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Abstract: Recently the control methods based on disturbance rejection have largely renewed
our understanding of automatic control, especially the role of feedforward control. With the
renewed understanding, this work presents a feedforward and feedback approach for control of
general dynamic systems under a state tracking framework. This is realized by introducing a
fictitious system model and employing a proper state and disturbance estimator. The resultant
control scheme embodies a close cooperation between feedforward and feedback controls:
Feedforward control rejects the general disturbance and embeds a reference state trajectory,
whilst feedback control cancels the fictitious dynamics and enforces desired tracking error
dynamics. A notable advantage of the approach is that control designs of linear and nonlinear
systems can follow a common routine and the closed-loop stability is guaranteed under standard
conditions.
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1. INTRODUCTION

As two fundamental philosophies, feedback and feedfor-
ward, sit in the center of control theory (Åström and
Hägglund, 2005). Generally speaking, feedback enforces
compensation based on the effects, while feedforward en-
forces compensation based on the causes. The state-of-
the-art control theory has been dominated by feedback
control (Åström and Murray, 2010) although feedforward
control is useful and highly demanded in practice (Skoges-
tad, 2009; Gao, 2013). The inferior status of feedforward
control can owe to two bottlenecks of recognition: a) the
limited understanding of what can be used as feedforward
signals (Gao, 2013) and b) the limited knowledge of how
the feedforward signals can be obtained (Skogestad, 2009).
These bottlenecks prevent us fully recognizing the power
of feedforward control. But, fortunately they have begun
to crack for a renewed understanding of automatic con-
trol (Gao, 2013). The new understanding contributes to
identifying useful feedforward signals but also the ways
of extracting them, which shall together free the hid-
den power of feedforward. The renewals have been led
by the developments of active disturbance rejection con-
trol (ADRC) (Han, 1998, 1999; Gao, 2006), uncertainty
and disturbance estimator (UDE) based control (Youcef-
Toumi and Ito, 1988; Zhong and Rees, 2004; Zhong et al.,
2011), and model-free control (MFC) (Fliess and Join,
2009, 2013), which emerge almost independently within
their own research domains.

The ADRC was proposed by Han (1995; 1998; 1999).
It introduces two nontrivial innovations in philosophy: i)
Almost all dynamic systems can be transformed into a
canonical form as represented by a cascade of integrators
via input-dependent state transformations (Han, 1981); ii)
By extracting a nominal model from the canonical form,
any unmodeled dynamics including internal and external
uncertainties can be lumped as a total disturbance and
then estimated and compensated online. The innovation i)
was later rediscovered (Youcef-Toumi and Ito, 1988; Fliess,
1990) and more completely elaborated by Fliess (1990).
As to innovation ii), Han treats the total disturbance as
an additional state which is then estimated together with
the states by an extended state observer (ESO) (Han,
1995). The estimate is used as a feedforward control to
compensate the general disturbance before its affects the
system. This largely renews our understanding and digs
out the potential of feedforward. A direct consequence is
that feedback control can be designed based on a simple
(and even standard) plant model and the rest uncertainties
are handled by feedforward control. To date, ADRC has
been testified by a range of applications and its philosophy
as a medium to unifying various disturbance rejection
based control methods has become clear (Gao, 2013).
However, the theoretical basis of ADRC is still in the
infancy. Related analyses have been mainly on the capacity
of the disturbance observer (Yang and Huang, 2009; Zheng
et al., 2012; Huang and Xue, 2012) and the closed-loop
stability for single-input single-output (SISO) systems in
Han’s canonical form (Zheng et al., 2007). Some stability
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results (limited to a class of ESOs) are also available for
multi-input multi-output (MIMO) systems (Huang and
Xue, 2012), but it is unclear how they can be extended
to general dynamic systems which are not in or unable to
be transformed into a canonical form.

A related but different idea for rejecting the total dis-
turbance was proposed by Youcef-Toumi and Ito (1988).
The authors considered a class of nonlinear systems with
unknown nonlinear dynamics and external disturbances
and proposed a robust control scheme, called time delay
control (TDC), to make it track reference dynamics. By
assuming that a continuous signal changes little during a
small enough period, TDC uses past observation of the
total disturbance as feedforward control to approximately
cancel the current one. The closed-loop performance is
then governed by state feedback and model reference
feedforward controls. Later, Zhong and Rees generalize
TDC by replacing the time-delay filter with a general low
pass filter, resulting in the so-called UDE-based control
(Zhong and Rees, 2004). The generalization avoids several
drawbacks inherent in TDC, and allows decoupled designs
of the disturbance filter and the reference dynamics (Zhong
et al., 2011). The control method has been used to handle
both linear and nonlinear systems with state delays, where
the uncertainties and disturbances are of general sense
as that in ADRC (Kuperman and Zhong, 2011; Stobart
et al., 2011). To date, the stability of UDE-based control
has been proved mainly for linear time-invariant (LTI)
SISO systems. While, its assumption of true states being
available also limits its applications.

Another closely related method, MFC, was introduced
recently by Fliess and Join (2009; 2013). The method
approximates a continuous-time system by a local model
within a very short time period. The model is a differ-
ential equation with respect to the system’s input and
output. The output differential consists of two parts, one
related to the control input and the other lumps all rest
dynamics (i.e., a total disturbance). The total disturbance
is estimated and canceled online (which actually enforces
feedforward control), by using an algebraic identification
technique developed in (Fliess and Sira-Ramı́rez, 2003,
2008) or its improved version (Hu and Mao, 2014). With
the total disturbance being (approximately) canceled, the
local model reduces to a cascade of integrators for which
the feedback control design becomes straightforward. By
specifying a first- or second-order local model, MFC en-
ables PID feedback control to work with feedforward com-
pensation for output tracking, which results in the so-
called intelligent PID control (Fliess and Join, 2009, 2013).
To date, MFC has been studied mainly for SISO systems
though its extension to MIMO systems seems possible
(Fliess and Join, 2013). Furthermore, a strict stability
analysis of MFC is still missing.

By reviewing the above control methods at a high level, it
is not difficult to see that they are essentially different
manifestations of the same philosophies of feedforward
and feedback controls. The methods differ mainly in how
a total disturbance is defined and how it is estimated
and compensated. Motivated by the limited theoretical
results available for each of these methods, this work is
devoted to presenting a feedforward and feedback control
framework for general MIMO dynamic systems which are

not necessarily transformable into Han’s canonical form.
The design relies on the concept that disturbance in a
control design means the difference between the system
model in use and the real system it should be (Gao, 2013),
and on the principle that the disturbance is rejected by
feedforward control and its effect is attenuated by feedback
control. Specific contributions of this work are listed as
follows:

• It provides a feedforward and feedback control frame-
work for general MIMO dynamic systems;

• It identifies and discusses two types of total distur-
bance estimators under a same roof;

• It analyzes the closed-loop stability of the proposed
control scheme.

The problems treated by ADRC, UDE and MFC so far
can most, if not all, be viewed as special cases of the
problem considered in this work. The new theoretical
results, however, do not prove the internal stability of the
closed-loop system if a low-order (as contrast to full-order)
model is used, which is also the case of the state-of-the-art
MFC (Fliess and Join, 2013).

2. PROBLEM FORMULATION

Consider a dynamic system described by

ẋ(t) = f0(t, x, u, w0),

y(t) = g0(t, x, u, v0),
(1)

for t ≥ t0 (an initial time), where t ∈ R is the time, and
x, w0 ∈ Rn, u ∈ Rm (m ≤ n) and y, v0 ∈ Rl (l ≤ n),
are vectors of the state, disturbance, control input, mea-
surement (i.e., measured output) and measurement noise,
respectively. (The arguments of a variable or function are
ignored whenever no ambiguity arises.) As the true state
and measurement functions, f0 and g0, are unknown in
practice, we consider a model of the system instead:

ẋ(t) = f(t, x, u) + w(t, x, u, w0),

y(t) = g(t, x, u) + v(t, x, u, v0),
(2)

where w and v lump all unmodeled dynamics in the state
and measurement functions, respectively. Based on this
model is then defined the control problem.

The system needs to track a reference state trajectory, as
generated by

ẋr(t) = fr(t, xr, ur), (3)
for t ≥ t0, where xr ∈ Rn is the reference state trajectory
and ur ∈ Rm is the input used to excite the reference
system. To meet design specifications, the desired tracking
error dynamics is imposed as

ė = h(t, e), (4)

where e := xr − x which defines the error. With (2) and
(3), it follows that fr(t, xr, ur)− f(t, x, u)−w = h(t, e),
from which an ideal control u is solved. Since the true state
and disturbance are unavailable in practice, they have to
be estimated from the measurement y. Let the estimates
of x and w be x̂ and ŵ, respectively, and let ê := xr − x̂.
Then the equation becomes

fr(t, xr, ur)− ŵ− f(t, x̂, u)−h(t, ê) = δf +δw +δh, (5)

where δf := f(t, x, u) − f(t, x̂, u), δw := w − ŵ and
δh := h(t, e)−h(t, ê), which are errors caused by inexact
estimation. As a consequence, the target control vector u
has to be estimated from (5) subject to (2).
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The estimation is affected by the system model in use.
Depending on the information available, two cases can be
considered: i) Neither a state nor a measurement model
is available; ii) A state or measurement model, accurate
or not, is available. Case i) occurs when modeling of the
system dynamics is difficult or costly or even unnecessary,
which can be viewed as an extreme scenario of case
ii). Case ii) occurs when a good approximation of the
system dynamics is possible. The next section presents a
feedforward and feedback control approach to tackling the
more challenging case i); while, case ii) can be handled
alike.

3. THE CONTROLLER DESIGN

3.1 Feedforward and feedback control form

Consider the most challenging case where no system model
is available at all, i.e., the vector functions f and g are
null and w and v contain all unmodeled dynamics. In
this case, it is normally impossible to estimate the control
u from (2) and (5) for lack of an explicit relation with
the available information. In order to establish an explicit
relation, let us introduce a fictitious system model. That
is, f and g are both artificial vector functions of t, u and x,
instead of being constantly zero, and consequently w and
v are different total disturbance and noise, respectively.
The control u is then estimated from (5) subject to (2).

While it is feasible to have a numerical estimate, an
analytical estimate of u is preferred. This is possible if the
fictitious state and measurement functions are specified in
linear forms as follows:

f(t, x, u) := Ax + Bu,

g(t, x, u) := Cx + Du,
(6)

where A, B, C and D are constant matrices of compatible
dimensions, satisfying that (A, B) is controllable and
(A, C) is observable. Then the key equation (5) becomes

fr(t, xr, ur)− ŵ︸ ︷︷ ︸
feedforward signals

−Ax̂− h(t, ê)︸ ︷︷ ︸
feedback signals

−Bu = Aδx + δw + δh. (7)

The equation embodies feedforward signals, fr(t, xr, ur),
which embeds a reference state trajectory, and ŵ, which
rejects the total disturbance, and feedback signals, Ax̂,
which cancels the fictitious state dynamics, and h(t, ê),
which enforces desired tracking error dynamics. The con-
trol estimate will be coded by these two kinds of signals.

Depending on forms of the estimates x̂ and ŵ, different
control estimates can be obtained from (7). If either x̂
or ŵ has an explicit relation with u, then it will be
better to substitute the relation into the above equation
before estimating u: This makes the estimate x̂ or ŵ be
transparent in the implementation, i.e., it is merely used
in the deduction but not computed in practice. Otherwise,
it is straightforward to estimate u as

û = B† (fr(t, xr, ur)− ŵ −Ax̂− h(t, ê)) , (8)

which minimizes the least-square (LS) equation error of
(7) (where B† := (BTB)−1BT ). The feedforward and
feedback components of the control are clear as in (7).
Note that this control estimate may introduce a bias even
if x̂ and ŵ are equal to the true values. This is seen by
replacing u in (7) with û, resulting in a bias

δu := (I−BB†) (fr(t, xr, ur)− ŵ −Ax̂− h(t, ê)) . (9)

Though it will be compensated by the next update of
control once it is incorporated in the estimate of a renewed
disturbance w, it is preferable if the bias does not appear
at all. The following lemma gives a sufficient condition
under which this actually happens.

Lemma 1. (Zero control-estimate-induced bias) If there
is a nonsingular matrix P ∈ Rn×n such that PB =[

0(n−m)×m
∗1

]
and P (fr(t, xr, ur)− ŵ −Ax̂− h(t, ê)) =[

0(n−m)×1

∗2

]
, where ∗1 denotes a nonsingular m × m

matrix and ∗2 an m × 1 vector, then the induced bias
δu is equal to zero.

Proof. Let Q = [Q1 Q2] := P−1, where Q1 ∈ Rn×(n−m)

and Q1 ∈ Rn×m. Then B = QPB = Q2∗1 and similarly
fr(t, xr, ur)− ŵ −Ax̂− h(t, ê) = Q2∗2. Hence

δu = (I−BB†) (fr(t, xr, ur)− ŵ −Ax̂− h(t, ê))

=
(
I−Q2 ∗1 (∗T1 QT

2 Q2∗1)−1 ∗T1 QT
2

)
Q2∗2

=
(
I−Q2(QT

2 Q2)−1QT
2

)
Q2∗2 = 0,

which completes the proof.

A specific case when the above condition is satisfied is that
the true system is in Han’s canonical form (Han, 1981;
Youcef-Toumi and Ito, 1988; Fliess, 1990) and so is the
fictitious system model, where P is an identify matrix.

3.2 State and disturbance estimators

Given the fictitious state model in (6), the actual complete
system dynamics has the form of

ẋ(t) = Ax(t) + Bû(t) + w(t, x(t), û(t)),

y(t) = Cx(t) + Dû(t) + v(t, x(t), û(t)),
(10)

which is an LTI system subject to general disturbances
and measurement noises. To compute the control û from
(7) or implement it per (8), the state x and the disturbance
w need to be estimated (implicitly or explicitly) from
the measurement y. Depending on the invertibility of the
measurement matrix C, two kinds of estimators can be
used for this purpose. If C is square and invertible, then
it is feasible to estimate x by direct filtering of y and
subsequently estimate w by a different filtering, which
results in a Type-I estimator. Otherwise, an ESO can be
used to estimate x and w simultaneously, resulting in a
Type-II estimator. Type-II estimator is also applicable
when C is invertible, though its implementation is more
complicated as compared to Type-I estimator. In this
case, Type-I estimator has another advantage that the
disturbance is only estimated implicitly without being
really computed.

Type-I estimator (if C is invertible). The state x is
estimated by filtering of y as

x̂(t) = C−1 (fy(t). ? y(t)) , (11)

where fy(t) ∈ Rl is a vector of impulse responses of filters
that suppress the measurement noises, and .? denotes the
convolution operator as applied to corresponding elements
of the two vectors.

With the state estimate, the disturbance w is then esti-
mated by filtering on the state equation, yielding ŵ(t) =
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fw(t). ?
(

˙̂x(t)−Ax̂(t)−Bû(t)
)

, where fw(t) ∈ Rn is a

vector of impulse responses of proper filters, satisfying
fw(t). ? ˙̂x(t) be realizable. (A more general filtering is
that different filters are applied to the three terms in
the bracket.) Since it is explicitly dependent on û, it
is straightforward to substitute ŵ into the key equation
(7), from which an LS estimate of the desired control is
obtained as follows:

û(t) = −B†
(
Ax̂(t) + L−1

(
(In − Fw(s))−1 Fw(s)sX̂(s)

− (In − Fw(s))−1 sXr(s)

+ (In − Fw(s))−1 Hê(s)

))
,

(12)

where Fw(s) is a diagonal matrix in Laplace domain
whose diagonal elements are the Laplacian transforms of
vector fw(t), and X̂(s), Xr(s) and Hê(s) are the Laplacian
transforms of x̂(t), xr(t) and h(t, ê), respectively, and L−1

denotes the inverse Laplacian transform. The control input
in (12) is ready to implement directly, without explicit
estimation of the disturbance.

The estimation errors depend on the filters fy and fw ap-
plied. Designing fy properly needs to have prior knowledge
about the noise v which is usually accessible in applica-
tions. In contrast, designing fw properly is non-trivial and
deserves particular investigations. This is because the gen-
eral disturbance w contains all unmodeled dynamics and
is even dependent on the control input, which would make
it difficult to have accurate knowledge of its bandwidth
beforehand. Some related results for linear-time varying
systems can be found in (Zhong et al., 2011).

Type-II estimator (when C is either invertible or not). An
ESO is used to estimate the state x and the disturbance
w, simultaneously. Because the ESO has the form of a
conventional linear state observer, a Type-II estimator is
rather standard except that the state means an extended
state including the total disturbance (Han, 1995).

Extend the state vector as x̄ = [xT wT ]T . Then the model
equations in (10) are rewritten as

˙̄x(t) = Āx̄(t) + B̄û(t) + Ew̃(t, x(t), û(t)),

y(t) = C̄x̄(t) + D̄û(t) + v(t, x(t), û(t)),
(13)

where

Ā : =

[
A In
0 0

]
, B̄ :=

[
B
0

]
, E :=

[
0
In

]
,

C̄ : = [ C 0 ] , D̄ := D, w̃(t, x, û) := ẇ(t, x, û).

The derivative ẇ acts as uncertainty instead of w. A linear
observer is applicable to estimate x̄, as follows:

˙̄̂x(t) = Āˆ̄x(t) + B̄û(t) + L̄(y − ŷ),

ŷ(t) = C̄ˆ̄x(t) + D̄û(t),
(14)

where L̄ ∈ R2n×l is selected such that Ā− L̄C̄ is Hurwitz.
The existence of such a matrix depends on observability
of the extended system model (13), which is guaranteed
under conditions summarized in the next lemma.
Lemma 2. (Observability of the extended fictitious model)
The extended fictitious LTI system model given in (13) is
observable if and only if one of the conditions is satisfied:

1) rank
(

[O ĨnlO]
)

= 2n (full column rank);

2) rank(O) = n and rank
(

(Inl −OO†)ĨnlO
)

= n;

where O ∈ Rnl×n is the observability matrix of (A, C) and

Ĩnl ∈ Rnl×nl is a downward-row-shifted identity matrix
such that ĨnlO = [0Tl×n CT ATCT (AT )2CT ... (AT )n−2CT ]T .

Proof. To prove 1), it is sufficient to show that the

observability matrix for (Ā, C̄) is equal to [O ĨnlO] which
is very straightforward. To prove 2), by applying Theorem
5 in (Puntanen et al., 2011) (on pp. 121), it follows that

rank
(

[O ĨnlO]
)

= rank (O) + Rank
(

(Inl −OO†)̃InlO
)

and so establishes its equivalence to 1).

Define the estimation error as δx̄ = x̄− ˆ̄x, and let Ã := Ā−
L̄C̄. Then the error is bounded if both ẇ and v are
bounded, as explained by the lemma below.

Lemma 3. (Bounded estimation error) If ‖ẇ‖ ≤ cẇ,

‖v‖ ≤ cv and Ã is Hurwitz, then there exists a finite
time T1 (≥ t0) such that ‖δx̄‖ ≤ 2γÃ(cẇ + cv

∥∥L̄∥∥) for all

t ≥ T1, where γÃ =
∥∥∥∫∞t0 eÃ

T τeÃτdτ
∥∥∥.

Proof. The estimation error dynamics is obtained as

δ̇x̄ = Ãδx̄ + d, where d :=

[
0
ẇ

]
− L̄v. It is easy

to show that there exists a finite time T1 such that
‖δx̄‖ ≤ 2 ‖Pd‖ ≤ 2 ‖P‖ (‖ẇ‖ +

∥∥L̄∥∥ ‖v‖) for all t ≥ T1

(readers are referred to the proof of Theorem 1 in (Gao,
2006) for this step), where P is a positive definite matrix

satisfying the Lyapunov equation ÃTP + PÃ = −I2n.

Specifically, P is solved explicitly as P =
∫∞
t0
eÃ

T τeÃτdτ

(Chen, 1999). Inserting this solution and the given bounds
on disturbance and noise into the proceeding inequality
proves the lemma.

Lemma 3 indicates that the magnitude of the estimation
error depends on the speed of the varying disturbance w,
and the magnitude of measurement noise v, and also the
observer gain L̄ (which determines the value of γÃ). If the
estimation error is large mainly for a rapidly changing w,
then it may be remedied by placing the poles of Ã further
away from the imaginary axis (but limited by simultaneous
inflation of the measurement noise via

∥∥L̄∥∥), or by using
a higher-order ESO that treats the derivative(s) of w
as additional state(s) (subject to a renewed observability
condition) (Miklosovic et al., 2006; Madonski and Herman,
2013). To deal with measurement noise, the measurements
can be filtered before use if the cost incurred is mild
compared to the benefit.

3.3 Stability analysis

It is sufficient to analyze the closed-loop stability via the
state tracking error dynamics. With the system dynamics
described in (10) and the control given in (8), the tracking
error dynamics is deduced as follows:

ė = ẋr − ẋ = fr − ŵ −Ax̂−Bû−Aδx − δw

= h(t, ê) +

(
fr − ŵ −Ax̂− h(t, ê)

−BB
†

(fr − ŵ −Ax̂− h(t, ê))−Aδx − δw

)
= h(t, ê) + (I−BB

†
) (fr − ŵ −Ax̂− h(t, ê))−Aδx − δw,

= h(t, e) + δu −Aδx − δw − δh = h(t, e) + ξ,

(15)

where ξ := δu − Aδx − δw − δh, which defines the total
design error that lumps the control-estimate-induced bias
and the errors caused by inexact estimation of x and w.
Sufficient conditions for the tracking error to be bounded
are given in the next theorem.
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Theorem 4. (Weak closed-loop stability) Let the fictitious
model be specified such that δu ≡ 0. The closed-loop
system described by (15) is stable in the sense that the
state tracking error e is bounded, if the three conditions
are satisfied: 1) the desired error dynamics, ė = h(t, e),
is globally exponentially stable at the origin; 2) the func-
tion h(t, e) is continuously differentiable, and there ex-
ists a positive scalar lh such that ‖h(t, e1)− h(t, e2)‖ ≤
lh ‖e1 − e2‖ for any t ≥ t0 and e1, e2 in the admissi-
ble domain; 3) the disturbance, measurement noise and
observer gain satisfy the conditions in Lemma 3. More
precisely, under these conditions there exists a finite time
T2 (≥ T1 ≥ t0) and a positive constant c such that the
tracking error is bounded as

‖e‖ ≤ c ‖ξ‖ ≤ cγÃ(cẇ + cv
∥∥L̄∥∥)(lh + ‖[A In]‖), (16)

for all t ≥ T2, where γÃ, cẇ and cv are given in Lemma 3.

Proof. Conditions 1) and 2) imply that the tracking
error dynamics described in (15) is input-to-state stable
with the input being the total design error ξ (Lemma 4.6
in (Khalil, 2002)). To prove the theorem, it is sufficient
to show that ξ is bounded. Condition 2) implies that
‖δh‖ = ‖h(t, e)− h(t, ê)‖ ≤ lh ‖δx‖ ≤ lh ‖δx̄‖. With
ξ = −[A In]δx̄ − δh and condition 3), it follows from
Lemma 3 that there exists a finite time T1 (≥ t0) such
that ‖ξ‖ ≤ 2γÃ(cẇ + cv

∥∥L̄∥∥)(lh +‖[A In]‖) for all t ≥ T1.
This establishes the boundedness of ξ and thus proves the
boundedness of the state tracking error.

The specific bound of the tracking error can be derived
by referring to the proof of Lemma 4.6 in (Khalil, 2002).
Condition 1) implies that, for the unperturbed system
ė = h(t, e), there exists a Lyapunov function V (t, e)

satisfying c1 ‖e‖2 ≤ V (t, e) ≤ c2 ‖e‖2, ∂V
∂t + ∂V

∂e h(t, e) ≤
−c3 ‖e‖2 and

∥∥∂V
∂e

∥∥ ≤ c4 ‖e‖ for some positive constants
c1, c2, c3 and c4 (Theorem 4.14 in (Khalil, 2002)). Then
the derivative of V (t, e) with respect to the perturbed
system ė = h(t, e) + ξ satisfies

V̇ =
∂V

∂t
+
∂V

∂e
h(t, e) +

∂V

∂e
ξ ≤ −c3 ‖e‖2 + c4 ‖e‖ ‖ξ‖ .

Then V̇ < 0 for all ‖e‖ > c4
c3
‖ξ‖. This means that there

exists a finite time T2 (≥ T1 ≥ t0) such that ‖e‖ ≤ c4
c3
‖ξ‖

for all t ≥ T2. By using the preceding bound of ‖ξ‖, this
establishes the bound of the tracking error as given in (16)
and thus completes the proof.

An important implication follows on the value of having a
good system model: It is useful to have a more accurate
model if it contributes to a smaller total design error ξ.
This is likely to be true because a more accurate model
and hence a smaller or smoother w would contribute to
a smaller estimation error δw and consequently a smaller
total design error ξ. This reveals that the value of having
a good model remains in the current approach, although
its marginal benefit is probably not obvious because of the
online feedforward compensation embedded.

As remarked before, the assumption of δu ≡ 0 imposes
certain assumptions on the true system dynamics and
the fictitious model. Also the assumption of bounded
ẇ(t, x, û, w0) and v(t, x, û, v0) has limitation because
these vectors are normally dependent on the control ap-
plied and their boundedness are hard to know beforehand.

For these reasons, it is desirable to establish a more general
stability result without these restrictive assumptions.

For tractability, we consider a measurement model with
D = 0 and the reference tracking error dynamics having
a linear form of ė = h(t, e) := Ke, where K ∈ Rn×n is
a given matrix. Then the estimation and tracking error
dynamics which determines the closed-loop stability is
derived as follows (after tedious deductions):[

δ̇x̄
ė

]
=

[
H11 H12

H21 H22

] [
δx̄
e

]
+

[
δ1
δ2

]
, (17)

where the related matrices and vectors are given in (18)-

(20), with B̃ := In −BB† and M :=

[
−In 0

BB†(A−K) −B̃

]
(as

frequently used later on). Define ē =

[
δx̄
e

]
, H =

[
H11 H12

H21 H22

]
and δ̄ =

[
δ1
δ2

]
. Then the error dynamics becomes concise

as ˙̄e = Hē + δ̄, from which the closed-loop stability is

deduced. For convenience, let γH :=

∥∥∥∫∞
t0

eH
T τ eHτdτ

∥∥∥.

Theorem 5. (Closed-loop stability) The closed-loop sys-
tem described by (17) is stable in the sense that the
estimation and the tracking errors are bounded if the
following conditions are satisfied:
1) the true state function f0(t, x, u, w) is continuously

differentiable, and f0(t, x, u, w) and ḟ0(t, x, u, w) are
uniformly globally Lipchitz in x, u, and w and so is the
true measurement function g0(t, x, u, v) in x, u, and v,

i.e., there exist non-negative constants l
x/u/w
f0 , l

x/u/w

ḟ0
and

l
x/u/v
g0 such that

‖f0(t, x1, u1, w1)− f0(t, x2, u2, w2)‖
≤ lxf0 ‖x1 − x2‖+ luf0 ‖u1 − u2‖+ lwf0 ‖w1 −w2‖∥∥ḟ0(t, x1, u1, w1)− ḟ0(t, x2, u2, w2)

∥∥
≤ lx

ḟ0
‖x1 − x2‖+ lu

ḟ0
‖u1 − u2‖+ lw

ḟ0
‖w1 −w2‖

‖g0(t, x1, u1, v1)− g0(t, x2, u2, v2)‖
≤ lxg0 ‖x1 − x2‖+ lug0 ‖u1 − u2‖+ lvg0 ‖v1 − v2‖

for all t ≥ t0 and the variables in the admissible domain;
2) the reference state function fr(t, x, u) is continuously

differentiable, and fr(t, x, u) and ḟr(t, x, u) are uniformly
globally Lipchitz in x, and u, i.e., there exist non-negative

constants l
x/u
fr and l

x/u

ḟr
such that

‖fr(t, x1, u1)− fr(t, x2, u2)‖ ≤ lxfr ‖x1 − x2‖+ lufr ‖u1 − u2‖∥∥ḟr(t, x1, u1)− ḟr(t, x2, u2)
∥∥ ≤ lx

ḟr
‖x1 − x2‖+ lu

ḟr
‖u1 − u2‖

for all t ≥ t0 and the variables in the admissible domain;
3) the control actions are bounded, i.e., ‖û‖ ≤ cu and
‖ur‖ ≤ cur for some positive constants cu and cur, and so
are the reference state xr and the actual disturbance w0
and noise v0, i.e., ‖xr‖ ≤ cxr, ‖w0‖ ≤ cw0, and ‖v0‖ ≤ cv0
for some non-negative constant cxr, cw0 and cv0;
4) there exist a reference tracking error gain matrix K and
an observer gain matrix L̄ such that H is Hurwitz and that

2γH

(
lxg0

∥∥ML̄
∥∥

+lxf0

(∥∥(BB†(A−K)−A
)
B̃
∥∥+

∥∥B̃∥∥)+ lx
ḟ0

)
< 1. (21)

More precisely, under these conditions there exists a finite
time T ≥ t0 such that the estimation and tracking errors
are bounded as ‖ē‖ ≤ cē, with cē computed from (22).
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H11 = Ã +

[
0(

BB
†
(A−K)−A

)
[BB

†
(A−K) BB

†
]− [BB

†
(A−K) 0]Ã + [0 BB

†
][L̄C 0]

]
, (18)

H12 =

[
0

[BB
†
(A−K) BB

†
]L̄C +

(
A−BB

†
(A−K)

)
BB

†
K

]
− L̄C, H21 = −[BB

†
(A−K) BB

†
], H22 = BB

†
K, (19)

δ1 = ML̄ (g0 −Cxr) +

[
0(

BB
†
(A−K)−A

)
B̃

]
f0 −

[
0(

BB
†
(A−K)−A

)
B̃ + B̃A

]
fr +

[
0

ḟ0 −BB
†
ḟr

]
, δ2 = B̃ (fr − f0) . (20)

cē :=
2γH
(
cxrβ1 + curβ2 + cuβ3 + cw0β4 + cv0β5

)
1− 2γH

(
l
x
g0

∥∥ML̄
∥∥+ l

x
f0

(∥∥(BB
†
(A−K)−A

)
B̃
∥∥+
∥∥B̃
∥∥)+ l

x

ḟ0

) , (22)

where

β1 =

(
l
x
g0

∥∥ML̄
∥∥+
∥∥ML̄C

∥∥+ l
x
f0

(∥∥(BB
†
(A−K)−A

)
B̃
∥∥+
∥∥B̃
∥∥)

+l
x
fr

(∥∥(BB
†
(A−K)−A

)
B̃ + B̃A

∥∥+
∥∥B̃
∥∥)+ l

x

ḟ0
+ l

x

ḟr

∥∥BB
†
∥∥ ) , β2 = l

u
fr

(∥∥(BB
†
(A−K)−A

)
B̃ + B̃A

∥∥+
∥∥B̃
∥∥)+ l

u

ḟr

∥∥BB
†
∥∥ ,

β3 =
(
l
u
g0

∥∥ML̄
∥∥+ l

u
f0

(∥∥(BB
†
(A−K)−A

)
B̃
∥∥+
∥∥B̃
∥∥)+ l

u

ḟ0

)
, β4 = l

w
f0

(∥∥(BB
†
(A−K)−A

)
B̃
∥∥+
∥∥B̃
∥∥)+ l

w

ḟ0
, β5 = l

v
g0

∥∥ML̄
∥∥ .

(23)

Proof. Consider the closed-loop system ˙̄e = Hē + δ̄.
Let the Lyapunov function be V (t, e) = ēTPē, where

P =
∫∞
t0
eH

T τeHτdτ . Since H is Hurwitz, the positive

definite matrix P is a unique solution to the Lyapunov
equation HTP + PH = −I3n. The proof proceeds as in
(24). Then by condition 4), V̇ < 0 if ‖ē‖ > cē, where cē is
defined in (22). Therefore there exists a finite time T such
that ‖ē‖ ≤ cē for all t ≥ T , which completes the proof.

The Liptchiz conditions in 1) and 2) on the system and
the reference dynamics are normally required for control
of nonlinear systems (Khalil, 2002). Similar conditions on
their derivatives are reasonable as the variables should not
change too fast if a system is practically controllable. The
various bounds imposed by condition 3) are common in
normal operations. Condition 4) is thus the key constraint
to enable closed-loop stability. The condition roughly
means that the poles of the observer (as determined by
the observer gain matrix L̄) and the poles of the target
tracking error dynamics (as determined by matrix K)
should both be far from the imaginary axis such that γH is
small enough. However, this is limited by the simultaneous
inflation of the other factor, to which γH times. In other
words, while a high gain observer and fast target dynamics
are desirable, they are useful only if they do not inflate the
(general) measurement noise too much at the same time.

In particular, if the true system dynamics can be repre-
sented in Han’s canonical form (Han, 1981; Youcef-Toumi
and Ito, 1988; Fliess, 1990) , then it is feasible to specify
the system model also in a canonical form. In this case,
all terms related to BB† in the closed-loop analysis will
disappear (cf. Lemma 1). Consequently BB† and B̃ are
treated as identity and zero matrices, respectively. Then
the closed-loop matrices in (18)-(20) simplify into

H11 = Ã +

[
0

−K[A−K In]− [A−K 0]Ã + [0 In][L̄C 0]

]
,

H12 =

[
0

[A−K In]L̄C + K
2

]
− L̄C, H21 = −[A−K In], H22 = K,

δ1 =

[
−In 0

A−K 0

]
L̄ (g0 −Cxr) +

[
0

ḟ0 − ḟr

]
, δ2 = 0,

and the key stability condition in (21) reduces to

2γH

(
lxg0

∥∥∥[ −In 0
A−K 0

]
L̄

∥∥∥+ lx
ḟ0

)
< 1.

4. NUMERICAL EXAMPLE

Consider a normalized model of the pendulum when the
control input is the acceleration of the pivot (Åström et al.,
2008):

ẋ1 = x2, ẋ2 = sinx1 − u cosx1, (25)

where x1 is the angular position of the pendulum with the
origin at the upright position and x2 is the angular velocity
of the pendulum. The goal is to design a controller based
on the measurable states x1 and x2 that is able to swing-
up the pendulum from all or constrained initial conditions
and maintain it at the upright position.

We specify the reference closed-loop model as: ẋr, 1 = xr, 2
and ẋr, 2 = −k1xr, 1− k2xr, 2, where k1 and k2 are positive
scalars, and the desired tracking error dynamics as: ė1 = e2

and ė2 = −k1e1 − k2e2, where e1 := xr, 1 − x1 and e2 :=
xr, 2 − x2. Depending on the system model used, different
controllers can be designed by the proposed approach.

Case A: The design bases on the ideal model (25), leading
to an exact control as

u =
k1x1 + k2x2 + sinx1

cosx1
, (26)

which recovers the control law obtained by an input-output
linearization technique (Srinivasan et al., 2009). The singu-
larity of the control at x1 = 2k+1

2 π for k = 0, 1, 2, ..., can
be resolved by bounding the input and meanwhile switch-
ing the reference value of x1 properly (Srinivasan et al.,
2009). This controller is treated as a reference controller
without implementing online feedforward compensation
for unknown disturbances.

Case B: While the dynamic model of x1 is exact as in (25),
the dynamic model of x2 is replaced by a fictitious model
per ẋ2 = −u + w, where w contains any model mismatch
(i.e., w = sinx1 + u(1 − cosx1)). If a Type-I estimator is
applied, it leads to an estimated control:

û = L−1

(
k1X1 + (k2 + sFx)X2

1− Fu

)
, (27)

where Fx and Fu are filters for estimating ẋ2 and u, re-
spectively. Note that the disturbance w has been estimated
and compensated in an implicit manner. If a Type-II
estimator is used instead, then the estimate ŵ is obtained
from an ESO defined in (14) and the observer gain matrix
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V̇ = ēT (HTP + PH)ē + 2ēTPδ̄ = −ēT ē + 2ēTPδ̄ ≤ −‖ē‖2 + 2γH ‖ē‖ (‖δ1‖+ ‖δ2‖)

≤ −‖ē‖2 + 2γH ‖ē‖ ×

 ∥∥ML̄
∥∥ ‖g0‖+

∥∥ML̄C
∥∥ ‖xr‖

+
∥∥(BB†(A−K)−A

)
B̃
∥∥ ‖f0‖+

∥∥(BB†(A−K)−A
)
B̃ + B̃A

∥∥ ‖fr‖
+
∥∥ḟ0∥∥+

∥∥BB†
∥∥∥∥ḟr∥∥+

∥∥B̃∥∥ ‖fr‖+
∥∥B̃∥∥ ‖f0‖



≤ −‖ē‖2 + 2γH ‖ē‖ ×


∥∥ML̄

∥∥(lxg0 ‖x‖+ lug0 ‖û‖+ lvg0 ‖v0‖
)

+
∥∥ML̄C

∥∥ ‖xr‖
+
(∥∥(BB†(A−K)−A

)
B̃
∥∥+

∥∥B̃∥∥)(lxf0 ‖x‖+ luf0 ‖û‖+ lwf0 ‖w0‖
)

+
(∥∥(BB†(A−K)−A

)
B̃ + B̃A

∥∥+
∥∥B̃∥∥)(lxfr ‖xr‖+ lufr ‖ur‖

)
+lx

ḟ0
‖x‖+ lu

ḟ0
‖û‖+ lw

ḟ0
‖w0‖+

∥∥BB†
∥∥(lx

ḟr
‖xr‖+ lu

ḟr
‖ur‖

)
 (24)

≤ −
(
1− 2γH

(
lxg0

∥∥ML̄
∥∥+ lxf0

(∥∥(BB†(A−K)−A
)
B̃
∥∥+

∥∥B̃∥∥)+ lx
ḟ0

))
‖e‖2

+2γH
(
cxrβ1 + curβ2 + cuβ3 + cw0β4 + cv0β5

)
‖ē‖ ,

where βi, i = 1, 2, ..., 5 are defined in (23).
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Fig. 1. Performances of three controllers.
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L̄ ∈ R3×2 is designed such that Ā− L̄C̄ is Hurwitz. The
control then takes the form of

û = k1x1 + k2x2 + ŵ. (28)

The three controllers in (26), (27) and (28) are named
as controller A, B.I and B.II, respectively. The design
parameters of the controllers are specified as: k1 = k2 = 2,
|umax| = 5 (bounded control), Fx = Fu = 1

0.05s+1 , and

L̄ =

[
20 1
0 60
0 800

]
. The filters Fx and Fu are such that the

derivative of state x2 can well be estimated, and the
observer gain matrix L̄ is such that the three poles of the
ESO are placed at -20, -20 and -40, which are ten or more
times faster than the actual state dynamics.

With (x1(0), x2(0)) = (−π3 , 0), the simulation results,
when an additive sinusoid disturbance, sin t, entering into
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Fig. 3. Control performance under noisy measurements.

the dynamics of x2 is present or absent, are shown in Fig. 1.
In the absence of the disturbance, all three controllers are
able to stabilize the pendulum pretty well with comparable
performances. The implicit and explicit estimates of the
total disturbances used by controllers B.I and B.II are
shown in Fig. 2, which are accurate and hence imply
good online compensations of the disturbances. When the
sinusoid disturbance is switched on, controller A becomes
unacceptable, leading to large oscillating tracking errors.
In contrast, controllers B.I and B.II maintain small track-
ing errors.

When the states x1 and x2 are both measured with addi-
tive zero-mean Gaussian noises having a variance of ( π60 )2

(and so 97% of the errors are within ±9 degrees and ±9
degrees/second, respectively), the control performances for
a single noise realization are shown in Fig. 3. Regarding
each controller, the resultant state dynamics is similar to
the previous scenario, except that it becomes noisy. The
change is more obvious in the control signals: They become
very noisy, which is most severe with controller B.I. Nev-
ertheless, this can be alleviated if the measurements are
filtered before use. For example, if both the measurements
of x1 and x2 are filtered by the filter Fy(s) = 1

0.05s+1 , then
the performance of controller B.I becomes much smoother
and is very close to that of controller B.II. The results are
not shown due to space limit.
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5. CONCLUSIONS

This work presented a feedforward and feedback approach
for controlling a dynamic system to track a reference state
trajectory. Sufficient conditions for assuring stability of the
closed-loop system were provided.

Future research will be conducted to refine the analyses
and provide comprehensive numerical and experimental
validations, and to further investigate the interplay be-
tween a model used in control design and the total distur-
bance to compensate.
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