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Abstract: Anti-slug control of multiphase risers involves stabilizing an open-loop unstable
operating point. PID control is the preferred choice in the industry, but appropriate tuning
is required for robustness. In this paper, we define PIDF as a PID with a low-pass filter on
its derivative action where the low-pass filter is crucial for the dynamics. We compared a
new PIDF tuning based on Internal Model Control (IMC), together with two other tunings
from the literature, with an optimal PIDF controller. The optimal PIDF tuning was found
by minimizing a performance cost function while satisfying robustness requirements (input
usage and complementary sensitivity peak). Next, we considered two types of robust H∞

controller (mixed-sensitivity and loop-shaping). We compared the controllers based on their
pareto-optimality, and we tested the controllers experimentally. We found that the new IMC-
PIDF controllers is the closest to the optimal PIDF controller, but the robustness can be further
improved by H∞ loop-shaping.
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1. INTRODUCTION

The severe-slugging flow regime which is common at off-
shore oilfields is characterized by large oscillatory varia-
tions in pressure and flow rates. This multi-phase flow
regime in pipelines and risers is undesirable and an ef-
fective solution is needed to suppress it (Godhavn et al.,
2005). One way to prevent this behaviour is to reduce
the opening of the top-side choke valve. However, this
conventional solution reduces the production rate from
the oil wells. The recommended solution to maintain a
non-oscillatory flow regime together with the maximum
possible production rate is active control of the topside
choke valve (Havre et al., 2000). Measurements such as
pressure, flow rate or fluid density are used as the con-
trolled variables and the topside choke valve is the main
manipulated variable.

Existing anti-slug control systems are not robust and tend
to become unstable after some time, because of inflow
disturbances or plant changes. The main objective of our
research is to find a robust solution for anti-slug control
systems. The nonlinearity of the system is problematic for
stabilization as the gain changes drastically between dif-
ferent operating conditions. In addition, another difficulty
for stabilization is the effective time delay .

One solution is to use nonlinear model-based controllers to
counteract the nonlinearity (e.g. Di Meglio et al., 2010).
However, we have found that these solutions are not robust
against time delays or plant/model mismatch (Jahanshahi
and Skogestad, 2013b).

1 Corresponding author

An alternative approach is to use PID controllers to
stabilize the unstable flow. The PI and PID controllers are
still the most widely used controllers in the industry and
even from the academic point of view they are unbeatable
in combined robustness and performance.

The purpose of this paper is to verify different tuning
rules when applied to anti-slugging control and to give
recommendations about the most appropriate rules to
use. For this, we compare PID controllers with optimal
controllers in simulations and experiments.

Jahanshahi and Skogestad (2013a) showed that a linear
model with two unstable poles and one stable zero is suffi-
cient for designing an anti-slug controller. They identified
such a model from a closed-loop step test and proposed a
PIDF tuning based on Internal Model Control (IMC) for
this system. This tuning rules were slightly modified by
including the derivative action filter.

We here define a four-parameter PIDF controller as a
PID controller with filtered derivative action (Åström and
Hägglund, 2006).

KPIDF(s) = Kp +
Ki

s
+

Kds

Tfs+ 1
(1)

where Kp is the proportional gain, Ki is the integral
action gain, Kd is the derivative action gain and Tf is the
filter time constant. We differentiate this from a standard
PID controller, because the low-pass filter is a crucial
part of the controller for our application. That is, the
filter time constant cannot be reduced without sacrificing
performance.

One of the optimal controllers used for the comparison,
is a PIDF where optimal tuning are found by minimizing
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Fig. 1. Schematic presentation of system

a performance cost function while specifying robustness
requirement (input usage and complementary sensitivity
peak). Then, we consider use of two H∞ robust con-
trollers. H∞ mixed-sensitivity design minimizes σ(S) for
performance, σ(T ) for robustness and low sensitivity to
noise, and σ(KS) to penalize large inputs. In H∞ loop-
shaping design, we specify an initial plant loop shape,
then the loop-shaping procedure increases robustness by
maximizing the stability margin (Skogestad and Postleth-
waite, 2005). The PIDF controller found by (Jahanshahi
and Skogestad, 2013a) is used to make the initially shaped
plant for the loop-shaping design.

For sake of completeness, we have also included in our
study the simple PID tuning rules for unstable processes
proposed by Rao and Chidambaram (2006) and Lee et al.
(2006).

This paper is organized as follows. Section 2 describes the
pipeline-riser system. The new PIDF tuning is presented
in Section 3, and the optimal PIDF tuning is introduced
in Section 4. Mixed-sensitivity and loop-shaping designs
are presented in Section 5 and Section 6, respectively. The
results are presented in Section 7. Finally, we summarize
the main conclusions and remarks in Section 8.

2. SYSTEMS DESCRIPTION

Fig. 1 shows a schematic presentation of the system. The
inflow rates of gas and liquid to the system, wg,in and
wl,in, are assumed to be independent disturbances and
the top-side choke valve opening (0 < Z < 100%) is the
manipulated variable. A fourth-order dynamic model for
this system was presented by Jahanshahi and Skogestad
(2011). The state variables of this model are as:

• mgp: mass of gas in pipeline [kg]
• mlp: mass of liquid in pipeline [kg]
• mgr : mass of gas in riser [kg]
• mlr: mass of liquid in riser [kg]

The four state equations of the model are

ṁgp = wg,in − wg (2)

ṁlp = wl,in − wl (3)

ṁgr = wg − αw (4)

ṁlr = wl − (1− α)w (5)

The flow rates of gas and liquid from the pipeline to the
riser, wg and wl, are determined by pressure drop across
the riser-base where they are described by virtual valve
equations. The outlet mixture flow rate, w, is determined
by the opening percentage of the top-side choke valve, Z.
The different flow rates and the gas mass fraction, α, in the
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Fig. 2. Block diagram of Internal Model Control system

equations (2)-(5) are given by additional model equations
given by Jahanshahi and Skogestad (2011).

However, Jahanshahi and Skogestad (2013a) showed that a
second-order model with two unstable poles and one stable
zero is enough for the control design purposes, and such a
model can be identified by a closed-loop step test.

3. PIDF TUNING BASED ON IMC DESIGN

3.1 IMC design for unstable systems

The Internal Model Control (IMC) design procedure is
summarized by Morari and Zafiriou (1989). The block
diagram of the IMC structure is shown in Fig. 2. Here,
G(s) is the nominal model which in general has some

mismatch with the real plant Gp(s). Q̃(s) is the inverse
of the minimum phase part of G(s) and f(s) is a low-pass
filter for robustness of the closed-loop system.

The IMC configuration in Fig. 2 cannot be used directly for
unstable systems; instead we use the conventional feedback
structure with the stabilizing controller

C(s) =
Q̃(s)f(s)

1−G(s)Q̃(s)f(s)
. (6)

For internal stability, Q̃f and (1−GQ̃f) have to be stable.
We use the identified model with two unstable poles and
one stable zero (Jahanshahi and Skogestad, 2013a) as the
plant model:

G(s) =
b̂1s+ b̂0

s2 − â1s+ â0
=

k′(s+ ϕ)

(s− π1)(s− π2)
(7)

and we get

Q̃(s) =
(1/k′)(s− π1)(s− π2)

s+ ϕ
(8)

We design the filter f(s) as explained by Morari and
Zafiriou (1989), which gives the following third order filter

f(s) =
α2s

2 + α1s+ α0

(λs+ 1)
3

, (9)

where λ is an adjustable closed-loop time-constant. We
choose α0 = 1 to get integral action and the coefficients
α1 and α2 are calculated by solving the following system
of linear equations:

(

π1
2 π1 1

π2
2 π2 1

)

(

α2

α1

α0

)

=

(

(λπ1 + 1)3

(λπ2 + 1)
3

)

(10)

Finally, from (6) the feedback version of the IMC controller
becomes (Jahanshahi and Skogestad, 2013a)

C(s) =
[ 1

k′λ3 ](α2s
2 + α1s+ 1)

s(s+ ϕ)
. (11)
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3.2 PIDF implementation of IMC controller

The IMC controller in (11) is a second order transfer
function which can be written in form of a PID controller
with a low-pass filter.

KPIDF(s) = Kp +
Ki

s
+

Kds

Tfs+ 1
(12)

where
Tf = 1/ϕ (13)

Ki =
Tf

k′λ3
(14)

Kp = Kiα1 −KiTf (15)

Kd = Kiα2 −KpTf (16)

For the controller work in practice, we require that Kp < 0
and Kd < 0; and we must choose λ such that these two
conditions are satisfied.

4. OPTIMAL PIDF CONTROL

For comparison purpose, we will define an optimal PIDF
controller. However, optimality is generally difficult to
define as we need to balance various factors such as
output performance, robustness, input usage and noise
sensitivity. We follow Grimholt and Skogestad (2012) and
define the output performance as a weighted sum of
the integrated square error (ISE) for disturbance at the
plant input and output. However, a controller with good
performance (low J) may not be robust. Thus, Grimholt
and Skogestad (2012) proposed to optimize J for a given
robustness (Ms value). This gives a set of pareto-optimal
controllers. However, we found that for our application
it was necessary to add a third dimension to constraint
the input usage (Mks). This results in a pareto optimal
surface.

4.1 Evaluation of performance, robustness and input usage

Performance: Output performance is related to the
difference between the measurement y(t) and the setpoint
ys, and can be quantified in several different ways. In this
paper we chose to quantify the performance in terms of a
single scalar, namely the integrated squared error:

ISE =

∫

∞

0

(y(t)− ys(t))
2 dt (17)

To balance the servo/regulatory trade-off we choose a
weighted average of ISE for a step input load disturbance
di and ISE for a step output load disturbance do:

J(K) = 0.5

[

ISEdo(K)

ISE◦

do

+
ISEdi(K)

ISE◦

di

]

(18)

where K is a PIDF-controller. The weighting factors ISE◦

di

and ISE◦

do are for reference PIDF-controllers, which for
the given process is ISE-optimal for a step load change
on input and output, respectively. More details about
this formulation can be found in Grimholt and Skogestad
(2012).

Robustness: Robustness can be quantified in several
ways. Most commonly used is the sensitivity peak (Ms),
complementarity sensitivity peak (Mt), gain margin (GM),

phase margin (PM), and allowable time delay error (∆θ
θ
).

In this paper we have chosen to quantify robustness as

M = max(Ms,Mt) (19)

where Ms = ‖S‖∞ = max
ω

|S| and Mt = ‖T ‖∞ = max
ω

|T |
for all frequencies and

S =
1

1 +GK
, T =

GK

1 +GK
(20)

‖ · ‖∞ is the H∞-norm, which gives the peak value
in the frequency domain. A small M tells that large
relative perturbations in the process transfer functions are
permitted (Åström and Hägglund, 2006). Since our system
is unstable, we will normally have M = Mt. For stable
processes, however, we would generally have M = Ms.

Input usage: A major concern in our application is to
limit the input usage. This can be achieved by limiting
the magnitude peak Mks = ‖KS‖∞ = max

ω
|KS|, where

KS =
K

1 +GK
(21)

4.2 Optimization problem:

The pareto optimal PIDF controller (K) was found by
solving the following optimization problem

min
K

J(K) = 0.5

[

ISEdo(K)

ISE◦

do

+
ISEdi(K)

ISE◦

di

]

s.t. M = m; Mks = mks (22)

for various combinations of m (the desired M value) and
mks (the specified bound in the magnitude of the input
signal).

Computing the optimal controller: We propose solving
the above optimization problem using gradient based
nonlinear programming (NLP) techniques due to their fast
convergence properties. However, the reliability of such
methods depends on the quality of the gradients used
by the NLP solvers. For this purpose, we use forward
sensitivity calculation to obtain the exact gradients (∇KJ)
of the objective function with respect to the parameters
of the controller. The forward sensitivity method principle
resides on first calculating E = dx

dt
, where x are the closed-

loop states of the system, and then relating this to J
through chain-rule. Following the derivation by Biegler
(2010), E can be obtained by solving the system

dE

dt
=

∂f

∂x
E(t) +

∂fT

∂K
, B(0) = 0 (23)

where f ≡ dx
dt

= A(K)x + B(K)u represents the state-
space model of the closed-loop system. The gradient is
then computed by

∇KJ =
∂J

∂x
E(tf ) +

∂J

∂K
(24)

Note that the required partial derivatives may be com-
puted using automatic differentiation or symbolic differen-
tiation tools. The analytical calculation of the constraint
gradients is more involved and should be further inves-
tigated. Here, the constraint gradients are approximated
by central differences. It is worth to point out that, due
to the nonconvexity of the optimization problem, we are
bound to converge to a local minimum. One possibility
to overcome this problem is to initialize the NLP solver
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with several different initial guesses and then choose the
best overall solution. Alternatively, one may use a global
optimization approach.

5. H∞ MIXED-SENSITIVITY DESIGN

We consider anH∞ problem where we want to bound σ(S)
for performance, σ(T ) for robustness and low sensitivity
to noise, and σ(KS) to penalize large inputs. These
requirements may be combined into a stackedH∞ problem
(Skogestad and Postlethwaite, 2005).

min
K

‖N(K)‖
∞

, N
∆
=

[

WuKS
WTT
WPS

]

(25)

where Wu, WT and WP determine the desired shapes of
KS, T and S, respectively. Typically, W−1

P is chosen to
be small at low frequencies to achieve good disturbance
attenuation (i.e., performance), and W−1

T is chosen to be
small outside the control bandwidth, which helps to ensure
good stability margin (i.e., robustness). Wu is often chosen
as a constant. The solution to this optimization problem
gives a stabilizing controller K that satisfies (Doyle et al.,
1989; Glover and Doyle, 1988):

σ(KS(jω)) ≤ γσ(W−1

u (jω))
σ(T (jω)) ≤ γσ(W−1

T (jω))
σ(S(jω)) ≤ γσ(W−1

P (jω))
(26)

y2 is the particular output for feedback control in the
generalized plant in Fig. 3. The value of γ in equation
(26) should be as small as possible for good controllability.
However, it depends on the design specifications Wu, WT

and WP .

6. H∞ LOOP-SHAPING DESIGN

We consider the stabilization of the plant G which has a
normalized left coprime factorization

G = M−1N (27)

A perturbed plant model Gp can then be written as

Gp = (M +∆M )−1(N +∆N ) (28)

where ∆M and ∆N are stable unknown transfer func-
tions which represent the uncertainty in the nominal plant
model G. The objective of robust stabilization is to sta-
bilize not only the nominal model G, but a family of
perturbed plants defined by

Gp =
{

(M +∆M )−1(N +∆N ) : ‖[∆N ∆M ]‖∞ < ǫ
}

(29)
where ǫ > 0 is then the stability margin (Skogestad and
Postlethwaite, 2005). To maximize this stability margin is
the problem of robust stabilization of normalized coprime
factor plant description as introduced and solved by Glover
and McFarlane (1989).

For the perturbed feedback system of Fig. 4, the stability
property is robust if and only if the nominal feedback
system is stable and

γK ,

∥

∥

∥

∥

[

K
I

]

(I −GK)−1M−1

∥

∥

∥

∥

∞

≤
1

ǫ
(30)

Notice that γK is the H∞ norm from φ (see Fig. 4) to

[

u
y

]

and (I−GK)−1 is the sensitivity function for this positive
feedback arrangement. A small γK is corresponding to a
large stability margin.

7. RESULTS

All the results (simulation and experimental) in this paper
are based on the following model.

G(s) =
−0.0098(s+ 0.25)

s2 − 0.04s+ 0.025
(31)

This model was identified by Jahanshahi and Skogestad
(2013a) from an experimental closed-loop step test around
an operating point with the valve opening of Z = 30%.

7.1 Pareto-Optimality Comparison

The optimization problem (22) was solved for a range of
desired Mks and Mt values using the linear model (31)
(Here we assumed M = Mt for all cases since we have an
unstable system). This results of the optimizations form
a Pareto front surface, which can be seen in Fig. 5. For
simplicity, we did not include Tf as a degree of freedom
in the optimization; instead, we fixed Tf = 4. This choice
makes the filter counteract the effect of the zero of the
plant, which is close to optimal this case. The NLP was
solved using SNOPT Gill et al. (2005). Some points have
been validated using brute force extensive search.

Figure 5 clearly depicts the trade-off between robustness,
performance and input usage. The red line in Fig. 5 is the
result from the IMC PIDF for different values of closed-
loop time constant λ. By decreasing λ we get a faster
controller with larger input usage Mks, but Mt remains
approximately constant. Note that the performance of the
IMC PIDF is close to the pareto optimal surface for a large
range of Mks.

Figure 6 shows a cross-section of the PIDF Pareto surface
with Mks = 50, where the other controllers are also
shown. All the controllers are tuned to give Mks = 50.
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Compared to Chidambaram-PIDF and Lee-PIDF, IMC-
PIDF gives a better trade-off between robustness and
performance. H∞ loop-shaping controller gives a better
combined performance and robustness. However, it is a
higher order controller. Surprisingly,H∞ mixed sensitivity
gave a inferior performance compared to PIDF. Perhaps,
a better performance could be achieved by a finer tuning
of the weighting transfer functions WP , WT and Wu.
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7.2 Experimental setup

The experiments were performed on a laboratory setup for
anti-slug control at the Chemical Engineering Department
of NTNU. Fig. 7 shows a schematic presentation of the
laboratory setup. The pipeline and the riser are made from
flexible pipes with 2 cm inner diameter. The length of the
pipeline is 4 m, and it is inclined with a 15◦ angle. The
height of the riser is 3 m. A buffer tank is used to simulate
the effect of a long pipe with the same volume, such that
the total resulting length of pipe would be about 70 m.

The topside choke valve is used as the input for control.
The separator pressure after the topside choke valve is
nominally constant at atmospheric pressure. The feed into
the pipeline is assumed to be at constant flow rates, 4
l/min of water and 4.5 l/min of air. With these boundary
conditions, the critical valve opening where the system
switches from stable (non-slug) to oscillatory (slug) flow
is at Z∗ = 15% for the top-side valve. The bifurcation
diagrams are shown in Fig. 8.

The desired steady-state (dashed middle line) in slugging
conditions (Z > 15%) is unstable, but it can be sta-
bilized by using control. The slope of the steady-state
line (in the middle) is the static gain of the system,
k = ∂y/∂u = ∂Pin/∂Z. As the valve opening increase
this slope decreases, and the gain finally approaches to
zero. This makes control of the system with large valve
openings very difficult.
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Fig. 7. Experimental setup
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Fig. 8. Bifurcation diagrams for experimental setup

7.3 Experimental results

The controlled output in experiments is the inlet pressure
of the pipeline (Pin) and we use the same set of descending
pressure set-points in all experiments. As mentioned in
above controlling the system with large valve openings
(low pressure set-points) is difficult. We decrease the
controller set-point to see if the controller can stabilize
the system with lower set-point. The controllers are tuned
(designed) for a valve opening of Z = 30%, and controllers
with good gain margin can stabilize the system with larger
valve openings (lower set-points). To have an impartial
comparison for robustness of the controllers, we tune the
controllers with the same values of input usage (Mks =
50). One interesting relationship for the KS peak of the
PIDF controller in (12) can be written as follows.

Mks = −(Kd/Tf +Kp) (32)

Optimal PIDF: Fig. 9 and Fig. 10 show experimental
result of two optimal PIDF controllers, optimal PIDF (1)
and optimal PIDF (2). The controller tunings are given in
Table. 1. The optimal PIDF (2) was optimized for a smaller
values of Mt which resulted in a better gain margin and
less oscillations is observed in Fig. 10 (better robustness).
However, the optimal PIDF (2) yields higher values for
ISE (Table. 1).

IMC PIDF : We used the identified model in (31) for an
IMC design. We chose the filter time constant λ = 6.666 s
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to get Mks = 50. The resulting IMC controller becomes

C(s) =
−50(s2 + 0.0867s+ 0.0069)

s(s+ 0.25)
. (33)

Note that the integral time for this controller is τI =
Kp/Ki = 8.58 s and the derivative time is τD = Kd/Kp =
12.89 s. Since we have τI < 4τD, the zeros are complex and
the controller cannot be implemented in cascade (series)
form. The PIDF tuning resulted from this controller is
given in Table. 1, and Fig. 11 shows performance of the
IMC-PIDF controller in the experiment.

Chidambaram PIDF : The Chidambaram tuning (Rao
and Chidambaram, 2006) is for systems with one zero, two
unstable zeros and time delay. However, we do not have
time delay our system, and we expect the tuning rules with
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Fig. 10. Experimental result of optimal PIDF (2) with
Kp = 0.15, Ki = −0.198, Kd = −198.10, Tf = 4

θ = 0 are still valid. The problem with this controller is
that it does not have a low-pass filter on the derivative
action; this results in a large KS peak and the controller
becomes very aggressive. To solve this problem, we added
the same low-pass filter as the one used in the IMC-
PIDF controller. With this modification the Chidambaram
tuning gives good results; the experimental result of this
controller is shown in Fig. 12. We used τc = 20.17 s to get
Mks = 50; the resulting tuning is given in Table. 1.

Lee PIDF : The Lee tuning (Lee et al., 2006) is based
on analytic IMC-PIDF for first-order unstable systems
with time delay. We had to approximate the model in
(31) to a first-order model. We neglected the constant
terms in the numerator and the denominator which are
small values. This is same as what the model reduction
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Fig. 12. Experimental result of Chidam. PIDF with Kp =
1.69, Ki = −0.15, Kd = −206.91, Tf = 4

toolbox of Matlab (modred routine with ‘Truncate’ option)
does which preserves the high-frequency information. The
reduced-order model is given in (34), and we used λ = 5.35
s to get Mks = 50; the experimental result is shown in
Fig. 13.

Gred =
−0.245

25s− 1
(34)

H∞ loop-shaping: We used the IMC-PIDF controller to
obtain the initially shaped plant for the H∞ loop-shaping
design. The following fifth-order controller was resulted.

C(s) =
−188.49(s2 + 0.02s+ 0.005)(s2 + 0.087s+ 0.0069)

s(s+ 0.25)(s+ 3.76)(s2 + 0.082s+ 0.0067)
(35)

The experimental result of the controller in (35) is shown
in Fig. 14.

H∞ mixed-sensitivity: We design theH∞ mixed-sensitivity
controller with the following design specifications:

WP (s) =
s/Ms + ωB

s+ ωBA
, (36)
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Fig. 13. Experimental result of Lee PIDF with Kp =
−41.05, Ki = −3.42, Kd = −0.082, Tf = 4
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Fig. 14. Experimental result of loop-shaping H∞

WT (s) =
s/(10ωB) + 1

0.01s+ 1
, (37)

Wu = 0.0135, (38)

where Ms = 1, ωB = 0.14 rad/s and A = 0.01. We chose
these design specifications so that we achieve Mks = 50
and good robustness properties. We get the following
fourth-order stabilizing controller.

C(s) =
−9.08×106(s+ 100)(s2 + 0.0137s+ 0.011)

(s+ 1.8× 105)(s+ 112.5)(s+ 0.231)(s+ 0.0014)
(39)

We achieved γ = 1.21 with this controller; the experimen-
tal performance is shown in Fig. 15.

8. CONCLUSION

In this paper we developed and compared feedback con-
trollers for unstable multiphase flow in risers. The study
included three sets of simple PIDF tuning rules, optimal
PIDF and two H∞ controllers. The comparison was based
on Pareto optimality and experimental tests carried out in
a prototype flow system. We showed that for this case the
IMC-PIDF controllers are very close to the PIDF Pareto
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Table 1. Comparison of different controllers in experiments

Controller Kp Ki Kd Tf ISE ‖S‖∞ ‖T‖∞ ‖KS‖∞ GM DM

Optimal PIDF (1) -3.089 -1.62 -186.73 4 160.79 1.00 1.15 50 0.12 2.67
Optimal PIDF (2) 0.150 -0.198 -198.09 4 647.175 1.00 1.09 50 0.086 2.80

IMC PIDF -11.84 -1.38 -152.65 4 171.45 1.00 1.19 50 0.11 2.49
Chidambaram PIDF 1.69 -0.15 -206.90 4 864.75 1.13 1.09 50 0.084 2.81

Lee PIDF -41.05 -3.42 -0.08 4 726.88 1.20 1.62 50 0.17 1.70
H∞ Loop Shaping – – – – 184.98 1.10 1.12 50 0.10 2.48

H∞ Mixed Sensitivity – – – – 330.25 1.00 1.18 50 0.15 3.00
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Fig. 15. Experimental result of mixed-sensitivity H∞

optimal surface for a large range of the tuning parameter.
Better results can be achieved by the H∞ loop-shaping
approach, where we employ the IMC-PIDF controller to
obtain the initially shaped plant. However, this method
results in higher order controllers which may not be desired
by the practitioner. The H∞ mixed-sensitivity design is
more involved as it requires tuning of many weights simul-
taneously. However, we could not achieve better results
than that of a PIDF controller for this case and further
investigation is needed.
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