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(e-mails: ohlsson@isy.liu.se, fredrik@isy.liu.se)

Abstract: In this paper we present a receding horizon estimation method for linear time
invariant systems, subject to unknown inputs. The proposed approach is based on the idea
of asymptotically decoupling the state estimation problem from the unknown input estimation
problem. Consequently, the latter is formulated as a weighted least squares problem in a receding
horizon manner. The proposed method does not assume a dynamic model for the unknown input,
but it allows to incorporate prior knowledge about its abrupt nature by adding `1-regularization
terms to the cost function of the weighted least squares problem. The receding horizon input
estimation method and the necessary conditions for it to hold are outlined. The proposed method
is illustrated in simulation for the case of abruptly changing piece-wise constant unknown inputs.
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1. INTRODUCTION

This paper considers the estimation of the unknown input
of a linear state space model. Such a problem has a
wide interest and a long research history. In the area of
fault detection, the unknown input may represent faults
that occur due to failing components or changing external
load conditions (Willsky and Jones, 1974; Patton et al.,
1989; Basseville and Nikiforov, 1993; Gustafsson, 2001).
In target tracking, the unknown input may represent
unknown forces exerted on the moving object.

A first class of methods aim for jointly estimating the
state and the unknown input. Examples are Hsieh (2000),
Gillijns and De Moor (2007). These solutions are Riccati
based, making them valid for arbitrary changing unknown
inputs, but they do not allow the important specialization
towards abrupt changing inputs.

When the unknown inputs change abruptly, e.g. as jumps,
a pioneering contribution was made by Willsky and Jones
(1974). The philosophy of this approach was to build a
secondary moving horizon estimator on top of a Kalman
filter, tuned for the situation when the unknown input is
equal to zero. The major drawback of this approach is that
the receding horizon estimation requires that no unknown
input has occurred prior to the time window w on which
the receding horizon estimation problem is defined. Such
drawback restricts the practical usefulness of the approach.
The drawback is a consequence of the inability to jointly
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estimate both the state and the unknown (abrupt) input
sequence within the time window w.

A recent attempt to simultaneously estimate the state
sequence and the unknown abrupt input was presented
by Ohlsson et al. (2012). This paper considers a fixed time
interval in the context of sum-of-norms (`1) regularization.
The regularization is necessary since the system is under-
determined and, as a result, the state and the unknown
input can not be determined uniquely. Moreover, the `1
regularization term penalizes the absolute values of the
variables, thus inducing a bias towards zero in the solution.

In order to overcome the drawback of both existing pi-
oneering contributions to deal with abrupt changing un-
known inputs and hence come up with a procedure that
is valid for both abrupt and arbritrary changing unknown
inputs, a new receding horizon input estimation method
is presented in this paper. The method is initially pre-
sented using the same philosophy as in Willsky and Jones
(1974), on top of an unknown-input free Kalman filter.
The method enables to “approximatively” decouple the
estimation of the unknown input sequence over the time
window w from that of the estimation of the state sequence
in that same window.

The main advantage of the decoupling is that the unknown
input estimation can be defined both for the case of arbi-
trary changing unknown inputs as well as for constrained
unknown inputs. That is, the constraints on the input are
not essential in order to be able to estimate the unknown
input, as was necessary in Ohlsson et al. (2012).
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The paper is organized as follows. In Section 2 we present
the problem of unknown input estimation in a receding
horizon framework, given an LTI model in innovation form.
Based on the idea of approximate decoupling between the
unknown input estimation problem from the state recon-
struction problem, in Section 3 we outline the receding
horizon input (RHI) estimation method and the necessary
conditions for it to hold. The RHI estimation method
is extended to constrained unknown inputs in Section 4.
Finally, the RHI estimation is illustrated in simulation in
Section 5 and concluding remarks are drawn in Section 6.

2. PROBLEM FORMULATION

Starting from the same philosophy as used by Willsky and
Jones (1974), we initially formulate the RHI estimation
problem for the LTI system given in innovation from:

x(k + 1) = Ax(k) +Bb(k) +Ke(k),
y(k) = Cx(k) + e(k),

(1)

where x(k) ∈ Rnx is the state vector, b(k) ∈ Rnb is the
unknown input vector and y(k) ∈ Rny is the output vector
at time k. The innovation e(k) is a zero-mean white noise
sequence with a given covariance matrix Σe. Control input
and feed-through terms, i.e. Bu(k) and Du(k), can be
added to the state and output equations in (1), but for
the sake of compactness they are left out in the exposure
of this paper. We show in Section 5 that a deterministic
control signal can be included in the RHI estimation.

If we denote by Φ = A − KC, then we can write the
dynamic equation of the model (1) as:

x(k + 1) = Φx(k) +Bb(k) +Ky(k), (2)

and separate the unknown-input free Kalman filter:

x̂(k + 1) = Φx̂(k) +Ky(k),
ŷ(k) = Cx̂(k).

(3)

Let us define the error in the state vector xe(k) = x(k)−
x̂(k) and the output vector r(k) = y(k) − ŷ(k). Then the
following dynamic model results:

xe(k + 1) = Φxe(k) +Bb(k),
r(k) = Cxe(k) + e(k).

(4)

Over the time window [k − L + 1, k], the output residual
r(k) defined in (4) can be written as:

rk,L =

 CΦ
...

CΦL


︸ ︷︷ ︸
OL

xe(k − L)+

 CB 0 · · · 0
...

...
. . .

...
CΦL−1B CΦL−2B · · · CB


︸ ︷︷ ︸

TL

bk−1,L + ek,L,

(5)

and denoted compactly as:

rk,L = OLxe(k − L) + TLbk−1,L + ek,L, (6)

with

rk,L =
[
r(k − L+ 1)T · · · r(k)T

]
,

bk−1,L =
[
b(k − L)T · · · b(k − 1)T

]
,

ek,L =
[
e(k − L+ 1)T · · · e(k)T

]
.

This equation clearly highlights the fundamental prob-
lem in estimating the unknowns xe(k − L) and bk−1,L,
i.e., when the matrix [OL TL] is singular, the system of
equations (6) is under-determined, the unknowns xe(k −
L) and bk−1,L can not be uniquely determined. Various
restrictions have been imposed to circumvent this problem.
An example is the parity space analysis (PSA), which
cancels the observability matrix OL by multiplying (5)
from the left by its orthogonal complement (Patton et al.,
1989). Willsky and Jones (1974) put xe(k − L) to zero,
corresponding to the hypothesis that no unknown input
occurred prior to the moving window. The work of Ohlsson
et al. (2012) solves for xe(k−L) and bk−1,L simultaneously,
thereby requiring the unknown input sequence bk−1,L to
be ”sparse”.

In this paper we build on the recent work of Dong and
Verhaegen (2012) that splits the time window [k−L+1, k]
into a past time window of length p and a future time
window of length f , with p+f = L. With these notations,
we partition the output residual term rk,L, the unknown
input term bk−1,L and the noise term ek,L as follows:

rk,L =

[
rk−f,p
rk,f

]
, bk−1,L =

[
bk−f−1,p
bk−1,f

]
, ek,L =

[
ek−f,p
ek,f

]
.

In the sequel, we will use the following matrix partitions:

OL =

[
Op
OfΦp

]
, TL =

[
Tp 0
Hf,p Tf

]
, (7)

where Op ∈ Rpny×nx and Of ∈ Rfny×nx are defined
similarly to OL in (5), Tp ∈ Rpny×pnb and Tf ∈ Rfny×fnb

are defined similarly to TL in (5), and Hf,p ∈ Rfny×pnb is
a block Toeplitz matrix of the form:

Hf,p =

 CΦpB · · · CΦB
...

. . .
...

CΦL−1B · · · CΦfB

 . (8)

Applying this partitioning to (5), we get:[
rk−f,p
rk,f

]
=

[
Op
OfΦp

]
xe(k − L)

+

[
Tp 0
Hf,p Tf

] [
bk−f−1,p
bk−1,f

]
+

[
ek−f,p
ek,f

]
. (9)

In this paper we address the following problem. Here, use
is made of the notation M† to represent the (left) pseudo-
inverse of a matrix M that satisfies M†M = I.

Problem 1. Assume that: the system matrix Φ is asymp-
totically stable; the matrix CB is full column rank, such
that the matrices Tp and Tf are full column rank and the
left pseudo-inverses (CB)† and T †p exist; the system matrix

(I−B(CB)†C)Φ of the inverse system from r(k) to b(k−1)
is asymptotically stable.
Then, for p and f given, with p + f = L, transform the
output residual equation (9) into,[

?
rk,f

]
=

[
?

Γf

]
xe(k−L) +

[
Tp 0
0 Tf

] [
bk−f−1,p
bk−1,f

]
+

[
?

ek,f

]
(10)

with ? representing quantities of no direct relevance and
Γfxe(k−L) vanishes in the limit for p→∞ for a bounded
xe(k − L). Furthermore, find an estimate of the unknown

input in the future time window, denoted by b̂k−1,f , based
on the transformed data equation (10).
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T †p =


(CB)† 0 0 . . . 0

−(CB)†CΦB(CB)† (CB)† 0 . . . 0
−(CB)†CΦΨB(CB)† −(CB)†CΦB(CB)† (CB)† . . . 0

...
...

. . .
...

−(CB)†CΦΨp−2B(CB)† −(CB)†CΦΨp−3B(CB)† . . . (CB)†

 (11)

3. RECEDING HORIZON INPUT ESTIMATION

We start by solving the problem of approximately de-
coupling the unknown input estimation problem from the
state reconstruction problem. The decoupling consists in
removing, in an asymptotic (for p → ∞) manner, the
influence of the unknown input over the past time window,
bk−f−1,p, and that of the initial state, xe(k−L), from the
output residuals of the future time window, rk,f .

Following the work in of Dong and Verhaegen (2012), it is
noted that, since the matrix Φ is asymptotically stable, it
can be assumed that the product Φpxe(k−L) can be made
arbitrary small by an appropriate selection of the past
horizon length p. The approximate decoupling requires
finding a transformation matrix that, upon multiplying the
partitioned data equation (9) to the left, block diagonalizes
the matrix TL as in (10), and, in addition, yields a
transformed matrix Γf which asymptotically vanishes as
p → ∞. Let us consider the (left) transformation matrix
that block diagonalizes TL given as:

T =

[
I 0

−Hf,pT †p I

]
. (12)

Applying the transformation matrix T to the partitioned
data equation (9) on the left leads to the modified data
equation (10). This results into the transformed output
residual and the transformed noise sequence, respectively,

rk,f =
[
−Hf,pT †p I

]
rk,L = rk,f −Hf,pT †p rk−f,p, (13)

ek,f =
[
−Hf,pT †p I

]
ek,L = ek,f −Hf,pT †p ek−f,p. (14)

Moreover, it defines the matrix Γf as:

Γf =
[
−Hf,pT †p I

]
OL = OfΦp −Hf,pT †p Op. (15)

With these notations, we resume here only the bottom
block line of the modified data equation (10):

rk,f = Γfxe(k − L) + Tfbk−1,f + ek,f . (16)

Now we can show that the transformation (12) yields the
desired asymptotic results in the following theorem.

Theorem 2. Let the system matrix Φ of the observer (3)
and the system matrix Ψ of the inverse of the system (4),
which represents the the transfer from r(k) to b(k−1), i.e.,

Ψ = (I −B(CB)†C)Φ, (17)

be asymptotically stable. Then, the matrix Γf defined in
(15) can be written as:

Γf = OfΨp. (18)

Moreover, for any bounded vector x(k), the matrix Γf
satisfies:

lim
p→∞

Γfx(k) = 0. (19)

Proof. Denote by Cp =
[
Φp−1B . . . ΦB B

]
. Then, for

Hf,p given by (8), it holds that: Hf,p = OfCp. With this
notation and given the matrix Γf as in (15), it holds that:

Γf = Of
(
Φp − CpT †p Op

)
. (20)

We shall now compute the term CpT †p Op in (20). Given

the matrix T †p as in (11), it follows that:

T †p Op =


(CB)†CΦ

(CB)†CΦΨ
...

(CB)†CΦΨp−1

 .
Furthermore, when left multiplying T †p Op by Cp, one gets:

CpT †p Op =

p−1∑
j=0

Φp−j−1B(CB)†CΦΨj ,

=

p−1∑
j=0

Φp−j−1(Φ−Ψ)Ψj . (21)

The second inequality holds due to the substitution
B(CB)†CΦ = Φ−Ψ given by (17). The terms of the sum
in (21) cancel each other out, leaving that:

CpT †p Op = Φp −Ψp,

which, when replaced in (20), leads to (18). Based on (18)
and on the asymptotic stability of the matrix Ψ, the limit
(19) holds. This completes the proof. �
Remark 3. Note that the annihilation of the influence of
the past unknown input, bk−f−1,p, and that of the initial
state, xe(k − L), in the output residual of the future
time window, rk,f , is only achieved asymptotically, i.e., for
p → ∞. This result holds for a finite value of the future
window size f . As such, the asymptotic decoupling is a
generalization of the work of Dong and Verhaegen (2012),
where the asymptotic annihilation of the term related to
xe(k − L) from the residual rk,f required both p, f →∞.
Finite values of p lead to an approximate decoupling
and, consequently, to a small bias in the unknown input
estimation. This bias can be analysed and treated with the
methodology introduced by Dong et al. (2012). For that
reason and for the sake of compactness, we restrict this
paper in the sequel to the case when Γfxe(k − L) in (16)
is equal to zero. 2

To complete the analysis, one needs to have knowledge on
the stochastic properties of the noise sequence ek,f . Let the
covariance matrices of the temporally uncorrelated noise
sequences ek,f and ek−f,p be:

Σek,f
= E[ek,fe

T
k,f ] = If ⊗ Σe,

Σek−f,p
= E[ek−f,pe

T
k−f,p] = Ip ⊗ Σe,

where ⊗ is the Kronecker product and Σe = E[e(k)e(k)T ]
is the covariance matrix of the noise sequence e(k). Then,
the covariance matrix of the noise sequence ek,f will be:

Σek,f
= Σek,f

+Hf,pT †p Σek−f,p
(T †p )THTf,p. (22)

Moreover, let Σek,f
be factorized into Σek,f

= Σ
1
2

ek,f
Σ

T
2

ek,f
.
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A weighted least squares problem can now be formu-
lated for estimating the unknown input bk−1,f from the
transformed data equation (16), after neglecting the term
Γfxe(k − L):

min
bk−1,f

‖Σ−
1
2

ek,f
(rk,f − Tfbk−1,f )‖22. (23)

If the matrix Tf has full column rank, the minimum
variance solution to this problem is:

b̂k−1,f =
[
T Tf Σ−1ek,f

Tf
]−1
T Tf Σ−1ek,f

· rk,f , (24)

and the covariance matrix of this solution is given by:

Σb̂k−1,f
=
[
T Tf Σ−1ek,f

Tf
]−1

. (25)

Finally, the unknown input estimate b̂(k − 1) can be

determined from the last nb elements of b̂k−1,f , while the

covariance matrix of b̂(k − 1) can be determined from the
last nb × nb diagonal blocks of Σb̂k−1,f

.

Remark 4. When nb ≤ ny, the least squares problem (23)
can deal with arbitrary unknown inputs. Furthermore, if
prior information is available on the temporal nature of the
bias, such as it being piecewise constant or impulsive, the
problem can be extended to a constrained least squares
problem, as outlined in Section 4. Such flexibility is not
present in the existing family of joint state and unknown
input estimation algorithms, such as in, e.g., Gillijns and
De Moor (2007). The constraints are, on the other hand, a
necessary requirement in the sum-of-norms solution given
by Ohlsson et al. (2012), which can also be reformulated
in a receding horizon framework. 2

4. `1-CONSTRAINED RHI CALCULATION.

The RHI estimation problem (23) allows for adding con-
straints or regularization terms to consider the case of
abrupt changing unknown inputs. As in the work Ohlsson
et al. (2010), this can improve the estimation when the
prior information about the unknown input is correct. A
general formulation of the regularized least squares prob-
lem is:

min
bk−1,f

‖Σ−
1
2

ek,f
(rk,f − Tfbk−1,f )‖22 + λ‖Pbk−1,f‖1, (26)

where λ is a positive constant used to make a trade-
off between the data fitting (the first term) and the
temporal variation of the unknown input sequence within
the time window [k − f, k − 1] (the second term). The
matrix P ∈ Rfnb×fnb will introduce a pattern in the
temporal variation of the unknown input, based on a priori
knowledge.

For impulse type of inputs, where the input is equal to zero
most of the times and different from zero at only a small
number of times, it is convenient to consider P = Ifnb

.
This will result into a regularization term which favours
that “many” of the unknown input components come out
as exactly zero in the solution.

For piece-wise constant type of inputs, where the input is
constant at most of the times and jumping to a new value
at only a small number of time instants, it is convenient
to consider P = If ⊗ P , with:

P =

−1 1
. . .

. . .
−1 1

 ∈ Rnb×nb .

This choice for the matrix P favours that “many” of
the unknown input components remain constant from one
time instant to the next in the time window [k− f, k− 1].

Remark 5. The `1-constraints tend to bias the estimates
towards zero. However, the fact that the RHI estimation
problem can be solved without the need of regularization
allows us, in our future research, to use the constrained

problem (26) in order to find the sparsity pattern of b̂k−1,f
and, afterwards, to re-estimate the non-zero elements by
using the unregularized criterion (23) over only the non-
zero elements. This has the potential to remove the bias
while preserving the sparsity pattern in the estimates. 2

5. SIMULATION RESULTS

In the simulations, we demonstrate the application of
the new RHI estimation method for generic systems with
deterministic inputs, process and measurement noise. For
the sake of compactness, the procedure of designing an
observer gain K such that the matrices Φ and Ψ are
stabilized simultaneously is not given here.

For the evaluation of the RHI estimation, we consider
a standard benchmark given by the linearized VTOL
(vertical take-off and landing) aircraft model:

ẋ(t) =

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.3681 −0.707 1.42

0 0 1 0

x(t)

+

[
0.4422 3.5446 −5.52 0
0.1761 −7.5922 4.49 0

]T
(u(t) + b(t)), (27)

y(t) =

1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

x(t). (28)

We reproduce the same conditions in terms of discretiza-
tion time, noise characteristics, and unknown inputs as
used by Dong and Verhaegen (2012). The continuous time
model (27)-(28) is discretized with a sampling time equal
to 0.5 s. Furthermore, since the open loop plant is unstable,
a stabilizing output feedback controller is used, such that:

u(k) = −
[
0 0 −0.5 0
0 0 −0.1 −0.1

]T
y(k). (29)

A fault in the actuators has been added. More specifically,
a constant jump has been introduced at the second input
after time instant k = 500, such that:

b(k) =

{
[0 0] for k ≤ 500,

[0 0.5] for 500 < k ≤ 1000.
(30)

Process and measurement noise have been considered,
denoted by w(k) and v(k), respectively, with covari-
ance matrices Q = E[w(k)w(k)T ] = 10−4I4 and R =
E[v(k)v(k)T ] = 10−2I4.

The input u(k) is measurable and can be included in the
observer form (3), such that its influence is subtracted from
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y
v

u

b
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+

-

b̂

w

Fig. 1. Block scheme of the observer integration in closed
loop: the plant ”P”, the stabilizing controller ”C” and
the unknown input observer ”Obs”.

the measurements y(k), as described in Section 2, leaving
the output residual r(k) only dependent on the unknown
input b(k). Thus, the RHI estimation can be then applied
to a dynamic model of type (4).

The system has been simulated in closed loop, as shown in
Figure 1. The measurement and the control signals, y(k)
and u(k), have been recorded, for k = 1, . . . , 1000, and
have been used for the estimation of the unknown input
signal b(k), as if the system was simulated in open loop.

5.1 Results for the unconstrained RHI case

It has been shown in Section 3 how the influence of the
unknown inputs of the past window, bk−f−1,p, can be
removed asymptotically from the output residuals of the
future window, rk,f , via the transformation matrix (12).
This particular feature is the main contribution of the
unconstrained RHI estimation method with respect to
the approach proposed by Dong and Verhaegen (2012),
where the following constrained least squares problem is
considered:

min
bk−1,f

∥∥∥∥Σ
− 1

2
vk,f

(
rk,f − [Hf,p Tf ]

[
bk−f−1,p
bk−1,f

])∥∥∥∥2
2

(31)

s.t. bk−f−1,p = 0,

which has the following solution:

b̂k−1,f =
[
T Tf Σ−1vk,f

Tf
]−1
T Tf Σ−1vk,f

· rk,f . (32)

where Σvk,f
= If ⊗ Σν and Σν = diag(Q,R).

Here we show that the bias in the unknown input estimates
is significantly reduced when solving the unconstrained
RHI estimation problem (23) with respect to solving the
constrained least squares problem (31).

For the simulation of both methods we have used past
and future time windows of lengths p = 15 and f =

5. The estimates b̂1(k) and b̂2(k), obtained using both
methods for 1000 time instants, are plotted in Figure 2a-
2b. The estimates obtained using the method in Dong
and Verhaegen (2012) show a bias for the time interval
500 ≤ k ≤ 1000, after the jump occurs in the second input.

5.2 Results for the `1-constrained RHI case

In this section we show that, when prior information about
the unknown input class is included in the estimation
problem formulation, the `1-constrained RHI estimation
presented in Section 4 yields reduced variance estimates
when compared to the unconstrained RHI estimation. For
the sake of brevity, we only show here the results obtained
for estimating piece-wise constant inputs, such as (30).

b̂1

b̂2

−0.2 −0.1 0 0.1 0.2
−0.5

0

0.5

(a) Dong and Verhaegen (2012)

b̂1

b̂2

−0.2 −0.1 0 0.1 0.2
−0.5

0

0.5

(b) Unconstrained RHI (p = 15, f = 5)

b̂1

b̂2

−0.2 −0.1 0 0.1 0.2
−0.5

0

0.5

(c) StateSON (L = 20)

b̂1

b̂2

−0.2 −0.1 0 0.1 0.2
−0.5

0

0.5

(d) `1-Constrained RHI (p = 15, f = 5)

b̂1

b̂2

−0.2 −0.1 0 0.1 0.2
−0.5

0

0.5

(e) `1-Constrained RHI (p = 15, f = 15)

Fig. 2. Two-dimensional unknown input estimates for 1000
time instants with 1σ-ellipsoid joint distribution.

We compare the `1-constrained RHI estimation method
(26) with the StateSON method proposed by Ohlsson et al.
(2012) reformulated in a receding horizon framework:

min
x(k − L + 1), b(t), w(t)

k − L + 1 ≤ t ≤ k

k∑
t=k−L+1

∥∥∥Σ
− 1

2
ν (y(t)− Cx(t))

∥∥∥2
2

+ λ

k−1∑
t=k−L+1

‖b(t)− b(t− 1)‖1 (33)

s.t. x(t+ 1) = Ax(t) +B [u(t) + b(t)] + w(t).

The StateSON method is recursively performing the opti-
mization over a time horizon of length L = 20. For the
constrained RHI estimation, we have used a past time
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k

b̂2

480 485 490 495 500 505 510 515

0

0.2

0.4

true
constr .RHI (f = 5)
constr .RHI (f = 15)
StateSON (L = 20)

Fig. 3. Temporal evolution of the estimate b̂2 around the
time instant corresponding to the jump.

window length p = 15 and we have increased the future
time window length from f = 5 to f = 15. The weighting
parameters λ have been empirically fixed to 20 for both
methods. The estimates obtained using both methods are
shown in Figure 2c-2e.

As the future time window length f increases, the variance
of the `1-constrained RHI estimates (Figures 2d-2e) de-
creases with respect to that of the the unconstrained RHI
estimates (Figure 2b). On the other hand, for small values
of the window length L, the StateSON estimation method
shows a bias in the estimates (Figure 2c). This is due to
the fact that the problem of simultaneously estimating
the state and the unknown input sequence is singular
and adding the `1-regularization term yields a unique
solution, but can not correct for the bias introduced by
the singularity. This is not an issue for the RHI estimation
method, where the unknown input estimation problem is
asymptotically decoupled from the state estimation prob-
lem, yielding a well-posed problem with unique solution
for the unknown input estimate.

A temporal evolution of the estimate b̂2(k) around the time
instant corresponding to the jump is shown in Figure 3.
Note that, around that time instant, the estimates of both
the constrained RHI and of StateSON methods are biased.
This is due to the presence of the `1 regularization term
in the constrained problems (26) and (33).

5.3 Computational complexity

We report in Table 1 the computational time necessary
to compute one iteration for each of the algorithms intro-
duced. For the simulations, we have implemented the algo-
rithms in the MATLAB environment, on a computer with
a 1.7 GHz processor and 4 GB RAM. The unconstrained
RHI and the unknown input observer proposed by Dong
and Verhaegen (2012) are computed based on the closed
form solutions of the least squares problems (24) and (32).
The `1-constrained RHI problem (26) and the StateSON
problem (33) are solved using the CVX package (Grant
and Boyd, 2013).

6. CONCLUDING REMARKS

In this paper we propose a receding horizon input es-
timation method for linear time invariant systems. The
proposed approach asymptotically decouples the state

Method Computational time (s)

Dong and Verhaegen (2012) 6 · 10−3

Unconstrained RHI (p = 15, f = 5) 7.9 · 10−3

StateSON (L = 20) 0.6850
Constrained RHI (p = 15, f = 5) 0.3832
Constrained RHI (p = 15, f = 15) 0.4372

Table 1. Computational time necessary to compute one iteration.

estimation problem from the input estimation problem.
The latter is consequently formulated as a weighted least
squares problem in a receding horizon manner. The pro-
posed method does not assume a dynamic model for
the unknown input, but it allows for incorporating prior
knowledge about the dynamics of the unknown input via
regularization terms.

The asymptotic decoupling generalizes the Dong and Ver-
haegen (2012) approach by removing the influence of the
past inputs on the output residuals of the receding horizon
time window. Moreover, it generalizes the Ohlsson et al.
(2012) approach in the sense that it removes the singular-
ity in the least squares problem. A comparison between
the three approaches is presented via simulation results.
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