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Abstract: In this work, two high order sliding mode observers under cascade form are proposed
in order to estimate the important states and inputs affecting the lateral dynamics of two-
wheeled vehicles. The first observer is based on a vision system and is used to estimate the
lateral velocity of the vehicle. This velocity is considered as an additional measure for the
second observer which is designed to estimate the tire forces, the roll angle and torque applied
to the handle-bar.
The main contribution of this work is the estimation of the tire forces even with the variation
of the longitudinal velocity and without the prior knowledge of the pneumatic coefficients.
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1. INTRODUCTION

Actually, the use of powered two-wheelers (PTW) is in-
creasingly common thanks to the freedom of riding they
offer and to the possibility to avoid congestion of the road.
However, injuries of motorcyclists are out of proportion to
their presence on roads. In the last French Technical report
on Road Safety, the authors state that motorcyclists are
just 2.5% of road traffic, but account for 26% of road user
deaths (see ONISR (2012)).

In fact, nowadays, a growing delay is observed in the
development of safety systems for motorcycles compared
to other vehicles and the direct transportation of car
safety systems to motorcycles is not obvious because of the
complexity of the motorcycle dynamics and the influence
of the rider on the behavior of the vehicle (see Evangelos
(2010)). Moreover, motorcycle safety systems designers are
faced with another problem, namely: the exact knowledge
of the relevant dynamic states and inputs in order to
quantify the risk (loss of control, etc.) or to correct a risk
situation.

In this context, the motorcycle dynamics can be estimated
through suitable sensors. However, this solution is not
always obvious for several reasons: the price of some
sensors (sensors of steering torque, etc.) or the feasibility of
others (lateral tire forces sensors, etc.). On the other hand,
sparsely works deal with the estimation of the PTW’s
dynamics.

In the literature, the estimation of the lateral dynamics has
mainly concerned the lean ones with neglect of the steering
mechanism. A frequency separation filtering observer (see
Boniolo et al. (2009)) and extended Kalman filter (see
Teerhuis and Jansen (2010)) were proposed to estimate
the roll angle but with the neglect of the steering dynamics

and by considering the tire-road forces in their linear form.
In addition, these works are not robust to the variation
of the forward velocity. The observation of the steering
angle was proposed in De Filippi et al. (2011) with an
LPV observer and scheduling gain technique missing the
estimation convergence guarantee. More recently, a HOSM
observer was proposed in Nehaoua et al. (2013) and a
Takagi-Sugeno unknown input observer in Ichalal et al.
(2013) to estimate the lateral dynamics and the steering
torque. However, the lateral forces have been considered in
their linear form and with known parameters. Moreover,
for the former, it has been pointed that the observer was
not robust to the variation of the longitudinal velocity
which has been considered constant.

To the best of our knowledge, the estimation of the lean
dynamics, the steering dynamics and the lateral tire forces
in their nonlinear form, without the prior knowledge of
their parameters and for a large range of forward velocities
have never been addressed before for motorcycles.

2. PROBLEM STATEMENT

Our long term objective is to assist the rider in a passive
or an active way in order to anticipate or to remedy a
dangerous situations. Thus, we must identify all the perti-
nent parameters that affect the dynamics of PTW vehicles.
The exact knowledge of such parameters is important to
improve the risk quantification of the loss-of-control during
cornering (see Slimi et al. (2010)).

It is well known in the motorcycle literature that the tire
is one of the motorcycle’s most important components (see
Cossalter (2006)). In addition to the comfort of the ride
that the tire procures, it improves the adherence which is
necessary to the generation of the longitudinal and lateral
forces at acceleration, braking or corning movements.
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In this context, it seems necessary to estimate either
the adherence or the tire forces. In our case, we are
interesting by the cornering situations and we try to
estimate the lateral forces in their nonlinear form even
when the pneumatic parameters are unknown or change
with time. Indeed and in the proposed work, we deal with
the UIHOSMO (Unknown Input High Order Sliding Mode
Observers) (see Fridman et al. (2007)) for dynamics state
observation and unknown inputs reconstruction. Here, we
consider the tire forces as unknown inputs to avoid the
prior knowledge of their parameters.

Based on super twisting algorithms, robust exact differen-
tiator has been proved to be a powerful tool to estimate
in finite time the derivative of signals (see Levant (2003)).
Under the condition of minimum phase, and by an ad-
equate system coordinate transformation, an UIHOSMO
based on the robust exact differentiator will be applied in
order to estimate all the unknown states and inputs.

The presented paper is organized as follows: in section 2,
we give a brief theoretical background on the observability
and detectability of linear parameter varying systems.. In
section 3, the vision system and the motorcycle lateral
dynamics models are described. The cascaded HOSMO
is described in section 4. The simulation results of this
work are given in section 5.The paper is wrap up by some
conclusions.

3. THEORETICAL BACKGROUND

In this paper, we deal with the following class of systems:

ẋ = A(θ)x+D(θ)d , y = Cx (1)

where x ∈ Rn is the state vector, d ∈ Rm is the unknown
input vector , y ∈ Rm is the measured output vector and
θ ∈ Σ ⊂ Rq is an external measured vector.

Firstly, we recall some definitions and propositions about
observability and detectability. For simplicity, we consider
also that the vector θ = θ0 is piecewise constant with:
A(θ0) = A∗ and D(θ0) = D∗

Definition 1. For the system (1), we define the Roosen-
brock matrix of the triplet (A∗, D∗, C) as:

R(s) =

[

sI −A∗ D∗

−C 0

]

(2)

s0 is called an invariant zero of the triplet (A∗, D∗, C) if
rankR(s0) < n+ rankD.

Definition 2. Consider the system (1) with θ = θ0.
(r1, ..., rp) is called the vector of partial relative degrees
of the output vector y w.r.t the unknown input vector, if
for each partial relative degree ri, the following equations
hold:

CiA
∗jD∗ = 0, j = 1, ..., ri − 2 , CiA

∗ri−1D∗ 6= 0 (3)

and

det







C1A
∗r1−1D∗

...
CpA

∗rp−1D∗






6= 0 (4)

where Ci is the i
th line vector of the matrix C.

We call r = Σp1ri the relative degree of the output vector y
w.r.t the unknown input d. It is always less than or equal
to n.

Definition 3. The system (1) is called strongly observable
if:

[∀x(0) ∈ Rn, ∀d(t) ∈ Rm, y(t) ≡ 0] ⇒ [x(t) ≡ 0] (5)

Otherwise, it is called strongly detectable if:

[∀x(0) ∈ R
n, ∀d(t) ∈ R

m, y(t) ≡ 0] ⇒ [x(t) → 0 as t→ 0] (6)

Proposition 4. The system (1) with θ = θ0 is called
strongly observable if and only if one of these statements
holds:

• The triplet (A∗, D∗, C) has no invariant zeros.
• The output vector y has a relative degree r = n w.r.t

the unknown input d.

Otherwise, it is called strongly detectable if and only if:

• The relative degree r of the output vector y w.r.t
the unknown input vector d exists and the triplet
(A∗, D∗, C) has no unstable invariant zeros. (i.e. The
system is minimum phase).

Now and to design our observers, we must describe the
vision system and the motorcycle lateral dynamics models.

4. MOTORCYCLE MODEL DESCRIPTION

In this section, we describe the model of the vision system
based on the lateral displacement (figure 4.1) and the
motorcycle lateral dynamics based on the model of Sharp
1971 with 2 body frames and 4 degrees of freedom (DOF).

The main aim of adding a vision system to our structure
is to estimate the lateral velocity which will give us an
additional degree of freedom in the reconstruction of the
lateral forces. This is described more in details in section
5.

An overall scheme of the system structure linked to the
observer is in figure 1.

Trajectory

ρ

Vision system 1st observer

ψl

ys

ρ̂

v̂y

Motorcycle

vy

τ

Fx

vx , ψ̇

φ̇

δ

2nd observer

F̂yf

F̂yr

τ̂

φ̂

The measurements The estimates

Fig. 1. Overall scheme of the motorcycle with the vision
system and the observer
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4.1 Vision system model

We consider using a vision system giving us the lateral
displacement of the vehicle from the centerline at a look
ahead distance and the angular displacement (figure 4.1).
These measures are extracted from images obtained with
a suitable camera.

radius= 1
ρ

β ys

ls

ψl

The equations describing the evolution of theses mea-
surements are given by (see Dahmani et al. (2010) and
V. Cossalter (2006)):

ẏs = vx(β + ψl) + ls(ψ̇ − vxρ)

ψ̇l = ψ̇ − vxρ (7)

where ys is the offset from the centerline at a look ahead
distance ls, ψl is the angular displacement, β is the lateral

slip angle
[

β = tan−1
[

vy−bψ̇
vx

]]

, vy is the lateral velocity,

vx is the longitudinal velocity, ψ̇ is the yaw rate of the
vehicle and ρ is the road curvature.

The system (7) can be rewritten in the form:

ẋ1 =

[

0 vx
0 0

]

x1 +

[

vx −lsvx
0 −vx

]

d1 +

[

ls
1

]

ψ̇

=A1x1 +D1d1 + E1y1

y1 =C1x1 (8)

where xT1 = (ys ψl), d
T
1 = (β ρ) and C1 =

[

1 0
0 1

]

.

The vision system’s parameters are described with their
numerical values in appendix A.

Remark 5. Note that the model (7) used for the vision
system is available only for small roll angles. Of course,
for high roll angles, the model of the vision system will be
coupled with the lean dynamics.

In our context, we are interested by urban riding situations
and we consider the hypothesis of small roll angle available.

Discussion on the observability For the model (7) and
for vx = v∗x, The Roosenbrock matrix is given by:

R1(s) =







s −v∗x v
∗
x −lsv

∗
x

0 s 0 −v∗x
1 0 0 0
0 1 0 0






(9)

If v∗x 6= 0, then the Roosenbrock matrix is always full rank.
So, the system (7) is always strongly observable for v∗x 6= 0.

4.2 Motorcycle lateral dynamics

In this work, we consider only the lateral dynamics.
Our work is based on the model of Sharp (1971). The
motorcycle is represented as two linked bodies: the front
and the main frame. The former includes the handlebar
assembly and the front wheel, where the former contains
the chassis, the engine and the rear wheel.

Thus, the obtained model is considered having 4 DOF: the
yaw dynamics, the roll dynamics, the lateral displacement
of the main frame and the rotation of the steering system
(the front frame).

Instead of considering the tire forces in a linear form as
reported in Sharp (1971), they are expressed in this work
using the magic formula of Pacejka (2005). Moreover, we
consider that the tire characteristics are unknown which is
more realistic because the tire characteristics change with
the tire’s pressure and the road’s adherence.

Thereby, we obtain the following differential equations:

Fyf + Fyr =M(v̇y + vxψ̇) +Mfkψ̈ + d1φ̈+Mf eδ̈
∑

Mz =Mfk(v̇y + vxψ̇) + a2φ̈+ a3ψ̈ + a1δ̈ − a4vxφ̇− d2vxδ̇

∑

Mx = d1v̇y + b2φ̈+ a2ψ̈ + b1δ̈ + b5vxψ̇ + d3vxδ̇

∑

Ms =Mf ev̇y + b1φ̈+ a1ψ̈ + c1δ̈ − d3vxφ̇+ c3vxψ̇ +Kδ̇(10)

where:

∑

Mz = lfFyf − lrFyr

∑

Mx = b4 sin(φ) − b3 sin(δ)

∑

Ms = −b3 sin(φ) − c2 sin(δ) − ηFyf + τ

Fyf = Df .sin {C1f .arctan [B1fαf − E1f (B1fαf − arctanB1fαf )]

+ C2f .arctan [B2fθf − E2f (B2fθf − arctanB2fθf )]}

Fyr = Dr.sin {C1r.arctan [B1rαr − E1r(B1rαr − arctanB1rαr)]

+ C2r.arctan [B2rθr − E2r(B2rθr − arctanB2rθr)]} (11)

αf = tan−1
[[

vy+lf ψ̇−ηδ̇
vx

]

− δ cos(ε)
]

and αr = β are the

front and rear side slip angles and θf = φ + δ sin(ε) and
θr = φ the front and rear camber angles respectively.

Mf , Mr and M are the mass of the front, the main frame
and whole the vehicle respectively, φ is the roll angle, δ is
the steering angle, Fyf and Fyr are the lateral front and
rear forces respectively and τ is the torque applied to the
handle bar. More details on the motorcycle parameters
and expressions are given in appendix A.

Instead of including the tire forces in the dynamic state
representation, they are considered as unknown inputs.
Note that the torque applied to the handle-bar is hard to
measure. To this fact, it is also considered as an unknown
input.

With this configuration, we will have a state representa-
tion with 6 states (φ, δ, vy, ψ̇, φ̇, δ̇) and 3 unknown inputs
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(Fyf , Fyr, τ). The measurement are the roll rate φ̇, the yaw

rate ψ̇ and the steering angle δ.

However, it is well known in the bicycle and motorcycle
literature that the lateral dynamics are modeled by a non-
minimum phase system when the steering dynamics are
taking into account (the counter steering phenomena).
With the latter state representation, we will obtain an
unstable zero. Therefore, the system is neither strongly
observable nor strongly detectable.

In order to make the system strongly observable, we con-
sider the roll angle as an unknown input (see Nehaoua
et al. (2013)). Thus, we obtain the following state repre-
sentation:









1 0 0 0 0
0 Mf e M Mfk d1
0 a1 Mfk a3 a2
0 b1 d1 a2 b2
0 c1 Mf e a1 b1









ẋ2 =









0 1 0 0 0
0 0 0 −Mvx 0
0 d2vx 0 −Mfkvx a4vx

−b3 d3vx 0 b5vx 0
−c2 −K 0 −c3vx d1vx









x2 +









0 0 0 0 0
1 1 0 0
lf −lr 0 0
0 0 0 b4
−η 0 1 −b3









d2

⇔M2ẋ2 = A2x2 +D2d2 (12)

where: xT2 = [δ, δ̇, vy, ψ̇, φ̇] and d
T
2 = [Fyf , Fyr, τ, φ].

The dimension of the vector of unknown inputs is 4. So,
we need to at least 4 measures to be able to reconstruct
the unknown inputs; which motivates the addition of the
vision system to obtain the lateral velocity vy as the fourth
measure for our observer. Thus, the output vector become:

y2 =







1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1






x2

=C2x2 (13)

Discussion on the observability For the motorcycle
model (12) and for a longitudinal velocity vx = v∗x, the
Roosenbrock matrix is given by:

R2(s) =

[

sI4 −M−1A∗
2 M

−1D2

C2 0

]

(14)

The matrix R2(s) is full rank if and only if Ŕ2(s) given by
(15) is full rank.

Ŕ2(s) =

[

sM −A∗
2 D2

C2 0

]

(15)

After computation, we find: det(Ŕ2(s)) = b4(lf + lr).
Knowing that lf and lr are geometrical parameters and
are always greater than 0, also b4 = (Mf j +Mrh)g 6= 0.

So, Ŕ2(s) is always full rank , regardless of the longitudinal
velocity and the system (12) is strongly observable.

5. OBSERVER DESIGN

Now, we will design a cascaded observer in order to
estimate the tire forces, the lateral velocity, the roll angle,

the road curvature and the steering torque. The diagram
of the proposed observer is given in figure (1).

5.1 Observer design for the vision system

The first observer is based on the vision system which is
modeled by the system (7). We consider that all the state
vector x1 is measured. Indeed, the partial relative degrees
vector is: (r1, r2) = (1, 1). Also, as seen before, the system
is strongly observable.

Note that the system (7) is already written in the tri-
angular form w.r.t each output. Moreover, all the states
are measured. So, we do not need the transformation
suggested in other papers (see Fridman et al. (2011)) to
reconstruct the unknown input vector. Moreover, since
since this transformation is not necessary, the proposed
observer is insensitive to longitudinal velocity variations.

Since the two outputs ys and ψl and their firsts derivatives
are bounded, we use a second order sliding mode differen-
tiator to estimate the first derivative of the output vector.

v̇11 = v12 − λ11|v11 − ys|
1

2 sign(v11 − ys)

v̇12 =−λ12sign(v12 − v̇11)

v̇21 = v22 − λ21|v21 − ψl|
1

2 sign(v21 − ψl)

v̇22 =−λ22sign(v22 − v̇21) (16)

where λij are positive scalars and are chosen according to
the limit values of the derivative of ys and ψl (see Levant
(2003) for more details).

Let υ1 and υ2 the estimates of x1 and its derivative ẋ1.
We have: υT1 = (v11, v21) and υ

T
2 = (v12, v22).

From (7) and the expressions of the estimates and thanks
to the fact that D1 is full rank, the estimate of the
unknown input vector is given by:

d̂1 = D−1
1 [υ2 −A1υ1 − E1y1] (17)

with dT1 = [β̂, ρ̂].

Remark 6. The only condition for the existence of the
unknown input observer is that: the forward velocity vx
must not be null (i.e. the vehicle must not be at rest) to
garantee the full rank of the matrice D1.

Now, from β̂ = tan−1
[

v̂y−bψ̇
vx

]

, we obtain:

v̂y = vxtanβ̂ + bψ̇ (18)

5.2 Observer design for the motorcycle lateral dynamics

For the second observer, we consider the lateral velocity
as an additional measure in order to make the number
of measures equal to the number of the unknown inputs.
This hypothesis is available thanks to the finite time
convergence of the first observer.

In this case, we see that the partial relative degree of the
output vector w.r.t the unknown input vector is (2, 1, 1,
1) independently of the longitudinal velocity. Thus, the
system is strongly observable and the states and unknown
inputs can be estimated accurately.
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As well as for the first observer, we will use high order
differentiators in order to estimate δ̇, δ̈, v̇y, φ̈, ψ̈.

Thus, we propose the following differentiators:

v̇31 = v32 − λ31|v31 − δ|
2

3 sign(v31 − δ)

v̇32 = v33 − λ32|v32 − v̇31|
1

2 sign(v32 − v̇31)

v̇33 =−λ33sign(v33 − v̇32)

v̇41 = v42 − λ41|v41 − v̂y|
1

2 sign(v41 − v̂y)

v̇42 =−λ42sign(v42 − v̇41)

v̇51 = v52 − λ51|v51 − ψ̇|
1

2 sign(v51 − ψ̇)

v̇52 =−λ52sign(v52 − v̇51)

v̇61 = v62 − λ61|v61 − φ̇|
1

2 sign(v61 − φ̇)

v̇62 =−λ62sign(v62 − v̇61) (19)

The scalars λij are positive scalars, and as well as for the
first observer, they are chosen according to the second
derivative of δ, the first derivative of vy, φ̇ and ψ̇ as
suggested in Levant (2003).

Thus the estimate of x2 and ẋ2 are given by:

ξT1 = (v31, v32, v41, v51, v61)

ξT2 = (v32, v33, v42, v52, v62) (20)

Finally, the estimate of d2 is obtained by combining (20)
with (12):

d2 = D−1
2 [M2ξ2 −A2ξ1] (21)

Thus, we have estimated the lateral forces, the steering
torque, the roll angle and the steering rate.

Remark 7. The condition to the existence of such an
observer is the full rank of the matrix D2. Of course, D2

is full rank because b4 6= 0 and lf + lr 6= 0.

6. SIMULATION RESULTS

The simulations are carried out on a non-linear model
including coupled longitudinal and lateral dynamics. The
tire forces are modeled by the magic formula of Pacejka.
The simulation conditions are given for a lane change
maneuver and for the longitudinal velocity profile given
in figure (2).

0 5 10 15 20
8

10

12

14

16

18

20

22

time (s)

longitudinal velocity (m/s)

Fig. 2. Longitudinal velocity profile

The results of simulation without noises for the first
observer are given in figure (3) and for the second observer
in figure(4).
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Fig. 3. The road curvature (blue) and its estimated (red),
(below) the lateral velocity (blue) and its estimated
(red)
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Fig. 4. The unknown inputs (blue) and their estimates
(red)

Without noises, we see that all the parameters are well
estimated. The main advantage of this observer is that we
need any knowledge of the pneumatic parameters. Only
the geometric parameters and the mass of the motorcycle
are required.

Another advantage of this observer is its robustness to
the variation of the longitudinal velocity, which has been
considered variable in simulation.

Now, we consider that the measures are affected by cen-
tered and random noises in order to test the observer
in the presence of noised measurements. The simulation
results are depicted in figure (5) and (6). The effect of
noises is visible, but the estimation of all the parameters
is acceptable.

Of course, we have a compromise in the chose of the
differentiator gains. If they are chosen sufficiently large,
we will have good and fast estimation, but the observer
will be very sensitive to noises. And in the other case, the
observer will be less sensitive to noises but the estimation
of the unknown signals will not be accurate.

7. CONCLUSION

In this work, an UIHOSMO is proposed for the PTW
vehicles to estimate the lateral dynamics, the tire forces
and the road curvature. The vehicle is equipped with
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Fig. 5. The road curvature (blue) and its estimated (red),
(below) the lateral velocity (blue) and its estimated
(red): the noisy case
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Fig. 6. The unknown inputs (blue) and their estimates
(red): : the noisy case

a vision system in order to estimate firstly the lateral
velocity and the road curvature using HOSM differentia-
tor. Next we consider the estimated lateral velocity as an
auxiliary output for the second system thanks to the finite
time convergence guaranteed by the differentiator. Based
on the same technique of derivation, and on the second
system, the tire forces, the roll angle and the steering
torque - which are all considered as unknown inputs -
are estimated in finite time also. It is pointed out that
the proposed observer is insensitive to variations of the
longitudinal velocity and needs any prior knowledge of
the pneumatic parameters. Only the measures given by
sensors, the masses and the geometrical parameters are
needed. To our knowledge, such a work has never been
addressed before for motorcycles. Validation results on an
experimental scooter will be published in future works.
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Appendix A. SYSTEM’S PARAMETERS

Table A.1. Vision system and motorcycle dy-
namic variables

Vision system

ys, ψl offset and angular displacement at a look
ahead distance

ls look ahead distance
ρ road curvature
β lateral slip angle

Motorcycle

vx , vy longitudinal and lateral velocities
φ , ψ , δ roll, yaw and steering angles
Fyf , Fyr front and rear lateral forces
τ steering torque
Mf , Mr , M mass of the front frame, the rear frame

and the whole motorcycle
K damper coefficient of the steering

mechanism
Bij , Cij , Dj , Eij Magic formula pneumatic parameters

i ∈ (1, 2) , j ∈ (f, r)

The remaining parameters can be found in Nehaoua et al. (2013)
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