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Abstract: We consider a population of “crowd-averse” dynamic agents controlling their states
towards regions of low density. This represents a typical dissensus behavior in opinion dynamics.
Assuming a quadratic density distribution, we first introduce a mean-field game formulation of
the problem, and then we turn the game into a two-point boundary value problem. Such a
result has a value in that it turns a set of coupled partial differential equations into ordinary
differential equations.
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1. INTRODUCTION

We consider a population of “crowd-averse” dynamic
agents. Crowd-averse means that, for a given density dis-
tribution of the states, the agents (also called players)
seek to regulate their state to values characterized by
a low density. Such a problem arises naturally in social
science, where states are opinions, the dynamics represents
opinions’ propagations, and crowd-averse attitudes cap-
ture the tendency to escape consensus and seek dissensus
(in the space of opinions). We assume that each agent’s
state evolves according to a linear stochastic differential
equation (SDE) driven by a Brownian motion and under
the influence of a control and an adversarial disturbance.
The control of each player minimizes a cost functional
which involves a quadratic penalty on the control and
a mean-field term involving the density of the players.
We analyze the case in which the initial distribution is
(piecewise) quadratic.

The main result of the paper involves the reformulation of
the mean-field game into a two-point boundary value prob-
lem. Such a problem includes two intertwined differential
equations with boundary conditions at the beginning and
at the end of the horizon for the two equations respectively.
The first is a Riccati equation obtained from the Hamilton-
Jacobi-Isaacs equation, and the second is a linear differen-
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tial equation derived from the Fokker-Planck-Kolmogorov
equation. Such a result has a value in that it turns a
set of coupled partial differential equations into ordinary
differential equations.

The theory of mean-field games was introduced in Lasry
and Lions [2007] and independently in Huang et al. [2006,
2007]. Mean-field dynamical games represent a modeling
framework at the interface of differential game theory,
mathematical physics, and H∞-optimal control that cap-
tures the interaction between a mass of players and each
individual. Mean-field games arise in several application
domains such as economics, physics, biology, and network
engineering, see Achdou et al. [2012], Bagagiolo and Bauso
[2014], Bauso et al. [2012b], Gueant et al. [2010], Huang
et al. [2007], Lachapelle et al. [2010], Pesenti and Bauso
[2013], Tembine et al. [2009].

A mean-field game is modelled by means of a system of two
partial differential equations (PDEs). The first PDE is the
Hamilton-Jacobi-Bellman equation. The second PDE is
the Fokker-Planck-Kolmogorov equation which describes
the density of the players, see Lasry and Lions [2007],
Tembine et al. [2011]. Explicit solutions in terms of mean-
field equilibria are not common unless the problem has a
linear-quadratic structure, see Bardi [2012]. In this sense,
a variety of solution schemes has been recently proposed
based on discretization and/or numerical approximations,
see for example Achdou et al. [2012]. More recently, robust-
ness and risk-sensitivity have been brought into the picture
of mean-field games see Bauso et al. [2012a], Tembine
et al. [2011], where the first PDE has been replaced by
a Hamilton-Jacobi-Bellman-Isaacs (HJBI) PDE.
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The rest of the paper is organized as follows. In Section
2 we illustrate the problem. In Section 3 we elaborate on
the main motivations. In Section 4 we establish the main
result. In Section 5 we discuss and interpret the results. In
Section 6 we carry out some numerical studies. Finally in
Section 7 we provide some conclusions.

Notation. We denote with (Ω,F ,P) a complete proba-
bility space. We let B be a finite-dimensional Brownian
motion defined on this probability space. Let F = (Ft)t≥0
be its natural filtration augmented by all P−null sets (sets
of measure-zero with respect to P). We use ∂x and ∂2xx to
denote the first and second partial derivatives with respect
to x, respectively.

2. PROBLEM SET-UP

Consider a game with an infinite number of homogeneous
players. For each player let x0 be its initial state, which is
realized according to the probability distribution m0. The
state of the player at time t, denoted by xt ∈ R, evolves
according to a controlled stochastic process over a finite
horizon T > 0, i.e.

dxt = [αxt + βut]dt+ σ [xtdBt + ζtdt] , (1)

where ut ∈ R is the control input, Bt ∈ R is a Brownian
motion, which is independent of the initial state x0, and
independent across players and time. The constants α ∈ R,
β ∈ R and σ ∈ R are parameters, and ζt ∈ R is an
adversarial disturbance.

To introduce a macroscopic description of the game con-
sider probability density functions on the state space, i.e.m : R× [0,+∞[→ [0,+∞[, (x, t) 7→ mt(x)∫

R
mt(x)dx = 1 for every t .

Define now the average state distribution at time t as

m̄t :=

∫
R
xmt(x)dx.

Finally consider a cost functional with penalty on the final
state g(·), stage cost function c(·), and quadratic penalty
on the unknown disturbance:

J(x0, u,m, ζ) = E
(
g(xT ,mT )

+

∫ T

0

c(xt, ut,mt)dt− γ2
∫ T

0

|ζt|2dt
)
.

(2)

Players are crowd-averse and wish to drive their state
towards state values where density distribution is minimal,
and therefore we can select the stage cost

c(xt, ut,m) = mt(xt) +
b

2
u2t .

The term mt(xt) represents the mean-field cost which is
proportional to the density distribution in the same state
xt;

b
2u

2
t , with b > 0, accounts for a penalty on the control

energy. The penalty on the final state is

g(xT ,mT (xT )) = mT (xT ),

namely it is a penalty on the state density distribution at
the end of the horizon.

The cost functionals are such that players seek to reach
less crowded states. It is however possible that the players
seek to reach the same low-density state, as in Section 6.

The above preamble leads to the following robust mean-
field game problem.

Problem 1. (Robust mean-field game problem) Let
B be a one-dimensional Brownian motion defined on
(Ω,F ,P), where F is the natural filtration generated by
B. Let x0 be independent of B and with density m0(x).
Let m∗t be the optimal mean-field trajectory. The robust
mean-field game problem in R and [0, T [ is given by{

inf
{ut}t

sup
{ζt}t

J(x, u,m∗, ζ) ,

dxt = [αxt + βut + σζt] dt + σxtdBt.

3. MOTIVATIONS

Motivations for the problem under study arise in the
context of opinion dynamics in social networks. In this
context crowd-averse attitudes on the part of the players
means that the players tend to have very different opinions.
This can be reviewed as the opposite phenomenon to the
one of “emulation”, “mimicry” or “herd behavior”.

Example 1. (Social networks) Opinion dynamics has
attracted the attention of many scientists over the past few
years. The propagation of the opinions describe the time
evolution of the beliefs of large population of agents as a
consequence of repeated interactions among the agents, in
many cases over a social network, see for example [Castel-
lano et al., 2009, Sect. III] and Acemoğlu and Ozdaglar
[2011]. In continuous models of opinion dynamics beliefs
or opinions are represented by scalars or vectors, evolving
according to some averaging process. The latter consists
in each opinion moving towards a convex combinations of
(a subset of) other agents’ current beliefs, thus modeling
the attractive nature of social influence. There are many
models that, under the assumption that the underlying so-
cial network is connected, prove that the agents’ opinions
asymptotically reach consensus. Some exceptions can be
found in the models by Krause [2000] where the authors
introduce homophily in the form of “bounded confidence”,
to mean that the agents are not influenced by far beliefs.
A similar behavior can be found also in models with
competing stubborn agents, see Acemoğlu et al. [2013],
the latter being agents that do not change their opinions
but try to influence others’ opinions. Such stubborn agents
might represent leaders, political parties or media sources.
For instance, Como and Fagnani [2011], provides scaling
limit results showing that, if the agents’ population is
homogeneous, the empirical belief distribution converges,
as the population size grows large, towards the solution of
a certain deterministic mean-field differential equation in
the space of probability measures. Such results are in the
spirit of the propagation of chaos, see Sznitman [1991], in
interacting particle systems.

4. MAIN RESULTS

Let vt(x) be the (upper) value of the robust optimization
problem under worst-case disturbance starting at time t
from state x. Let the corresponding Hamiltonian be given
by

H(x, p,m) = inf
u
{c(x, u,m) + p(αx+ βu)} ,

where p is the co-state. Then the mean-field system associ-
ated to the robust mean-field game introduced in Problem
1 is given by

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7820





∂tvt +H(x, p,mt) +

(
σ

2γ

)2

(∂xvt)
2

+
1

2
σ2x2∂2xxvt = 0, in R× [0, T [,

vT (x) = g(x,m), in R,

m0(x) = d(x) in R,

∂tmt + ∂x (mt∂pH(x, p,m)) +
σ2

2γ2
∂x(mt∂xvt)

−1

2
σ2∂2xx

[
x2mt

]
= 0, in R× [0, T [,

(3)

where d is the initial population distribution and g the
terminal payoff. Any solution of the above system of equa-
tions is referred to as worst-disturbance feedback mean-field
equilibrium.

We next assume that the density distribution is quadratic
in the state.

Assumption 1. The density has compact support and,
within its support, it is given by

mt(x) =
1

2
atx

2, in R× [0, T [ ,

m0(x) = d(x) =
1

2
a0x

2, a0 given.

(4)

From the above assumption, as the density enters in the
cost function, we can consider quadratic value functions

vt(x) =
1

2
qtx

2, in R× [0, T ]

vT (x) = g(xT ,mT (xT )) = mT (xT ) =
1

2
qTx

2.
(5)

We are ready to specialize the results obtained above to
the case of a crowd-averse system in which the players seek
to drive their state towards values characterized by a lower
density.

Theorem 1. The mean-field system associated to the ro-
bust mean-field game for the crowd-averse system is de-
scribed by the equations:

∂tvt +

[
−β

2

2b
+

(
σ

2γ

)2
]

(∂xvt)
2 +

a

2
x2t

+αxt∂xvt +
1

2
σ2x2∂2xxvt = 0, in R× [0, T [,

vT (x) =
1

2
qTx

2, in R,

∂tmt +
3

2
at

(
α− β2

b
qt +

σ2

2γ2
qt

)
x2t

−1

2
σ2∂2xx

(
x2mt

)
= 0, in R× [0, T [,

m0(x) =
1

2
a0x

2 in R.

(6)

Furthermore, the optimal control and worst disturbance
are


u∗t = −β

b
∂xvt,

ζ∗t =
σ

2γ2
∂xvt.

(7)

The significance of the above result is that to find the
optimal control input we need to solve the two coupled
PDEs in (6) in v and m with given boundary conditions
(the second and last conditions). This is usually done by
iteratively solving the HJBI equation for fixed m and by
entering the optimal u obtained from (7) in the FPK
equation in (6), until a fixed point in v and m is reached.

The next theorem establishes that the mean-field system
(6) can be replaced by a two-point boundary value prob-
lem.

Theorem 2. The mean-field system associated to the ro-
bust mean-field game for the crowd-averse system is equiv-
alently described by the equations

1

2
q̇t +

[
−β

2

2b
+

(
σ

2γ

)2
]
q2t + αqt +

at
2

+
σ2

2
qt = 0,

qT = aT ,

1

2
ȧt +

3

2
at

(
α− β2

b
qt +

σ2

2γ2
qt

)
− 3σ2at = 0 ,

a0 given.

(8)

Furthermore, the optimal control and worst disturbance
are 

ũt = −β
b
qtxt,

w̃t =
σ

2γ2
qtxt.

(9)

In summary the above system of equations consists of two
parts: the first is a Riccati equation in the variable qt and
the second is a linear differential equation in the variable
at.

5. INTERPRETATION OF RESULTS

In this section we show that the stochastic differential
equation describing the closed-loop system has an expo-
nentially and asymptotically stable equilibrium. To see
this use (9), rewrite the dynamics for xt in (1) as

dxt = [αxt + βu∗t + σζ∗t ] dt+ σxtdBt
=
[
α+

(
− β2

b
+

σ2

2γ2

)
qt

]
xtdt+ σxtdBt,

t ∈ [0, T [, x0 ∈ R,
and consider the following assumption.

Assumption 2. There exists κ > 0 such that

−κxt ≥
[
α+

(
− β2

b
+

σ2

2γ2

)
qt

]
xt (10)

With the above assumption we can perform the analysis
within the framework of stochastic stability theory, see
Loparo and Feng [1996]. To this end consider the infinites-
imal generator
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L =
1

2
σ2x2t

d2

dx2t
− κxt

d

dxt
. (11)

Consider the Lyapunov function V (x) = x2. The stochas-
tic derivative of V (x) is obtained by applying the infinites-
imal generator (11) to V (x), which yields

LV (xt) = lim
dt→0

EV (xt+dt)− V (xt)

dt

= [σ2 − 2κ]x2t .

Proposition 1. (Loparo and Feng [1996]). Let Assumption
2 hold. If V (x) ≥ 0, V (0) = 0 and LV (x) ≤ −ηV (x)
on Qε := {x : V (x) ≤ ε}, for some η > 0 and for
arbitrarily large ε, then the origin is asymptotically stable
“with probability one”, and

Px0

{
sup

T≤t<+∞
x2t ≥ λ

}
≤ V (x0)e−ψT

λ

for some ψ > 0.

From the above proposition we have the following result,
which establishes exponential stochastic stability of the
mean-field equilibrium.

Corollary 2. Let Assumption 2 hold. If [σ2− 2κ] < 0 then
lim
t→∞

xt = 0 almost surely and

Px0

{
sup

T≤t<+∞
x2t ≥ λ

}
≤ V (x0)e−ψT

λ

for some ψ > 0.

Figure 1 represents a graphical illustrations of the main
results of the paper. In particular, Figure 1(a) depicts
the initial density distribution m0(x) on the vertical axis
and the state space on the horizontal axis. According to
Assumption 1, the density m0(x) is quadratic in x (see the
grey area). Now, if the vector field is converging to zero, the
density function shrinks towards zero and becomes “more
convex”, which corresponds to at increasing with t. This
occurs when Assumption 2 holds true, as all players are
drawn towards the origin by the linear feedback. This is
illustrated in Fig. 1(b), in which the grey area is closer to
zero. On the other hand, if the vector field is diverging from
zero, the density function is drawn apart from zero and
becomes “less convex” and ”more flat”, which corresponds
to at decreasing with t. This is due to a higher influence
on the part of the disturbances (both the stochastic one,
namely the Brownian motion, and the adversarial one ζ).
This case is illustrated in Fig. 1(c), in which the grey area
is more dispersed.

The main results of the paper can also be extended to
piece-wise quadratic density functions as the one illus-
trated in Figure 2(a). The underlying idea is to partition
the state space into different regions, for instance two in
the figure (the negative and positive orthants) and analyze
them separately and independently. In the first scenario
we consider a vector field, which is converging to the
local minimum on the left in the negative orthant, and
is converging to the local minimum on the right in the
positive orthant. The same field can be seen as diverging
from zero. The density splits into two separate areas thus

(a) (b) (c)

Fig. 1. Initial distribution m0 (a) and final distribution mT for
converging (b) and diverging vector field (c). Graphs are not to
scale.

creating two independent clusters. This is illustrated in
Figure 2(b)where the grey area turns into two separate
areas far from zero as more and more players move towards
the local minima.

On the other hand, if the vector field is diverging from
the local minima and converging to zero, the density is
discontinuous in zero and gives rise to a Dirac impulse
at the origin. This means that the density accumulates a
mass in zero and is no longer regular as illustrated in 2(c).

(a) (b) (c)

Fig. 2. Initial distribution m0 (a) and final distribution mT for
converging (b) and diverging vector field (c).

6. NUMERICAL STUDIES

The theoretical resulsts are illustrated by a numerical
study in this section. Consider a system consisting of
n = 7700 indistinguishable players with dynamics (1) and
suppose each of the players seek to minimise the cost
functionals (2) subject to an adversary disturbance. Fur-
thermore, suppose that the initial distribution is quadratic
in line with Assumption 1. It follows from Theorem 1 that
optimal control and the worst-case disturbance are given
by (9), which relies on the solution of the two-point bound-
ary value problem (8). The numerical results are obtained
by solving the coupled ODEs (8) numerically before using
the solution to simulate the closed-loop system (1) for a
discretised set of states, namely x ∈ [−1, 1]. The states of
the n agents are initially within this set of states. The state
trajectories are computed over the period [0, 5] using the
sample time 0.01. The parameters used are a0 = 0.2597,
α = −0.1, β = 0.1, b = γ = 1 The simulations have been
run for σ = 0, i.e. without noise, and σ = 0.1.

Figure 3 illustrates the solution to the coupled ODEs (8).
The solid lines show the time history of at, whereas the
dashed lines show the time history of qt for σ = 0 (top)
and σ = 0.1 (bottom). Note that the boundary conditions
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are satisfied, i.e. a(0) = a0 and qT = aT . Furthermore,
at is monotonically increasing with time. Figures 4 and
5 show the initial (black, dashed line) and final (black,
solid line) distribution of the agents’ states for σ = 0 and
σ = 0.1, respectively. The black dash-dotted lines indicate
the distribution of the agents at t = 2.5. The grey lines
indicate the distribution “predicted” by the solution to
the ODEs (8), shown in Figure 3 for t = 2.5 (dash-dotted
line) and at the final time (solid line). The distribution
computed based on the evolution of the states coincides
well with the solution of (8).

The time evolution of the distribution function is a shrink-
ing quadratic function in accordance with 1(b). Since the
initial distribution is such that x = 0 is the state with
the lowest density, it is expected that the players move
towards this point, which is consistent with Figures 4 and
5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

time

a
t,
q t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

time

a
t,
q t

Fig. 3. Time histories of at (solid lines) and qt (dashed
lines) for σ = 0 (top) and σ = 0.1 (bottom).
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Fig. 4. The initial (dashed line), final (solid line) and
intermediate (dash-dotted lines) distributions of the
agents’s states for σ = 0. Grey lines indicate the
distribution “predicted” by the solution to (8).
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Fig. 5. The initial (dashed line), final (solid line) and
intermediate (dash-dotted lines) distributions of the
agents’s states for σ = 0.1. Grey lines indicate the
distribution “predicted” by the solution to (8).

7. CONCLUDING REMARKS

We have discussed robust mean-field games as a paradigm
for crowd-averse systems. Future directions include i) the
extension of the approximation method to more general
cost functionals, ii) the study of the case with “local”
mean-field interactions rather than “global” as in the
current scenario, and iii) the analysis of crowd-seeking
scenarios in contrast to the crowd-averse case analyzed in
the paper.
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M.Y. Huang, R.P. Malhamé, and P.E. Caines. Large
Population Stochastic Dynamic Games: Closed Loop
Kean-Vlasov Systems and the Nash Certainty Equiv-
alence Principle. Communications in Information and
Systems, vol. 6, no. 3, pp. 221–252 (2006).

M.Y. Huang, P.E. Caines, and R.P. Malhamé. Large pop-
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