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Abstract: Combined sewer systems in low lying areas, such as those in the Western part
of the Netherlands, have very specific characteristics. Due to a lack of available head gravity
driven flow is possible only over short distances, so pumps are needed throughout the system.
Lack of available gradient also means fairly large diameter pipes are needed to transport the
maximum design flow, so storage volume is usually available. Systems tend to respond quickly
and prevention of combined sewer overflows is strongly dependent on available pump capacity
and storage volume. For a simplified system model a mathematical proof is given that for a
system, designed by Dutch rules of thumb under spatially homogeneous load, local control is
nearly as effective as central control when it concerns the prevention of CSO events.
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1. INTRODUCTION

The design and operation of Dutch sewer systems, espe-
cially the combined sewer systems where both foul water
and storm water are transported through the same system,
is a source of interesting control problems. Occasional
controlled spills into surface water, combined sewer over-
flows (CSO), are part of the normal operating procedure
for these systems. While design of such a system is a
complex matter, three simple rules given in NLingenieurs
Sewer Systems Workgroup [2009] as an aid in establishing
a first estimate of CSO frequency have very interesting
implications from a control point of view. The rules are:

(1) all pumping stations must be able to transport a given
fixed continuous precipitation intensity, the value
given is 0.06m3/s/ha where ha stands for hectare,
1ha = 104m2;

(2) all components must have a given fixed storage capac-
ity per unit area (implicit in the reasoning on pages
95 and 97);

(3) all pumping stations must have a wet well of appro-
priate dimensions.

In this paper only a simplified model for a specific type
of sewer system will be described, for a description of
sewer systems in general and the theory of their con-
trol please consult Marinaki and Papageorgiou [2005],
Ocampo-Martinez [2010]. Background information on a
wide variety of systems can be found in the following
case studies: Puig et al. [2009], Pleau et al. [2001, 2005],
Ermolin [1999], Charron et al. [2001], Campisano et al.
[2000], Ocampo-Martinez et al. [2005].

This paper makes rather strong assumptions about the
system (no delays in transfers done by pumping sta-

tions, tree shaped networks) and the load on the system
(homogeneous in space). These make it easier to obtain
mathematical proofs. Numerical experiments with hydro-
dynamical models wil be needed to determine whether
the conclusions carry over to more general cases. We do
feel that the assumptions are not unreasonable for the
particular systems under consideration here.

2. SOME REFERENCE QUANTITIES

The lecture notes [NLingenieurs Sewer Systems Work-
group, 2009, pp. 94–98], a freely available translation
of ONRI-werkgroep riolering [2009], provides an short
overview of the history of design rules for sewer systems
in the Netherlands. From 1950s to the 1990s the concepts
of storage per unit connected area and pump excess ca-
pacity (pump capacity in excess of that needed for dry
weather flow) were important tools to get initial estimates
of the behavior of a sewer system. In fact in 1985 a
reference system was introduced to serve as representative
for the systems in place at that time with 7mm/ha storage,
2mm/ha in a storage settling facility, and 0.7mm/h/ha
excess pump capacity (where h stands for hour). Such a
system was then to be combined with local data and used
to calculate a foul water discharge. This was then to be
used as an upper bound on the allowed foul water discharge
to determine whether it was necessary to change the local
system and to provide a target if this was the case. It was
definitely not intended as a model implementation.

Nevertheless it is interesting to examine the implications
for a possible control system when these design rules are
followed in a combined system that, like most Dutch
systems, consists of small sub-networks of sewer pipes,
where flow is gravity driven, that are linked to each
other and to a Waste Water treatment Plant (WWTP)
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by pumps. To put this in context: mean annual rainfall
within the country varies from 700 to 900 mm. An event
that exceeds 100 mm in 24 hours is considered extreme.
For a residential area in the Netherlands the peak foul
water flow is approximately 0.2mm per hour and for
industrial areas an upper bound of 0.72mm is used, see
[NLingenieurs Sewer Systems Workgroup, 2009, pp. 74].
The formal Dutch reference for sewer design is Taakgroep
Leidraad Riolering [2004]. The lecture notes NLingenieurs
Sewer Systems Workgroup [2009] were used as a reference
because they are in English and readily available on
the Internet, they provide a condensed version of the
information in Taakgroep Leidraad Riolering [2004]. Note
that we concentrate on constant speed pumps. According
to [NLingenieurs Sewer Systems Workgroup, 2009, pp. 89]
the larger pumping stations in newer systems use variable
speed pumps. For these stations a special local controller is
used that minimizes level variation to realize longer pump
run times and fewer switching moments. While it would be
interesting to determine whether this has a positive or a
negative effect on CSO volume and frequency, it is beyond
the scope of this paper.

3. CONVENTIONAL CONTROL SCHEME

Our reference control scheme is local control, the pump
is automatically switched on at full capacity when a given
level hon is exceeded in the wet well. It is switched off again
once the level in the wet well drops below a second level
hoff < hon. The wet well and the levels are chosen to avoid
an excessive amount of switching of the pumps.

4. THE MODEL SYSTEM

The model of the system is based on a directed tree (no
parallel arcs, paths run from the leaves to the root) with
nv vertices, indexed by the elements of Iv = {1, 2, . . . , nv} ,
the root is assigned index nv and there are na = nv − 1
arcs. See also van Nooijen and Kolechkina [2013]. The arcs
will be numbered as follows: the arc leaving node i gets
index i. The graph is a directed tree so for all vertices
there exists at exactly one (directed) path to the vertex
with index nv. The graph will be the basis for a network
in which vertex nv is a sink and all other vertices are time
varying sources. We introduce the set of source indices
Isrc = {1, 2, . . . , nv − 1}, in our numbering this coincides
with the set Iarc of arc indices. We will denote the incidence
matrix of the tree by M . Consider the network in discrete
time and assume transport along an arc to take one time
step. The time step will be fixed, we denote it by ∆t. Each
source vertex i has a constant positive storage capacity
vmax,i and a constant “connected surface” ai. The vertex
nv has infinite storage and zero connected surface. The
inflow due to precipitation into a source vertex i is given
by ai · pi (t) where pi is a function pi : R+

0 → R+
0 . For

i ∈ Isrc the dry weather flow (dwf, traditional name for
foul water flow) into a vertex i is ai · pdwf,i (t) , where
pdwf,i is a function pdwf,i : R+

0 → R+
0 . Each arc j has a

positive maximum discharge capacity qmax,j .

If the system represents a sewer network where the WWTP
is directly connected to multiple upstream districts and
its maximum capacity qWWTP is less than the sum of the
upstream capacities, then this can be modeled by adding

an additional node vWWTP after vnv
with no precipitation

inflow and zero storage, that links vnv
to vWWTP by an arc

with capacity qWWTP. We will not consider this case in
the rest of this paper.

The following notation will be used. For i ∈ Isrc a function
vi (t) represents the volume stored at time t, this must be
positive or zero. For j ∈ Iarc a function qj (t) represents
the flow along arc j at time t, this must be positive or zero.
The usual constraints and conservation equations hold, for
i ∈ Isrc and t ∈ R+

0

vi(t) = vi(0) +

t∫
τ=0

pdwf,i (τ) · aidτ

+

t∫
τ=0

pi (τ) · ai − qi (τ) +
∑

j∈Ns−{i}

Mij · qj (τ)

 dτ

vi (0) = v0,i (1)

We define the following special sets that exist for all
directed trees with paths directed towards the root. The
set of upstream adjacent vertices (parents) for vertex i,
Ipar (i) = {j ∈ Isrc |Mji < 0}, the set of leaves, Ileaf =
{i ∈ Ns | Ipar (i) = ∅} and the set of vertices linked by a
path to i (its ancestors)

Ianc(i) = Ipar(i) ∪

 ⋃
m∈Ipar(i)

Ianc(m)

 (2)

in our case Isrc = Ianc (nv).

5. DEFINITIONS AND CONJECTURES

We provide a definition of a homogeneous sewer system
design and a homogeneous load. In both definitions accu-
racy refers to the desired accuracy for the volume of the
simulated CSO’s.

Definition 1. A homogeneous sewer system design is a de-
sign whose dynamic behavior can be modeled to sufficient
accuracy by a model system of the form described in the
previous section and for which there exist three positive
real numbers ρ, r and τmin such that

qmax,i =

ai +
∑
j∈Ianc

aj

 ρ (3)

and

vmax,i = air + qmax,iτmin (4)

Equation 3 corresponds to design rule 1 cited in the
introduction with ρ as the transport capacity per hectare.
Equation 4 incorporates design rules 2 and 3 given there,
r is the storage capacity per hectare and τmin corresponds
to the hysteresis time for an on/off pump controller which
in turn specifies a reasonable size for the wet well.

Definition 2. A homogeneous load for a homogeneous
sewer system design is a combination of precipitation and
dry weather flow such that there is a function p′ such that
for all source nodes p′ (t) = pi (t) + pdwf,i (t) to sufficient
accuracy.

We now formulate our conjectures.
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Conjecture 3. For a homogeneous sewer system design and
homogeneous precipitation central control will not perform
better than local control.

Conjecture 4. For a homogeneous sewer system design and
homogeneous precipitation use of a precipitation forecast
will not improve control performance.

6. CHECK OF THE CONJECTURES FOR A SINGLE
LEAF

For leaves three general Lemmas can be proven.

Lemma 5. For a leaf i with pump capacity qmax,i = ρai
and storage capacity vmax,i = rai+qmax,i∆tmin starting at
vi (0) = 0 any non-negative locally integrable input signal
p′ (t) = ai (pi (t) + pdwf,i (t)) for which there exist times
t0 < t1 such that

P (t0, t1) =

t1∫
t=t0

p′ (t) dt > ρ (t1 − t0 + ∆tmin) + r (5)

will lead to
v (t1)− vmax,i

ai
> 0 (6)

Proof. This follows immediately from vi (t0) ≥ 0 and the
upper bound on the pumping capacity qi (t) ≤ qmax,i.

As a reference controller we will use a rule that combines
delay-free level control when below a certain minimum
storage and use of maximum pump capacity with a small
delay above the minimum storage. If we let the delay go
to zero this results in bang-bang control.

Definition 6. For a given delay time δ and vertex i with
local stored volume vi (t), area ai and outgoing pump
capacity qmax,i we define the following control signal:

qi (t) =


qlim,i(t) : t ≤ δ
qlim,i(t) : t > δ, vi (t− δ) < qmax,iδ

qmax,i : t > δ, vi (t− δ) ≥ qmax,iδ

(7)

with

qlim,i(t) = min

aip′ (t) +
∑
j∈Ipar

qj (t) , qmax,i

 (8)

where we assumed time starts at 0.

Lemma 7. For a leaf i with pump capacity qmax,i = ρai,
storage capacity vmax,i = rai+qmax,i∆tmin with vi (0) = 0,
a (small ) δ > 0 such that δ < ∆tmin and a non-negative
locally integrable input signal p′ (t) = ai (pi (t) + pdwf,i (t))
such that for all times 0 ≤ t0 < t1

P (t0, t1) =

t1∫
t=t0

p′ (t) dt < ρ (t1 − t0 + ∆tmin − δ) + r (9)

the control action given by Eq. 7 will result in 0 ≤ vi (t) ≤
vmax,i for al finite t.

Proof. Thanks to δ > 0 the control rule given by Eq. 7 is
well defined on [0, δ] and by extension on [kδ, kδ + δ]. Now
suppose that

T1 = {τ ≥ 0 : vi (τ) ≥ vmax,i} (10)

is non-empty and therefore t1 = inf T1 exists. As vi (0) = 0

T0 = {0 ≤ τ ≤ t1 : vi (t) < qmax,iδ} (11)

is non-empty and supT0 exists. For t0 < τ ≤ t1 it follows
that vi (τ) > 0 so for t0 + δ < τ ≤ t1 the value of qi (t) is
qmax,i. This implies that for t0 + δ < t ≤ t1

vmax,i ≤ vi (t1) = vi (t0) +

t1∫
τ=t0

p′ (t) · ai − qi (τ) dτ (12)

=

t1∫
τ=t0

p′ (t) · aidτ − qmax,i (t1 − t0 − δ)

= ai

 ti∫
τ=t0

p′ (t) dτ − ρ (t1 − t0 − δ)


which is equivalent to

r + ρ ≤
ti∫

τ=t0

p′ (t) dτ − ρ (t1 − t0 − δ) (13)

and this contradicts the assumption on P (t0, t1).

Remark 8. The δ > 0 in the above Lemma is there to
simplify reasoning about the existence of a solution v.

Definition 9. For vertex i with local stored volume vi (t),
area ai and outgoing pump capacity qmax,i we define
a control signal corresponding to on/off control with a
processing delay δ and switch levels 0 < roff < ron as
follows

qi (t) =


0 0 ≤ t ≤ δ
0 : τon (t− δ) ≤ τoff (t− δ)
qmax,i : τon (t− δ) > τoff (t− δ)

(14)

with

τoff (t) =

{
0 t < 0

sup ({0} ∪ Toff (t)) t ≥ 0
(15)

τon (t) =

{
0 t < 0

sup ({0} ∪ Ton (t)) t ≥ 0
(16)

Toff (t) = {0 ≤ τ ≤ t | v (t) ≤ airoff} (17)

Ton (t) = {0 ≤ τ ≤ t | v (t) ≥ airon} (18)

and where we assumed time starts at 0.

Lemma 10. Take a leaf i with pump capacity qmax,i = ρai,
storage capacity vmax,i = rai+qmax,i∆tmin. Suppose there
are roff, ron, δ such that 0 < 2δ < ai (ron − roff) /qmax,i,
δ < airoff/qmax,i , δ < ∆τ . For any a non-negative locally
integrable input signal p′ (t) = ai (pi (t) + pdwf,i (t)) such
that for all times 0 ≤ t0 < t1

P (t0, t1) =

t1∫
t=t0

p′ (t) dt < ρ (t1 − t0 + ∆tmin − δ) + r− ron

(19)
and any initial condition such that vi (0) ≤ airoff the
control action defined by Eq. 14 results in 0 ≤ vi (t) ≤
vmax,i for al finite t.

Proof. Note that τoff (t) = τon (t) > 0 would imply that
Toff (t) 6= ∅ and Ton (t) 6= ∅ and therefore that for all ε > 0
there are

t0 ∈ Toff (t) (20)

t1 ∈ Ton (t) (21)
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such that |t1 − t0| < ε and
t1∫

t=t0

p′ (t) dt ≥ ron − roff (22)

but p′ is a locally integrable function so this leads to a
contradiction. We can therefore assume that τoff (t) =
τon (t) implies τoff (t) = τon (t) = 0. Thanks to the
exception for 0 ≤ t ≤ δ the control rule is well defined
for 0 ≤ t ≤ δ where qi (t) = 0. Therefore the solution is
well defined for 0 ≤ t ≤ δ and is given by

vi (t) = vi (0) + ai

t∫
τ=0

p′ (τ) dτ (23)

< vi (0) + ai (ρ (t1 − t0 + ∆tmin − δ) + r − roff)

< ai (ρ∆tmin + r) = vmax,i

For δ ≤ t ≤ 2δ we have either Ton (δ) = ∅ and therefore
vi (δ) < voff so

vi (t) = vi (δ) + ai

t∫
τ=δ

p′ (τ) dτ (24)

< aiρ (δ + ∆tmin − δ) + air = vmax,i

or 0 < inf Ton (δ) = τ ≤ δ and because of the restrictions
on δ we have inf Toff (δ) > τ + 2δ > 2δ so

vi (t) = voff + ai

t∫
τ=τ

p′ (τ) dτ − (t− τ) qmax,i (25)

< aiρ (t− τ + ∆tmin − δ) + air − (t− τ) qmax,i

= vmax,i

In general for kδ ≤ t ≤ kδ + δ we either have τon (kδ) <
τoff (kδ) which implies vi (kδ) < von and zero discharge so

vi (t) = vi (kδ) + ai

t∫
τ=kδ

p′ (τ) dτ (26)

< aiρ (t− τ + ∆tmin − δ) + air − (t− τ) qmax,i

= vmax,i

or we have τon (kδ) > τoff (kδ) which implies vi (τon (kδ)) =
von and maximum discharge from τon (kδ) + δ onwards so

vi (t) = vi (τon (kδ)) + ai

t∫
τ=τon(kδ)

p′ (τ) dτ (27)

< aiρ (t− τon (kδ) + ∆tmin − δ)
+air − (t− τon (kδ)− δ) qmax,i

= vmax,i

which completes the proof.

Lemma 10 shows that local bang-bang control will have
a performance close to the ideal controller as long as the
switching delay is not too large and the volume needed in
the wet well is small relative to the volume of the district.
Also note that this controller does not use p′. This Lemma
confirms both conjectures for systems consisting only of
one leaf and a WWTP.

7. CHECK OF THE CONJECTURES FOR A
HOMOGENEOUS SEWER SYSTEM DESIGN

Next we consider the conjectures for a non-trivial system.

Lemma 11. For a homogeneous sewer system with pump
capacities

qmax,i =

ai +
∑
j∈Ianc

aj

 ρ (28)

and storage
vmax,i = air + qmax,iτmin (29)

any homogeneous set of non-negative locally integrable
input signals such that p′ (t) = ai (pi (t) + pdwf,i (t)) for
which there exist times t0 < t1 such that

P (t0, t1) =

t1∫
t=t0

p′ (t) dt > ρ (t1 − t0 + ∆tmin) + r (30)

will lead to
vi (t1)− vmax,i

ai
> P (t0, t1)− ρ (t1 − t0 + τ)− r (31)

for at least one i ∈ Isrc.

Proof. This follows immediately from Lemma 5.

Lemma 12. For a homogeneous sewer system with pump
capacities

qmax,i =

ai +
∑

j∈Ianc(i)

aj

 ρ (32)

and storage

vmax,i = air + qmax,i∆tmin (33)

for any δ > 0 and any non-negative locally integrable input
signal p′ (t) = ai (pi (t) + pdwf,i (t)) such that for all times
0 ≤ t0 < t1

P (t0, t1) =

t1∫
t=t0

p′ (t) dt

< ρ (t1 − t0 + ∆tmin − δ) + r (34)

the control action given by Eq. 7 will result in 0 ≤ vi (t) ≤
vmax,i for all i ∈ Isrc and all finite t.

Proof. According to Lemma 7 the rule will work for the
leaves. For a non-leaf source i the control the control rule
given by Eq. 7 is well defined on well defined on [0, δ] and
by extension on [kδ, kδ + δ]. Now suppose that

T1 = {τ ≥ 0 : vi (τ) ≥ vmax,i} (35)

is non-empty and therefore t1 = inf T1 exists. In that case

T0 = {0 ≤ τ ≤ t1 : vi (t) = 0} (36)

is non-empty and supT0 exists. For t0 < τ ≤ t1 it follows
that vi (τ) > 0 so for t0 + δ < τ ≤ t1 the value of qi (t) is
qmax,i. This implies that for t0 + δ < t ≤ t1

vmax,i ≤ vi (t1) (37)

which is equivalent to

air + qmax,i∆tmin ≤
ti∫

τ=t0

aip
′ (τ) dτ − ρai (t1 − t0 − δ)

+δ
∑
j∈Ipar

aj +
∑

m∈Ianc(j)

am

 ρ (38)
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which we can write as

air + qmax,i∆tmin ≤
ti∫

τ=t0

aip
′ (τ) dτ

−ρai (t1 − t0) + δqmax,i

< aiρ (t1 − t0 + ∆tmin − δ)
+air − ρai (t1 − t0) + δqmax,i

= aiρ (∆tmin − δ) + air + δqmax,i

< air + ai∆tminqmax,i

and this cannot be true.

Lemma 12 shows that at least one method of local control
will keep the levels below the maximum levels for an upper
bound on the inflow that differs from the condition on the
lower bound on the inflow needed to force an excursion
above at least one maximum level only be an arbitrarily
small δ.

Lemma 13. Asume we have a homogeneous sewer system
with pump capacities

qmax,i =

ai +
∑

j∈Ianc(i)

aj

 ρ (39)

and storage

vmax,i = air + qmax,i∆tmin (40)

Suppose there are roff, ron, δ such that 0 < 2δ <
ai (ron − roff) /qmax,i, δ < airoff/qmax,i , δ < ∆tmin. For
any a non-negative locally integrable input signal p′ (t) =
ai (pi (t) + pdwf,i (t)) such that for all times 0 ≤ t0 < t1

P (t0, t1) =

t1∫
t=t0

p′ (t) dt < ρ (t1 − t0 + ∆tmin − δ) + r− ron

(41)
and any initial condition such that vi (0) ≤ airoff the
control action defined by Eq. 7 will keep the stored volumes
between zero and the specified maximum.

Proof. The control rule is well defined for 0 ≤ t ≤ δ.
Therefore the solution is well defined for 0 ≤ t ≤ δ and it
is given by

vi (t) = vi (0) + ai

t∫
τ=0

p′ (τ) dτ (42)

which satisfies

vi (t) < vi (0) + ai (ρ (t1 − t0 + ∆tmin − δ) + r − roff)

< ai (ρ∆tmin + r) = vmax,i (43)

In general for kδ ≤ t ≤ kδ + δ we either have τon (kδ) <
τoff (kδ) which implies vi (kδ) ≤ von and zero discharge so

vi (t) = vi (kδ) +

t∫
τ=kδ

aip
′ (τ) +

∑
j∈Ianc(i)

ajqj (t) dτ (44)

< von + aiρ (δ + ∆tmin − δ) + δ (qmax,i − aiρ)

+ai (r − ron)

= aiρ∆tmin + δ (qmax,i − aiρ) + air < vmax,i

or we have τon (kδ) > τoff (kδ) which implies vi (τon (kδ)) =
von and maximum discharge from τon (kδ) + δ onwards so,
with t0 = τon (kδ)

vi (t) = vi (t0) +
t∫

τ=t0

aip
′ (τ) +

∑
j∈Ianc(i)

ajqj (t) dτ

− (t− t0 − δ) qmax,i

= von +

t∫
τ=t0

aip
′ (τ) +

∑
j∈Ianc(i)

ajqj (t) dτ − (t− t0 − δ) qmax,i

< von +

t∫
τ=t0

aip
′ (τ) dτ+

+ (t− t0) (qmax,i − aiρ)− (t− t0 − δ) qmax,i

so

vi (t)< aiρ (t− t0 + ∆tmin − δ) + air

+ (t− t0) (qmax,i − aiρ)− (t− t0 − δ) qmax,i

= aiρ (∆tmin − δ) + air + (t− t0) qmax,i −
(t− t0 − δ) qmax,i

= aiρ (∆tmin − δ) + air + δqmax,i

≤ qmax,i (∆tmin − δ) + air + δqmax,i = vmax,i

which completes the proof.

8. A COMPUTER EXPERIMENT

In van Nooijen et al. [2010] Linear Programming (LP)
was combined with complete knowledge of the event be-
forehand to determine the best possible result of central
control using prediction. Evidently, if even with perfect
foreknowledge, an event leads to one or more CSO events,
those events can only be prevented by additional invest-
ment in hardware. The results showed that local control
of fixed speed pumps did considerably worse. Here we take
the system from that paper and redistribute the storage to
create a system satisfying our balance rule 4. We also re-
dimension the pumps to satisfy 3. Table 1 gives the original

Node ai vmax,i/ai qmax,i qdwf,i

103m2 10−3m m3 · s−1 m3 · s−1

CRKW-001 24.25 12.5 0.03194 0.002111
CRKW-002 176.24 9.4 0.03750 0.010000
CRKW-003 30.67 7.1 0.02361 0.000444
CRKW-004 21.76 12.4 0.06389 0.002528
CRKW-008 26.28 3.2 0.00381 0.001472

Table 1. Original system with balanced dwf

system (total installed pump capacity = 0.1608m3 · s−1 )
and Table 2 the “balanced” system (total installed pump
capacity = 0.1288m3 ·s−1 ) . We determined the CSO with
LP and with local control. A one minute simulation time
step was used and a five minute storage volume in the wet
well was incorporated in the design. Over a period of 6
years the number of CSO events found for the LP solution
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Node ai vmax,i/ai qmax,i qdwf,i

103m2 10−3m m3 · s−1 m3 · s−1

CRKW-001 24.25 9.0 0.00555 0.002111
CRKW-002 176.24 9.0 0.04634 0.010000
CRKW-003 30.67 9.0 0.00702 0.000444
CRKW-004 21.76 9.8 0.06389 0.002528
CRKW-008 26.28 9.0 0.00601 0.001472

Table 2. Balanced system with balanced dwf

and the number found with local control differed by only
one, local control had one additional 2.3m3 event, which
was an event where failure was to be expected as Eq. 41
did not hold. We also found that over a period of 7 years
with 58 CSO’s the difference in CSO size for events over
50m3 (54 out of 58) was less than 10 percent.

9. ROOM FOR CONTROL

The following characteristic numbers can be defined.

ρi =
qmax,i

ai +
∑
j∈Ianc(i) aj

(45)

ri =
vmax,i − qmax,i∆tmin

ai
(46)

Evidently the leaves of the system are the critical points.
If there is a leaf i and a pair of times t0 < t1 such that

aiP (t0, t1) = ai

t1∫
t=t0

pi (t) + pdwf,i (t) dt (47)

> (t1 − t0) qmax,i + vmax,i

then the stored volume will exceed the maximum storage
possible without a CSO. For homogeneous inflow room
for central control and the use of forecasts will therefore
exist only when leaves have higher ρi and/or ri than their
descendants, where the set of descendants of a leaf i is
defined by

Ides (i) = {j : i ∈ Ianc (j)} (48)

Similarly room for central control and the use of forecasts
will only exist when the inflow load for at least one leaf is
relatively lower than for one of its descendants.

10. CONCLUSIONS

It was established that for inflow into a sewer system
which are according to a given definition homogeneous,
neither forecasts nor central control can help to reduce
the chance of a CSO. It was also established that any
gains from implementation of central control and the use
of forecasts can only be realized when the upstream most
sub-catchments, the “leaves”, have either more storage
capacity or more pump capacity than at least one of their
descendants.
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