in neighboring ones has two great advantages. First,
the RAM is better used, since a memory-bound application
can invade remote memory banks if they are not used, thus
reducing the swap overhead. Moreover, the possibility for a
memory bank to deallocate the external memory in presence of
local memory requests allows to limit the conflicting situations
between concurrent applications.

REFERENCES

AMD (2002). Amd hypertransport technology-based system
architecture. Technical report, University of Zurich, Depart-
ment of Informatics.

Blagodurov, S., Zhuravlev, S., Fedorova, A., and Kamali, A.
(2010). A case for numa-aware contention management on
multicore systems. In Proceedings of the 19th international
conference on Parallel architectures and compilation tech-
niques, PACT ’10, 557 – 571. ACM, New York, NY, USA.

Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize,
R., Lepers, B., Quema, V., and Roth, M. (2013). Traffic
management: a holistic approach to memory placement on
numa systems. SIGPLAN Not., 48(4), 381–394. doi:10.
1145/2499368.2451157. URL http://doi.acm.org/
10.1145/2499368.2451157.

Jones, R. (1969). Factors affecting the efficiency of a vir-
tual memory. Computers, IEEE Transactions on, C-18(11),
1004–1008. doi:10.1109/T-C.1969.222570.

Majo, Z. and Gross, T.R. (2011). Memory management in numa
multicore systems: trapped between cache contention and
interconnect overhead. In Proceedings of the international
symposium on Memory management, ISMM ’11, 11–20.
ACM, New York, NY, USA.

Molka, D., Hackenberg, D., Schone, R., and Muller, M. (2009).
Memory performance and cache coherency effects on an in-
tel nehalem multiprocessor system. In Parallel Architectures
and Compilation Techniques, 2009. PACT ’09. 18th Interna-
tional Conference on, 261–270. doi:10.1109/PACT.2009.22.

Terraneo, F. and Leva, A. (2013). Feedback-based memory
management with active swap-in. In European Control
Conference ECC.

Ziakas, D., Baum, A., Maddox, R., and Safranek, R. (2010).
Intel quickpath interconnect architectural features supporting
scalable system architectures. In High Performance Inter-
connects (HOTI), 2010 IEEE 18th Annual Symposium on, 1–
6.

Zuo, W., Feng, S., Qi, Z., Weixing, J., Jiaxin, L., Ning, D.,
Licheng, X., Yuan, T., and Baojun, Q. (2009). Group-caching
for noc based multicore cache coherent systems. In Design,
Automation Test in Europe Conference Exhibition, 2009.
DATE ’09., 755–760. doi:10.1109/DATE.2009.5090765.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6122

