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Abstract: This paper considers the linear system identification with batched binary-valued
observations. An iterative parameter estimate algorithm is constructed to achieve the Maximum
Likelihood (ML) estimate. The first interesting result is that there exists at most one finite ML
solution for this specific maximum likelihood problem, which is induced by the fact that the
Hessian matrix of the log-likelihood function is negative definite under binary data and Gaussian
system noises. The global concave property and local strongly concave property of the log-
likelihood function are obtained. Under mild conditions on the system input, the ML function
can be proved to have unique maximum point. The second main result is that the proposed
iterative estimate algorithm converges to a fixed vector with an exponential rate which are
proved by constructing a Lyapunov function. The more interesting result is that the limit of the
iterative algorithm achieves the maximization of the ML function. Numerical simulations are
illustrated to support the theoretical results obtained in this paper well.
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1. INTRODUCTION

System identification with set-valued measurements has
been showing their wide applications in different fields,
such as networked control systems, biological networks,
and communication systems, see, e.g., Wang et al. (2010).
The set-valued sensor introduces substantial difficulties
since only very limited information is available to the sys-
tem identification. Fortunately, the latest research results
that it can be converted to a corresponding Maximum
Likelihood (ML) problem, which shed light on the study
of the set-valued system identification, see, e.g. Godoya
et al. (2011), Chen et al. (2012). However, the solution
of the ML problem usually cannot be obtained explicitly
even limited to the linear system with binary observations.
Instead, people usually search for iterative estimates that
can converge to the ML estimate.

In the ML field, the Expectation Maximization (EM)
algorithm proposed by Dempster et al. (1977) has obtained
great success. It produces a sequence of the iterative

estimates {θ̂t, t = 1, 2, ...} of the parameter θ. As the
iteration step goes on, it is guaranteed that the log-

likelihood function {l(θ̂t)} is non-decreasing. Coupled with
the upper bound of the log-likelihood function, there exists

an l∗ which is the limit of {l(θ̂t)}. But the convergence

of the parameter estimates {θ̂t} cannot be concluded by

the convergence of {l(θ̂t)}, see, e.g. Wu (1983). Hence, its
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theoretical feasibility based on the specific log-likelihood
function with binary data and Gaussian system noises is
worthy of being derived.

For binary-valued systems, the EM algorithm is introduced
by Godoya et al. (2011) to estimate the model parameter
and simulation results show the convergence property of
the iterative procedures. However, there are still some
fundamental questions to be answered such as how to
construct a convergent iterative estimate algorithm? What
is the convergence rate? What kind of properties does the
limit of the iteration have?

This paper constructs an iterative algorithm to estimate
the system parameter based on batched binary data to
achieve the ML estimate. Under mild conditions on the
system input, the ML function is proved to have unique
maximum point, the necessary and sufficient condition for
which is given. The algorithm is proved to be convergent
with an exponential rate to a fixed vector, which is
exactly the ML estimate under batched binary-valued
observations.

The rest of the paper is organized as following: Section 2
introduces the identification problem and its correspond-
ing ML criterion; and an iteration estimate algorithm is
constructed. Section 3 analyzes the likelihood function
and obtains a sufficient and necessary condition for the
existence and uniqueness of the maximum point of the like-
lihood function. Section 4 derives the convergence of the
algorithm and obtains an exponential convergence rate.
Some results are illustrated through extensive numerical
simulations in Section 5. Section 6 concludes the paper
and discusses related future works.
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2. PROBLEM FORMULATION

In this section, the system with batched binary-valued
observations is introduced and the corresponding parame-
ter identification problem is formulated. The ML estimate
problem is given and an iterative algorithm is constructed.

2.1 Binary-valued system

We consider the scheme where noise enters between the n-
dimensional linear system and a binary sensor. The system
can be described by{

yk = φTk θ + ek,
sk = I[yk≤C], 1 ≤ k ≤ N, (1)

where φk ∈ Rn is the system input, yk ∈ R is the system
output and θ ∈ Rn is a constant but unknown param-
eter vector; sk ∈ {0, 1} is the binary-valued observation
generated by the comparison between the system output
and a given sensor threshold C ∈ R, I is the indicator
function. The data length is N . For all k ≤ N , system
noise EN = {e1, e2, . . . , eN} is assumed to be independent
with a zero-mean and variance 1 Gaussian distribution.

Assumption 1. Matrix A =
∑N
k=1 φkφ

T
k is positive defi-

nite.

Remark 1. Assumption 1 is the mathematical description
of persistent excitation condition, which is a common
assumption in the research of system identification, see,
e.g. Ljung (1999).

The problem of interest is to estimate the parameter θ us-
ing the binary-valued observations ON = {s1, s2, . . . , sN}
and input data IN = {φ1, φ2, . . . , φN}.

2.2 Maximum likelihood criterion

Consider system (1) with the input data IN and output
data ON , the log-likelihood function l(θ) is given by

l(θ) =
∑
{k≤N,sk=1} log[F (C − φTk θ)]

+
∑
{k≤N,sk=0} log[1− F (C − φTk θ)], (2)

where F (x) and f(x) are the Cumulative Distribution
Function(CDF) and Probability Density Function(PDF)
of the standard normal distribution.

The corresponding ML estimate is the parameter that
maximize the log-likelihood function:

θ̂ = arg max
θ
l(θ). (3)

Remark 2. Since log-likelihood function and related ML

estimate are relevant to N observations, lN (θ) and θ̂N are
more accurate representation. In this paper, for the con-

venience of description, symbols l(θ) and θ̂ are employed.

2.3 Iterative estimate algorithm

At first, we introduce the basic idea and some common
properties of the EM algorithm. For the details of the EM

algorithm, see, e.g. Dempster et al. (1977). Given θ̂t which
is the estimate at iteration t, the core idea of the EM

algorithm is to construct a function l(θ|θ̂t) that satisfies
the following 2 properties:

(i) l(θ|θ̂t) ≤ l(θ) holds for all θ,

(ii) l(θ̂t|θ̂t) = l(θ̂t),

and then calculate the argument θ̂t+1 of the maximum

value of function l(θ|θ̂t). Hence,

l(θ̂t+1) ≥ max l(θ|θ̂t) ≥ l(θ̂t|θ̂t) = l(θ̂t).

This guarantees the non-decrease of log-likelihood func-

tion. The construction process of function l(θ|θ̂t) is the
E-step and maximization process is the M-step.

Back to the binary-valued model, the E-step provides the

following l(θ|θ̂t) with quadratic form:

l(θ|θ̂t) = − 1
2θ
T
(∑N

k=1 φkφ
T
k

)
θ +

[(∑N
k=1 φkφ

T
k

)
θ̂t

−
(∑N

k=1 φk ·f(C − φTk θ̂t)
[ I[sk=1]

F (C−φT
k
θ̂t)
− I[sk=0]

F (φT
k
θ̂t−C)

])]T
θ

+l1(θ̂t),

where l1(θ̂t) is the part which is independent from θ.

Under Assumption 1, the iterative algorithm is obtained
as following:

θ̂t+1 = arg max
θ
l(θ|θ̂t)

= θ̂t −
(∑N

k=1 φkφ
T
k

)−1 (∑N
k=1 φkf(C − φTk θ̂t)

·
[ I[sk=1]

F (C−φT
k
θ̂t)
− I[sk=0]

1−F (C−φT
k
θ̂t)

])
. (4)

The above algorithm will be showed to converge to the ML
estimate (3) with an exponential rate in the rest of this
paper. As the initial issue, the uniqueness of the solution
of (3) is need to be assured, which makes the estimate is
exactly the system parameter.

3. EXISTENCE AND UNIQUENESS OF THE ML
ESTIMATE

In this section, we explore the properties of ML estimate
by analyzing the log-likelihood function (2) and prove the
existence and uniqueness of ML estimate. The main reason
is that the special likelihood function with binary-valued
observations is concave.

Lemma 1. Function p(x) = f(x)xF (x)+f2(x)
F 2(x) is a strictly

decreasing function and 0 < p(x) < 1 for x ∈ (−∞,∞).

Proof. The result can be obtained by repeated use of
L’Hôpital’s rule, see, e.g., Apostol (1974). 2

The non-negative property of p(x) induces the concaveness
of the log-likelihood function, which can be described in
the following lemma.

Lemma 2. Under Assumption 1, log-likelihood function
l(θ) given in (2) is a concave function on Rn. Given
any r > 0, l(θ) is a strongly concave function on set
S = {θ, ‖θ‖ ≤ r}.

Proof. Based on Assumption 1, A > 0. Hence, there
exists a minimal eigenvalue λ1 = λmin(A) such that A ≥
λ1I.
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Calculate the gradient vector and Hessian matrix of log-
likelihood function:

∇l(θ) =
[ ∑
{sk=1}

−f(C − φTk θ)
F (C − φTk θ)

+
∑
{sk=0}

f(φTk θ − C)

F (φTk θ − C)

]
φk,

∇2l(θ) =−
[ ∑
{sk=1}

f(x)xF (x) + f2(x)

F 2(x)

∣∣∣
x=C−φT

k
θ

+
∑
{sk=0}

f(x)xF (x) + f2(x)

F 2(x)

∣∣∣
x=φT

k
θ−C

]
φkφ

T
k

for k ≤ N .

Define p(x) = f(x)xF (x)+f2(x)
F 2(x) and rewrite the Hessian

matrix as following:

∇2l(θ) =−
N∑
k=1

[
p(C − φTk θ)I[sk=1]

+ p(φTk θ − C)I[sk=0]

]
φkφ

T
k .

Lemma 1 tells us the monotonicity and boundedness of
function p(x). Hence,∇2l(θ) ≤ 0 can be directly concluded
through p(x) > 0, which infers the concave property of
l(θ). If fixed on the set S = {θ, ‖θ‖ ≤ r}, the boundedness
of θ and finiteness of φk guarantee that there exists µ > 0
such that

min
k

(
p(C − φTk θ)I[sk=1] + p(φTk θ − C)I[sk=0]

)
≥ µ.

Hence, ∇2l(θ) ≤ −µ
∑N
k=1 φkφ

T
k = −µA. Coupled with

A ≥ λ1I, we can see that ∇2l(θ) ≤ −λ1µI, which infers
the strongly concave property of function l(θ) on the set
S . 2

Theorem 3. Under Assumption 1, log-likelihood function
l(θ) given in (2) has at most one maximum point.

Proof. Assume there exist two maximum points θ1 and
θ2. Let r1 = max(‖θ1‖, ‖θ2‖), Lemma 2 provides the
strongly concave property of l(θ) on the set S = {θ, ‖θ‖ ≤
r1}, which makes it impossible to come up two different
maximum point on the set S . The contradiction shows
that there is at most one maximum point for l(θ). 2

To reveal the condition that ML estimate exists. Some
novel conditions are given.

Definition 1. Denote

Ψ = (φ1(I[s1=0] − I[s1=1]), · · · , φN (I[sN=0] − I[sN=1]))

as the integrate matrix which combines the information of
both input data IN and binary-valued observation ON .

Definition 2. Given input IN and binary-valued observa-
tions ON , If there does not exist non-zero vector γ ∈ Rn
such that ΨT γ ≥ 0, then data (IN ,ON ) is called effective,
otherwise it is called ineffective.

Lemma 4. Under Assumption 1, if data (IN ,ON ) is effec-
tive, then ∀ b ∈ R, the set {θ, l(θ) ≥ b} is bounded.

Proof. The detailed proof is in Appendix A.1.

Based on the previous discussion, we can give an explicit
description for the existence and uniqueness of ML esti-
mate.

Theorem 5. Under Assumption 1, the log-likelihood func-
tion l(θ) given in (2) has and only has one maximum point
iff that data (IN ,ON ) is effective.

Proof. We prove the theorem from two directions.

Sufficiency. Given any θ1, the global maximum point of
l(θ) is on set Sθ1 = {θ, l(θ) ≥ l(θ1)}. From Lemma 4, Sθ1
is bounded set, which infers the existence of maximum
point of l(θ). Coupled with the result of Theorem 3, there
is exactly one maximum point for l(θ).

Necessity. If (IN ,ON ) is ineffective, there is a non-zero
vector γ ∈ Rn such that ΨT γ ≥ 0. Because ΨΨT =∑N
k=1 φkφ

T
k , Assumption 1 rejects that ΨT γ = 0. Hence,

there is at least one positive component for vector ΨT γ.
The form of the ith-component of ΨT γ is as following:

(ΨT γ)i = −φTi γI[si=1] + φTi γI[si=0].

Given any parameter θ, we define a scalar function hθ(r):

hθ(r) = l(θ + rγ)

=
∑
{k,sk=1} log[F (−φTk γr + C − φTk θ)]

+
∑
{k,sk=0} log[F (φTk γr + φTk θ − C)].

Obviously, hθ(r) is a strictly increasing function.

Suppose θ∗ is a maximum value point, hθ∗(r) = l(θ∗+ rγ)
should be non-increasing at r = 0, which is contradictory
with the strictly increasing property of hθ∗(r). So, there
does not exist any finite maximum point for l(θ). 2

Remark 3. Since the effective property of data is not easy
to verify through Definition 2, we construct a criteri-
on which only needs the existence of one point at N -
dimensional space.

Criterion 1. If there exists ρ ∈ RN > 0, s.t. Ψρ = 0, then
data (IN ,ON ) is effective.

Proof. Suppose the data (IN ,ON ) is ineffective, there
is a non-zero vector γ ∈ Rn such that ΨT γ ≥ 0. If
there exists ρ > 0, then ρT (ΨT γ) > 0. While because
Ψρ = 0, ρTΨT = 0 infers ρT (ΨT γ) = 0, which concludes
the contradiction. Hence, data (IN ,ON ) is effective. 2

4. CONVERGENCE OF THE ITERATIVE ESTIMATE

In this section, we will prove the proposed iterative algo-
rithm converging to the ML estimate with an exponential
rate by using a Lyapunov method.

Assumption 2. Data (IN ,ON ) is effective.

Remark 4. As Theorem 5 shows, if data (IN ,ON ) is
ineffective, the log-likelihood function does not have any
finite maximum point. Hence, Assumption 2 is necessary
on the convergence to the ML estimate. Additionally, if N
is much larger than n, then the kernel of integrate matrix Ψ
is an (N−n) dimensional sub-space, which is very dense in
N -dimensional space. This means it is probably true that
Criterion 1 is satisfied.

Denote A =
∑N
k=1 φkφ

T
k and

Q1 = (1− ε)−1(θ̂2 − θ̂1)TA(θ̂2 − θ̂1).

Then, we have the following main result, which infers that

the iterative estimate θ̂t constructed in (4) converges to
the ML estimate with exponential convergence rate.
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Theorem 6. Under Assumptions 1 and 2 , the iteration

{θ̂t} based on (4) satisfies

‖θ̂t − θ̂‖ ≤

√
Q1

λmin(A)
·
√

(1− ε)
t

1−
√

(1− ε)
,

where θ̂ is the ML estimate (3), 0 < ε < 1 is a constant
value dependent on the input data IN and binary-valued
observation ON , λmin(A) is the minimal eigenvalue of A
and ‖ · ‖ is the Euclidean norm.

Proof. Since EM algorithm increases the log-likelihood

function value as the iteration goes on, {θ̂t, t ≥ 1} ⊂
{θ, l(θ) ≥ l(θ̂1)} is bounded according to Lemma 4. For
the simplicity, for all 1 ≤ k ≤ N , define

gk(x) = −f(x)

[
I[sk=1]

F (x)
−

I[sk=0]

1− F (x)

]
.

Then,

g′k(x) = I[sk=1]
f(x)xF (x) + f2(x)

F 2(x)

+I[sk=0]
−f(x)x(1− F (x)) + f2(x)

(1− F (x))2
.

Hence, (4) can be transformed to

θ̂t+1 = θ̂t −
(∑N

k=1 φkφ
T
k

)−1(
−
∑N
k=1 φkgk(C − φTk θ̂t)

)
= θ̂t −A−1

(
−
∑N
k=1 φkgk(C − φTk θ̂t)

)
.

Furthermore, we can see that

θ̂t+1 − θ̂t = θ̂t − θ̂t−1 −A−1
(
−
∑N
k=1 φk

(
gk(C − φTk θ̂t)

−gk(C − φTk θ̂t−1)
))

= θ̂t − θ̂t−1 −A−1
(∑N

k=1 φkg
′
k(C − φTk θ̃kt)

·
(
φTk (θ̂t − θ̂t−1)

))
=
[
In −A−1

(∑N
k=1 φkφ

T
k g
′
k(C − φTk θ̃kt)

)]
·(θ̂t − θ̂t−1), (5)

where θ̃kt = λktθ̂t + (1 − λkt)θ̂t−1, 0 < λkt < 1 for all

1 ≤ k ≤ N , t ≥ 1. From Lemma 1, p(x) = f(x)xF (x)+f2(x)
F 2(x)

is a strictly decreasing function and 0 < p(x) < 1.

Coupled with the boundedness of θ̂t, t = 1, 2, . . . provided
by Lemma 4 and the finiteness of φk, k = 1, 2, . . . , N , we
can obtain a lower bound ε satisfying 1 > ε > 0 such that
for all (k, t)

1 > p(C − φTk θ̃kt) > ε

and so does p(−(C − φTk θ̃kt)).

Let pk,t denote g′k(C − φTk θ̃kt). Then for all (k, t),

pk,t = g′k(C − φTk θ̃kt)
= I[sk=1]p(C − φTk θ̃kt) + I[sk=0]p(−(C − φTk θ̃kt))
∈ (ε, 1).

For the simplicity, for all t ≥ 1, we define

Bt =
∑N
k=1 φkφ

T
k g
′
k(C − φTk θ̃kt) =

∑N
k=1 φkφ

T
k pk,t,

xt = θ̂t+1 − θ̂t.
According to the boundedness of pk,t and Assumption 1,
∀t ≥ 1, A > Bt > εA > 0. Equation (5) can be translated
to the following form:

xt = (In −A−1Bt)xt−1. (6)

We prove the convergence of {θ̂t} by analyzing the prop-
erty of a Lyapunov function Qt = (1− ε)−txTt Axt.

Qt = (1− ε)−txTt Axt
= (1− ε)−txTt−1(In −A−1Bt)TA(In −A−1Bt)xt−1
=Qt−1 + (1− ε)−txTt−1

[
(In −A−1Bt)TA(In −A−1Bt)
−(1− ε)A

]
xt−1

=Qt−1 + (1− ε)−txTt−1
[
A− 2Bt +BtA

−1Bt

−(1− ε)A
]
xt−1

=Qt−1 + (1− ε)−txTt−1
[
BtA

−1Bt −Bt
+εA−Bt

]
xt−1

For all t ≥ 1, A > Bt > 0, so that A−1 < B−1t , and
furthermore, BtA

−1Bt < BtB
−1
t Bt = Bt. Coupled with

εA < Bt, we can see that

BtA
−1Bt −Bt + εA−Bt < 0⇒ Qt ≤ Qt−1.

For all t > 1,

Qt ≤ Q1⇒ (1− ε)−txTt Axt ≤ Q1

⇒‖xt‖2 ≤ Q1

λmin(A) (1− ε)
t

where λmin(A) is the minimal eigenvalue of matrix A.
Hence,

‖θ̂t+r − θ̂t‖ = ‖xt + xt+1 + · · ·+ xt+r−1‖
≤ ‖xt‖+ ‖xt+1‖+ · · ·+ ‖xt+r−1‖

≤
√

Q1

λmin(A)

[√
(1− ε)

t
+
√

(1− ε)
t+1

+ · · ·+
√

(1− ε)
t+r−1]

=
√

Q1

λmin(A) ·
√

(1−ε)
t
(1−
√

(1−ε)
r
)

1−
√

(1−ε)

→ 0 as t→∞, r →∞
Based on Cauchy criterion, {θ̂t} convergence to some point

θ̂. Additionally, fix t and let r →∞

‖θ̂ − θ̂t‖ ≤

√
Q1

λmin(A)
·
√

(1− ε)
t

1−
√

(1− ε)
.

We can see that convergence rate is of the same order with

the exponential rate
√

(1− ε)
t
.

Recall that θ̂t+1 = θ̂t + A−1∇l(θ̂t). As t → ∞, θ̂ = θ̂ +

A−1∇l(θ̂) infers that ∇l(θ̂) = 0. This concludes that θ̂

is the ML estimate. In addition, by Theorem 5, θ̂ is the
unique maximum value of log-likelihood function. 2

Remark 5. Assumption 2 provides restriction on the input
information and output information. Hence, the exponen-
tial convergence is not completely in the sense of probabil-
ity. The more strict case such as periodic input has been
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Fig. 1. Curve of the log-likelihood function l(θ): the left is
the effective data case, the right is the ineffective data
case.

discussed thoroughly by Wang et al. (2003), where the ML
estimate can be obtained in a closed form.

5. NUMERICAL SIMULATIONS

In this section, we illustrate the main results by extensive
simulations.

5.1 Log-likelihood function curve

To illustrate the log-likelihood function intuitively, we
limit the model dimension to n = 1. In this case, the

Assumption 1 degenerates to that
∑N
k=1 φ

2
k > 0. If the

assumption is not satisfied, then ∀k, φk = 0, means we
cannot obtain any useful input information.

That data {IN ,ON} is ineffective is equivalent that one
of (A1) and (A2) is true.

(A1) For all k that φk ≥ 0, sk = 1;

For all k that φk ≤ 0, sk = 0.

(A2) For all k that φk ≤ 0, sk = 1;

For all k that φk ≥ 0, sk = 0.

If we generate the data based on the model, these cases
hardly emerge. To illustrate the necessity of “effective
property”, we adopt a kind of data generate process which
is nothing to do with the model.

Data Generate Process. Fix sample size N = 10, divide
observations ON equally into two parts:

(B): s=[ones(N/2,1);zeros(N/2,1)];

As for input data IN , two cases are considered:

(C1): phi=[rand(N/2,1); -rand(N/2,1)];

(C2): phi=[randn(N,1)];

(B)+(C1) corresponds to the ineffective data (IN ,ON ),
and (B)+(C2) corresponds to the effective data (IN ,ON ).
In both cases, log-likelihood function l(θ) where θ ∈
(−10, 10) is shown in Figure 1. The “effective property”
indeed provides the existence and uniqueness of finite ML
estimate.

5.2 Convergence of the proposed iterative algorithm

In this section, the convergence of the constructed algo-
rithm (4) is illustrated by numerical simulations. The brief
simulation process is as following:
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Fig. 2. The solid lines are the curves of all 7 components of

estimated parameter θ̂t. The dotted lines correspond
to the true parameter.

Step 1: Data Generate. Fix the sample size N = 500, mod-
el dimension n = 7, sensor threshold C = 0, and model
parameter θ = (−3,−2,−1, 0, 1, 2, 3)T . Suppose error EN
and input data IN obey standard normal distribution.
The binary-valued observations ON is generated by (1).

Step 2: Initial Vector Select. To prove the EM algorithm
can converge to the uniform ML estimate, under the
same effective data {IN ,ON}, we adopt random vector

as the iterative initial vector θ̂1. All components of θ̂1
are generated by normal distribution with mean 0 and
covariance 3.

Step 3: Parameter Estimate. Based on the initial value θ̂1
and iteration process (4), we can generate the iteration

estimates {θ̂t, t ≥ 1}.
The simulation results of iteration estimates are shown in
Figure 2. Under various initial vectors, all components of

estimates {θ̂t} converge to the unique ML estimate which
is quite close to the true parameter. In addition, the curves
of Figure 2 indicate the exponential convergence rate.

5.3 Consistence of the ML estimate

In this subsection, we illustrate the consistence of the
ML estimate by numerical simulations. In other words,
whether the ML estimate converges to the true parameter
with the increase of sample size.

Select sample size N = 500, 100, 1500, 2000, respectively.
In each case, we repeat the data generation and parameter
estimate for 100 iterative steps.

Figure 3 shows the distribution of each component of the
ML estimates. We can see that with the increase of sample
size, the ML estimate converges to the true parameter in
some probability meaning.

6. SUMMARY

In this paper, we have considered system identification
with batched binary data through the ML criterion. The
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Fig. 3. The corresponding component of the ML estimates
for 100 times sampling

local and global concave properties of log-likelihood func-
tion has been obtained by the negativeness of the Hessian
matrix, which infers that there is at most one finite ML
estimate. Furthermore, a necessary and sufficient condition
for that there is unique finite solution for the ML problem
has been given. An iterative algorithm is constructed to es-
timate the parameter and the convergence of the algorithm
have been obtained, the limit of which is exactly the ML
estimate. Surprisingly, the convergence has an exponential
rate.

In this paper, the threshold is assumed to be known,
which is not common in many cases. How to construct a
algorithm to estimate the parameter and threshold simul-
taneously is also an attractive question. The development
from finite impulse response models to general linear and
even nonlinear models are also promising.
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Appendix A. PROOF OF LEMMAS 1 AND 4

A.1 Proof of Lemma 4

Proof. The lemma is equivalent that for all b < 0, there
exists an upper bound r(b) > 0, if ‖θ‖ ≥ r(b), l(θ) < b.
The below proof is to construct the upper bound r(b).

For the simplicity, some definitions are given in advance,

fα,k(x) = log[F (C − φTk αx)]I[sk=1]

+ log[F (φTk αx− C)]I[sk=0],

xb,k(α) =
C − F−1(eb)

φTk α
I[sk=1] +

C + F−1(eb)

φTk α
I[sk=0].

where α ∈ Rn, b, x ∈ R, k = 1, 2, · · · , N . Additionally,
fα,k(x) < 0 because the CDF has a upper bound 1.

Arbitrarily select an unit vector α, Definition 2 tells that
there exists a k1 such that φTk1α(I[sk1=0] − I[sk1=1]) < 0.

Suppose sk1 = 1(sk1 = 0 is a similar case), then φTk1α > 0,

furthermore, function fα,k1(x) = log[F (C − φTk αx)] is a
strictly decreasing function and tends to −∞ as x → ∞.
Hence, for any given b < 0,

x ≥ xb,k1(α)⇒ x ≥ C − F−1(eb)

φTk α

⇒C − φTk αx ≤ F−1(eb)

⇒ log(F (C − φTk αx)) ≤ b
⇒ fα,k1(x) ≤ b.

For all x ≥ xb,k1(α), l(xα) =
∑N
k=1 fα,k(x) < fα,k1(x) ≤ b.

This is equivalent that for any vector θ whose correspond-
ing unit vector is α, if ‖θ‖ ≥ xb,k1(α), l(θ) < b. That is,

the set {θ, l(θ) ≥ b, θ
‖θ‖ = α} is bounded by xb,k1(α).

Because φTk1α(I[sk1=0]−I[sk1=1]) < 0, there exists an ε > 0

and a set Aα(ε) = {α0 : ‖α0‖ = 1, ‖α0 − α‖ ≤ ε} such
that for any β ∈ Aα(ε), φTk1β(I[sk1=0] − I[sk1=1]) < 0.

This means for any β ∈ Aα(ε), there exists xb,k1(β) as

the bound of {θ, l(θ) ≥ b, θ
‖θ‖ = β}. The continuity

of function xb,k1(α0) and compactness of Aα(ε) infers
that maxα0∈Aα(ε) xb,k1(α0) < ∞. Define an open subset
Bα = {α0 : ‖α0‖ = 1, ‖α0 − α‖ < ε/2} and r(α) =
maxα0∈Bα(ε) xb,k1(α0) < ∞. We can see that for all θ
whose corresponding unit vector is within open set Bα,
if ‖θ‖ ≥ r(α), l(θ) < r.

Let S = {α : ‖α‖ = 1} denote N -dimensional sphere
whose radius is 1. {Bα, α ∈ S} is an open cover of
S. Coupled with the compactness of S, there is a finite
subcover {Bαi , i ≤ m} of S. Let r denote max1≤i≤m r(αi),
we can see that for all θ, if ‖θ‖ ≥ r, l(θ) < b. 2
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